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1 Supervised learning and linear regression background

• We define X ∈ RN×(d+1) as a matrix whose rows are the data vectors: (1, xi1, x
i
1, . . . , x

i
d) for

i = 1, 2, . . . , N . With this notation, an affine function f : Rd+1 → R acting on each data
point gives rise to ŷi = wT x̄i, i = 1, . . . , N . If stack the ŷi ∈ R together and write it as a
vector ŷ = (ŷ1, ŷ2, . . . , ŷN ), we can then write ŷ = Xw. Thus, if the true labels are y ∈ RN ,
verify that we can then write the error vector in prediction using a linear model as a vector
e = (e1, e2, . . . , eN ) with ei = ŷi − yi as e = Xw − y.

• In case each label y is a vector in Rm, we would have a set of m weights for each element of
y, since we learn an affine functions for each element of y. We use the notation wk,j to refer
to the j-th element of the k-th weight vector for j = 0, 1, . . . , d and k = 1, 2, . . . ,m. It follows
that yil = wT

l x
i, for l ∈ {1, . . . ,m} and i ∈ {1, . . . , N}.

Our goal in supervised learning is to learn a function f : Rd → Rm, called a predictor, such
that for a given independent variable x we can predict the corresponding dependent variable y as
ŷ := f(x) ≈ y. We often fix a model class (e.g. linear) and parameterize f with a set of parameters
w ∈ Rp (e.g. coefficients in the linear regression).

1.1 Loss or cost function

Given a pair (x, y), the error in our prediction depends on how close our prediction ŷ is to the true
label y. Since ŷ = f(x) and f is parameterized by w, the error becomes a function of w. Based
on the error, we define a loss function L : Rp → R. We then aim to learn w so as to minimize the
loss L(w). Note: the loss function is also referred to as a cost function, and sometimes also as the
performance metric (though in some cases the performance metric might be different than the loss
function). Furthermore, this function is sometimes written as J(.) instead of L(.).

Gradient, hessian, partial derivative

• The gradient of a function L : Rp → R is denoted by ∇L(w) ∈ Rp. It is formed by stacking
together the partial derivatives ∂L

∂wi
, i = 1, 2, . . . , p in a vector.

• For an affine function f : Rp → R, represented as f(w) = aTw + b, with a ∈ Rp, b ∈ R, verify
that the gradient is ∇f(w) = a. The gradient of several loss functions we have encountered
can be derived using this fact, the chain rule and product rule from calculus.

• The problem of finding minimum of a function L : Rp → R is written as minw L(w) and the
optimizer of the problem is denoted by w∗ = argminL(w).

• Recall that if w∗ ∈ Rp is a minimum of a differentiable function L : Rp → R, then∇L(w∗) = 0.
In other words, for an unconstrained optimization, the gradient of the function has to vanish
at an optimum.

Exercise 1. Go through the notes on computing gradient and Hessian of linear and quadratic
functions here.

• Derive the gradient and Hessian of the function f : Rp → R, given by f(w) = wTa + b with
respect to w ∈ Rp, b ∈ R.

• Derive the gradient and Hessian of the function f : Rp → R, given by f(w) = wTAw+wTa+b,
with respect to w ∈ Rp, b ∈ R.
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Exercise 2. Consider M ∈ Rp×p.

• Under which conditions is M invertible? you may state as many conditions as you know.

• Now, suppose M = XTX. Under which conditions on X ∈ RN×p is M invertible? What
would this imply regarding your data matrix X?
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