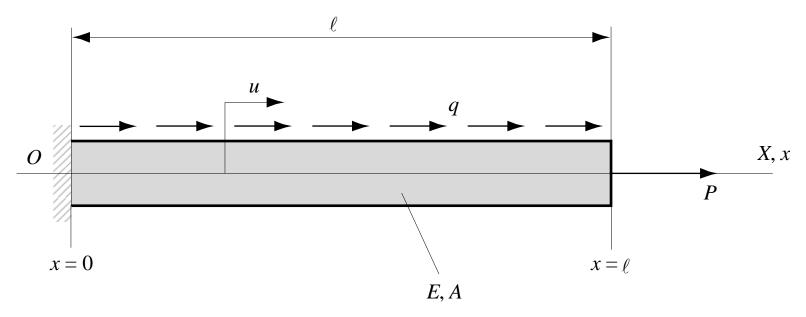
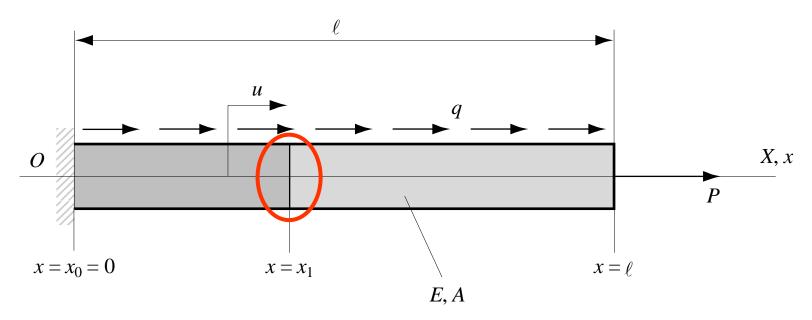
Méthode des éléments finis Généralisation de la forme faible aux problèmes unidimensionnels

Prof. F. Gallaire



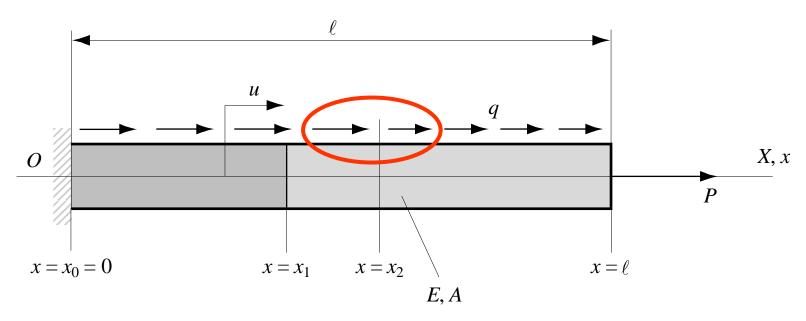
• Insertion de discontinuités

25/10/2018 -2-



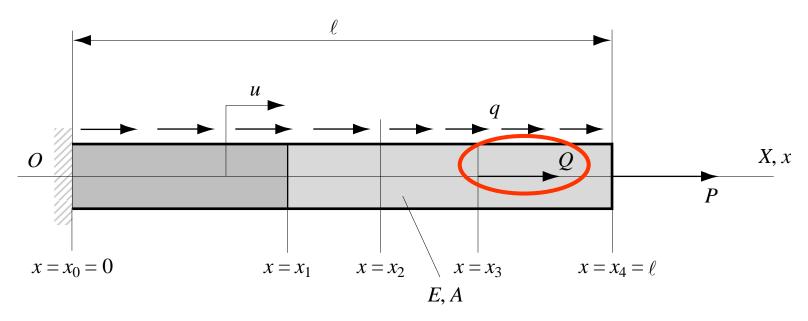
- Insertion de discontinuités
 - Discontinuité du module d'élasticité E en $x=x_1$

25/10/2018 -3-



- Insertion de discontinuités
 - Discontinuité du module d'élasticité E en $x=x_1$
 - Discontinuité de la charge répartie q en $x=x_2$

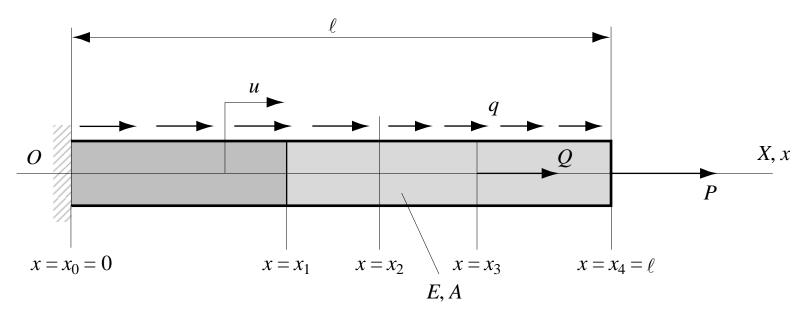
25/10/2018 -4-



Insertion de discontinuités

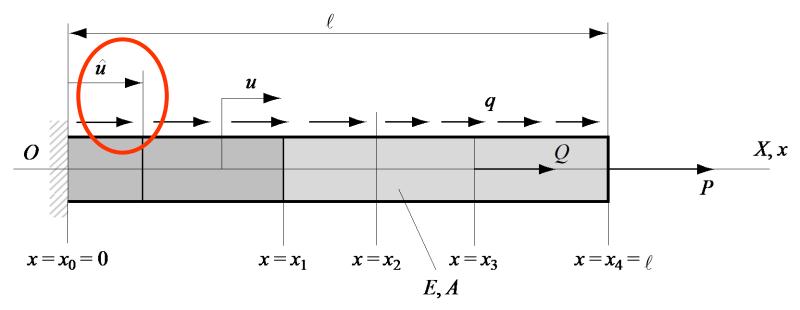
- Discontinuité du module d'élasticité E en $x=x_1$
- Discontinuité de la charge répartie q en $x=x_2$
- Ajout d'une force ponctuelle Q en $x=x_3$

25/10/2018



Modification des conditions aux limites

25/10/2018 -6-

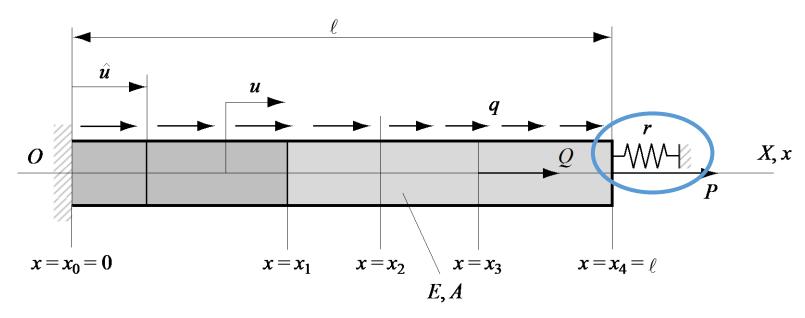


- Modification des conditions aux limites
 - Condition essentielle en $x = x_0 = 0$

Déplacement imposé \hat{u}

$$u(0) = \hat{u}$$

25/10/2018 -7-



Modification des conditions aux limites

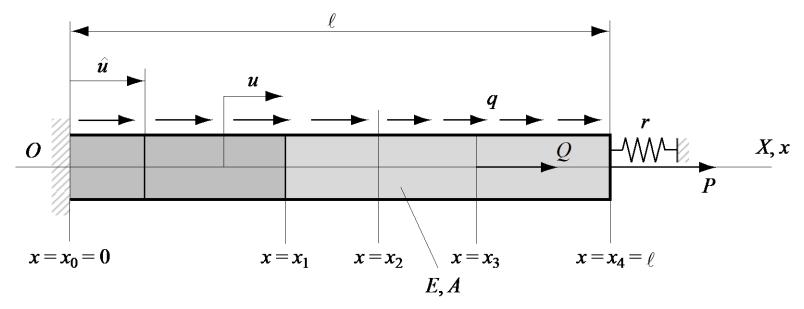
Condition essentielle en
$$x = x_0 = 0$$

$$u(0) = \hat{u}$$

• Condition naturelle en $x = x_4 = \ell$

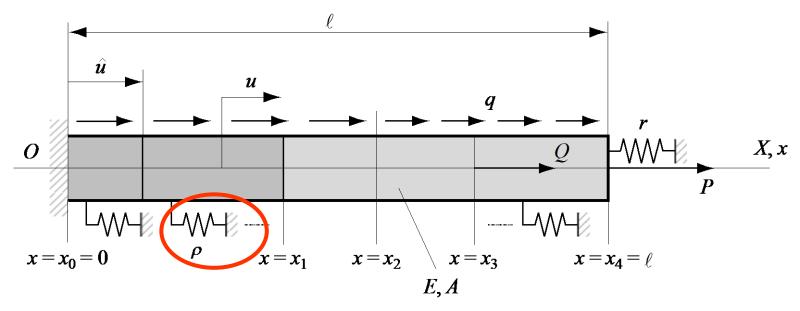
$$EA \left(\frac{\mathrm{d}u}{\mathrm{d}x} \right) \Big|_{x=\ell} = - r u(\ell) + P$$

Charge proportionnelle au déplacement $u(\ell)$



Modification de l'équation différentielle

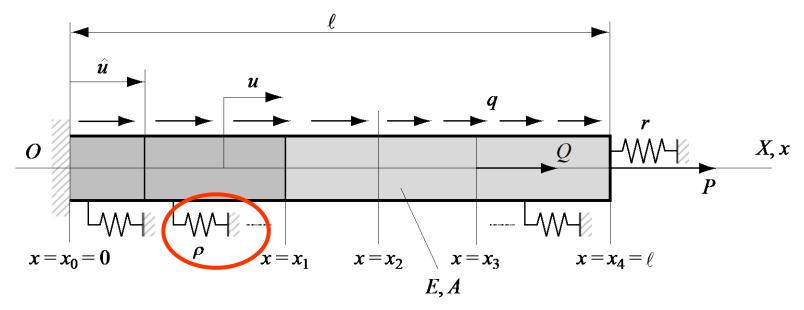
25/10/2018



• Modification de l'équation différentielle : ajout d'une charge axiale ρu proportionnelle au déplacement axial u

$$-d[EA (du/dx)]/dx + \rho u = q$$
 ρ facteur de proportionnalité

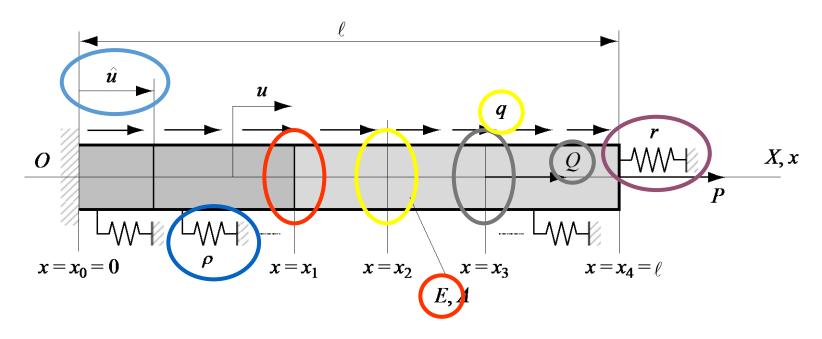
25/10/2018 -10-



• Modification de l'équation différentielle : ajout d'une charge axiale ρu proportionnelle au déplacement axial u

$$-d[EA (du/dx)]/dx + \underline{\rho u} = q \qquad \rho \text{ facteur de proportionnalité}$$

25/10/2018 -11-

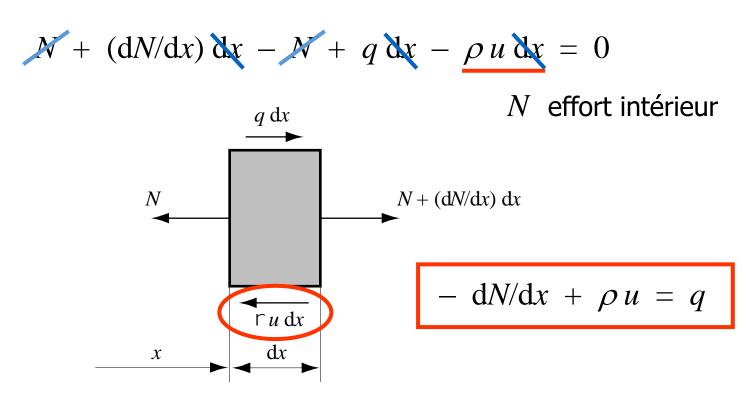


Résumé des modifications du problème modèle de la barre

25/10/2018 -12-

Équilibre de la barre

Équation d'équilibre



25/10/2018 -13-

Équilibre de la barre

• Équation constitutive (loi de Hooke)

$$\sigma_{x} = E \, \varepsilon_{x}$$
 σ_{x} contrainte normale E module d'élasticité ε_{x} déformation axiale

Linéarité de la déformation

$$\varepsilon_x = du/dx$$
 u déplacement axial

• Lien entre effort normal N et déplacement u

$$N = A \sigma_x = EA \varepsilon_x = EA (du/dx)$$

25/10/2018

Équation différentielle du 2ème ordre

$$- d[EA (du/dx)]/dx + \rho u = q$$

$$dans I_{j} =] x_{j-1}, x_{j} [(j = 1, 2, 3, 4)$$

Régularité des pofinition de fonctions de régions régulières

4 Équations \Rightarrow 8 Constantes d'intégration

25/10/2018

• Équations de continuité en déplacement

$$\lim_{x \to x_{1}^{+}} u(x) = \lim_{x \to x_{1}^{-}} u(x)$$

$$\lim_{x \to x_{2}^{+}} u(x) = \lim_{x \to x_{2}^{-}} u(x)$$

$$\lim_{x \to x_{3}^{+}} u(x) = \lim_{x \to x_{3}^{-}} u(x)$$

Analogie avec la mécanique des structures

25/10/2018 -16-

• Équations de continuité en flux (contrainte)

$$\lim_{x \to x_1^-} E(x) [du(x)/dx] - \lim_{x \to x_1^-} E(x) [du(x)/dx] = 0$$

$$\lim_{x \to x_2^+} E(x) \left[\frac{du(x)}{dx} \right] - \lim_{x \to x_2^-} E(x) \left[\frac{du(x)}{dx} \right] = 0$$

$$\lim_{x \to x_3^+} E(x) \left[\frac{du(x)}{dx} \right] - \lim_{x \to x_3^-} E(x) \left[\frac{du(x)}{dx} \right] = -\frac{Q}{AE}$$

Hypothèse d'homogénéité en mécanique des structures

Compression au-delà de x_3

25/10/2018 -17-

Condition aux limites essentielle non homogène

$$u(0) = \hat{u}$$

Condition aux limites naturelle mixte

$$EA \left(\frac{\mathrm{d}u}{\mathrm{d}x} \right) \Big|_{x=\ell} = -r u(\ell) + P$$

Forces imposées

- Résumé de la forme forte
 - 4 équations différentielles à 8 constantes d'intégration
 - 3 équations de continuité en déplacement
 - 3 équations de continuité en flux
 - 2 conditions aux limites

25/10/2018

Exemples de problèmes aux limites à caractère linéaire

Problème physique	Loi de conservation	Variable d'état	Flux	Facteur de proportionnalité	Source	Equation constitutive†
		u(x)	$\sigma(x)$	p(x)	s(x)	$\sigma(x) = p(x) \omega(x)$
Déformation d'une barre	Equilibre des forces	Déplacement	Contrainte normale	Module d'élasticité	Force volumique	Loi de Hooke
Conduction thermique dans une barre	Conservation de l'énergie	Température	Flux de chaleur	Conductibilité thermique	Source de chaleur	Loi de Fourier
Ecoulement d'un fluide	Conservation de la quantité de mouvement	Vitesse	Contrainte tangentielle	Viscosité dynamique	Force volumique	Loi de Stokes
Ecoulement dans un milieu poreux	Conservation de la masse	Niveau piézométrique	Flux volumétrique	Conductivité hydraulique (perméabilité)	Taux de recharge uniforme	Loi de Darcy
Electrostatique	Conservation du flux électrique	Potentiel électrique	Flux électrique	Permittivité diélectrique	Charge	Loi de Coulomb

[†] Certaines lois de comportement exigent un signe négatif sans affecter toutefois la formulation.

Loi de conservation : $-d\sigma(x)/dx + qdu(x)/dx + ru(x) = s(x)$ *Loi constitutive* : $\sigma(x) = pdu(x)/dx$

25/10/2018 -19-

• Forme intégrale de l'élastostatique du barreau

$$\int_{0}^{\ell} \{ -d[EA (du/dx)]/dx + \rho u - q \} \delta u \, dx = 0 \quad \forall \, \delta u$$

$$\delta u \text{ déplacement axial virtuel}$$

Défaut de régularité

Écriture de la forme intégrale par tronçon régulier

Forme intégrale partielle

$$\int_{I_{j}} R \, \delta u \, dx \qquad I_{j} =]x_{j-1}, x_{j}[\quad (j = 1, 2, 3, 4)$$

$$= \int_{x_{j-1}}^{x_{j}} \{ -d[EA \, (du/dx)]/dx + \rho \, u - q \} \, \delta u \, dx \neq 0$$

25/10/2018 -20-

Intégration par parties

$$\int_{I_{j}} R \, \delta u \, dx$$

$$= \int_{x_{j-1}}^{x_{j}} \left[EA \left(\frac{du}{dx} \right) \left(\frac{d\delta u}{dx} \right) + \rho \, u \, \delta u \right] \, dx$$

$$- \left[EA \left(\frac{du}{dx} \right) \, \delta u \right]_{x_{j-1}}^{x_{j}} - \int_{x_{j-1}}^{x_{j}} q \, \delta u \, dx$$

Forme intégrale globale

$$\sum_{j=1}^{4} \int_{I_j} R \, \delta u \, dx = 0 \quad \forall \, \delta u$$

25/10/2018 -21-

 Sommation des formes intégrales partielles et prise en compte des conditions de continuité en déplacement

$$\int_{0}^{\ell} [EA (du/dx) (d\delta u/dx) + \rho u \delta u] dx$$

$$- [EA (du/dx) \delta u] \Big|_{0}^{x_{1}^{-}} - [EA (du/dx) \delta u] \Big|_{x_{1}^{+}}^{x_{2}^{-}}$$

$$- [EA (du/dx) \delta u] \Big|_{x_{2}^{+}}^{x_{3}^{-}} - [EA (du/dx) \delta u] \Big|_{x_{3}^{+}}^{\ell}$$

Régularité de la fonction δu et continuité en déplacement

$$= \int_0^\ell \int dx \, dx \quad \forall \, \delta u$$

25/10/2018 -22-

Prise en compte des conditions de continuité en flux

$$\begin{aligned}
 & \cdots - [EA (du/dx) \, \delta u] \Big|_{0}^{x_{1}^{-}} - [EA (du/dx) \, \delta u] \Big|_{x_{1}^{+}}^{x_{2}^{-}} &= 0 \\
 & - [EA (du/dx) \, \delta u] \Big|_{x_{2}^{+}}^{x_{3}^{-}} + [EA (du/dx) \, \delta u] \Big|_{x_{3}^{+}}^{\ell} &\cdots \\
 & = -Q \, \delta u(x_{3}) \\
 & \Rightarrow \int_{0}^{\ell} [EA (du/dx) (d \delta u/dx) + \rho \, u \, \delta u] \, dx \\
 & + [EA (du/dx) \, \delta u] \Big|_{x=0}^{\ell} - [EA (du/dx) \, \delta u] \Big|_{x=\ell} \\
 & - Q \, \delta u(x_{3}) = \int_{0}^{\ell} q \, \delta u \, dx \quad \forall \, \delta u
\end{aligned}$$

25/10/2018 -23-

Prise en compte des conditions aux limites

$$... + [EA (du/dx) \delta u]\Big|_{x=0} - [EA (du/dx) \delta u]\Big|_{x=\ell} ...$$

$$u(0) = \hat{u} \Rightarrow \delta u(0) = 0$$

$$EA (du/dx)\Big|_{x=\ell}$$

$$= -r u(\ell) + P$$

$$admissible$$

$$\Rightarrow \int_0^\ell [EA (du/dx) (d\delta u/dx) + \rho u \, \delta u] \, dx - Q \, \delta u(x_3)$$
$$+ [r \, u(\ell) - P] \, \delta u(\ell) = \int_0^\ell q \, \delta u \, dx \quad \forall \, \delta u$$

25/10/2018 -24-

Formulation faible du problème

Forme faible de l'élastostatique du barreau généralisé

$$u \in U : \int_0^{\ell} [EA (du/dx) (d\delta u/dx) + \rho u \delta u] dx$$
$$+ r u(\ell) \delta u(\ell)$$
$$= \int_0^{\ell} q \delta u dx + Q \delta u(x_3) + P \delta u(\ell) \quad \forall \delta u \in V$$

• Classes des fonctions admissibles U et V

$$U = \{u(x) \mid u(x) \in H^{1}(]0, \ell[) ; u(0) = \hat{u}\}$$

$$V = \{\delta u(x) \mid \delta u(x) \in H^{1}(]0, \ell[) ; \delta u(0) = 0\}$$

$$U \neq V$$

25/10/2018 -25-

Formulation faible du problème

- Simplicité de la forme faible par rapport à la formulation forte
 - 4 équations différentielles
 - 3 équations de continuité en déplacement
 - 3 équations de continuité en flux
 - 2 conditions aux limites

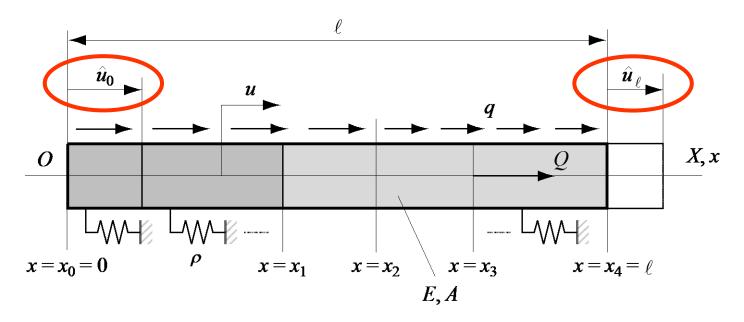
Forme forte

Forme faible

- 1 équation intégrale
- 0 équation de continuité
- 1 condition aux limites externe

25/10/2018 -26-

Conditions aux limites non homogènes de Dirichlet



25/10/2018 -27-

Adaptation de la forme faible aux nouvelles conditions de bord

$$\int_{0}^{\ell} \left[EA \left(\frac{du}{dx} \right) \left(\frac{d\delta u}{dx} \right) + \rho u \delta u \right] dx$$

$$+ \left[EA \left(\frac{du}{dx} \right) \delta u \right]_{x=0}^{\ell} - \left[EA \left(\frac{du}{dx} \right) \delta u \right]_{x=\ell}^{\ell}$$

$$- Q \delta u(x_{3}) = \int_{0}^{\ell} q \delta u dx \quad \forall \delta u$$

$$u(0) = \hat{u}_0 \implies \delta u(0) = 0$$

25/10/2018 -28-

Adaptation de la forme faible aux nouvelles conditions de bord

$$\int_{0}^{\ell} \left[EA \left(\frac{du}{dx} \right) \left(\frac{d\delta u}{dx} \right) + \rho u \delta u \right] dx$$

$$+ \left[EA \left(\frac{du}{dx} \right) \delta u \right]_{x=0}^{\ell} - \left[EA \left(\frac{du}{dx} \right) \delta u \right]_{x=\ell}^{\ell}$$

$$- Q \delta u(x_{3}) = \int_{0}^{\ell} q \delta u dx \quad \forall \delta u$$

$$u(0) = \hat{u}_0 \implies \delta u(0) = 0$$

$$u(\ell) = \hat{u}_\ell \implies \delta u(\ell) = 0$$

25/10/2018 -29-

Adaptation de la forme faible aux nouvelles conditions de bord

$$\int_{0}^{\ell} \left[EA \left(\frac{\mathrm{d}u}{\mathrm{d}x} \right) \left(\frac{\mathrm{d}\delta u}{\mathrm{d}x} \right) + \rho u \delta u \right] \mathrm{d}x$$

$$+ \left[EA \left(\frac{\mathrm{d}u}{\mathrm{d}x} \right) \delta u \right] \Big|_{x=0} - \left[EA \left(\frac{\mathrm{d}u}{\mathrm{d}x} \right) \delta u \right] \Big|_{x=\ell}$$

$$- Q \delta u(x_{3}) = \int_{0}^{\ell} q \delta u \, \mathrm{d}x \quad \forall \delta u$$

$$u(0) \neq \hat{u}_{0} \Rightarrow \delta u(0) \neq 0$$

$$u(\ell) \neq \hat{u}_{\ell} \Rightarrow \delta u(\ell) \neq 0$$

$$\text{cinématiquement admissible}$$

25/10/2018 -30-

Forme faible adaptée aux nouvelles conditions de bord

$$u \in U : \int_0^{\ell} [EA (du/dx) (d\delta u/dx) + \rho u \delta u] dx$$
$$= \int_0^{\ell} q \delta u dx + Q \delta u(x_3) \quad \forall \delta u \in V$$

Classes des fonctions admissibles correspondantes

$$U = \{ u(x) \mid u(x) \in H^{1}(]0, \ell[) ; \underline{u(0)} = \hat{u}_{0} ; \underline{u(\ell)} = \hat{u}_{\ell} \}$$

$$V = \{ \delta u(x) \mid \delta u(x) \in H^{1}(]0, \ell[) ; \delta u(0) = \delta u(\ell) = 0 \}$$

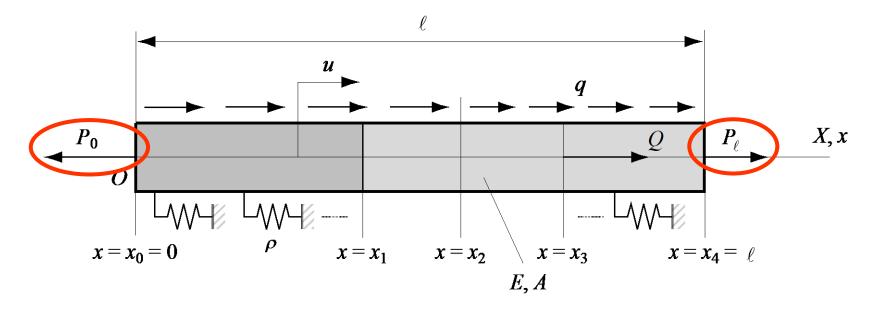
25/10/2018 -31-

Conditions aux limites non homogènes de Neumann

$$EA \left(\frac{du}{dx} \right) \Big|_{x=0} = P_0$$

$$EA \left(\frac{du}{dx} \right) \Big|_{x=\ell} = P_{\ell}$$

Conditions naturelles pures de bord



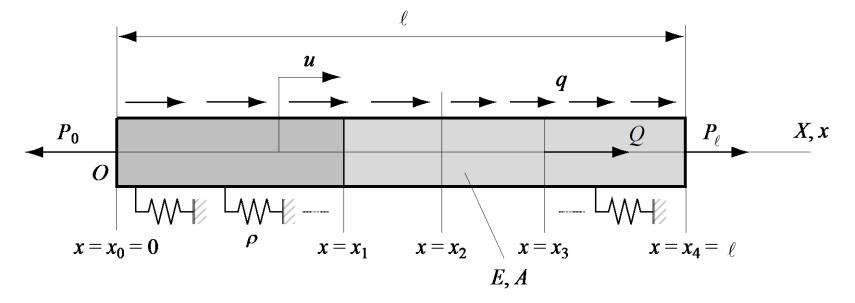
25/10/2018 -32-

Conditions aux limites non homogènes de Neumann

$$EA \left(\frac{du}{dx} \right) \Big|_{x=0} = P_0$$

$$EA \left(\frac{du}{dx} \right) \Big|_{x=\ell} = P_\ell$$

Même signe pour P_0 et P_ℓ (traction)



25/10/2018 -33-

Adaptation de la forme faible aux nouvelles conditions de bord

$$\int_{0}^{\ell} \left[EA \left(\frac{du}{dx} \right) \left(\frac{d\delta u}{dx} \right) + \rho u \delta u \right] dx$$

$$+ \left[\underbrace{EA \left(\frac{du}{dx} \right) \delta u} \right]_{x=0} - \left[\underbrace{EA \left(\frac{du}{dx} \right) \delta u} \right]_{x=\ell}$$

$$- Q \delta u(x_{3}) = \int_{0}^{\ell} q \delta u dx \quad \forall \delta u$$

$$EA \left(\frac{du}{dx} \right) \Big|_{x=0} = P_0$$

$$EA \left(\frac{du}{dx} \right) \Big|_{x=\ell} = P_\ell$$

25/10/2018 -34-

Forme faible adaptée aux nouvelles conditions de bord

$$u \in U : \int_0^{\ell} [EA (du/dx) (d\delta u/dx) + \rho u \delta u] dx$$

$$= \int_0^{\ell} q \, \delta u \, dx + Q \, \delta u(x_3) - P_0 \, \delta u(0) + P_{\ell} \, \delta u(\ell)$$

$$\forall \, \delta u \in V$$

Classes des fonctions admissibles correspondantes

$$U = V = \{w(x) \mid w(x) \in H^1(]0, \ell[)\}$$
 Absence de conditions essentielles

25/10/2018 -35-

Forme faible adaptée aux nouvelles conditions de bord

$$u \in U : \int_0^{\ell} [EA (du/dx) (d\delta u/dx) + \rho u \delta u] dx$$

$$= \int_0^{\ell} q \, \delta u \, dx + Q \, \delta u(x_3) - P_0 \, \delta u(0) + P_{\ell} \, \delta u(\ell)$$

$$\forall \, \delta u \in V$$

Classes des fonctions admissibles correspondantes

$$U = V = \{w(x) \mid w(x) \in H^1(]0, \ell[)\}$$

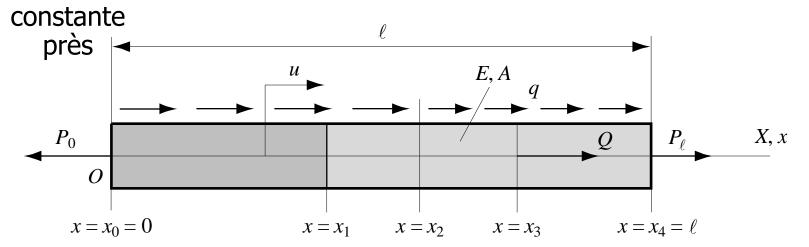
Importance de la définition des classes de fonctions admissibles

25/10/2018

-36-

- Cas spécial : absence de charge proportionnelle à u (ho = 0)
 - Forme faible modifiée

$$u \in U: \int_0^\ell EA \left(\frac{\mathrm{d}u}{\mathrm{d}x}\right) \left(\frac{\mathrm{d}\delta u}{\mathrm{d}x}\right) \, \mathrm{d}x = \int_0^\ell q \, \delta u \, \mathrm{d}x$$
Solution
$$définie à une + Q \, \delta u(x_3) - P_0 \, \delta u(0) + P_\ell \, \delta u(\ell) \quad \forall \, \delta u \in V$$



25/10/2018 -37-

Solution définie à une constante près

$$u \rightarrow u + c$$

 $\delta u \rightarrow \delta u + d$ Déplacement de corps rigide

Intégration de la solution dans la forme faible

$$\oint_{0}^{\ell} EA \left(\frac{du}{dx} \right) \left(\frac{d\delta u}{dx} \right) dx = \iint_{0}^{\ell} q \left(\delta u + d \right) dx
+ Q \left[\delta u(x_{3}) + d \right] - P_{0} \left[\delta u(0) + d \right] + P_{\ell} \left[\delta u(\ell) + d \right]$$

$$\Rightarrow 0 = \int_0^\ell q \, d \, dx + Q \, d - P_0 \, d + P_\ell \, d$$

$$\Rightarrow \int_0^\ell q \, dx + Q - P_0 + P_\ell = 0 \qquad \text{Équation de compatibilité}$$

-38-25/10/2018

Solution définie à une constante près

$$u \to u + c$$

$$\delta u \to \delta u + d$$

Déplacement de corps rigide

-39-

Intégration de la solution dans la forme faible

$$\oint_{0}^{\ell} EA \left(\frac{du}{dx} \right) \left(\frac{d\delta u}{dx} \right) dx = \iint_{0}^{\ell} q \left(\delta u + d \right) dx
+ Q \left[\delta u(x_{3}) + d \right] - P_{0} \left[\delta u(0) + d \right] + P_{\ell} \left[\delta u(\ell) + d \right]$$

$$\Rightarrow 0 = \int_0^\ell q \, d \, dx + Q \, d - P_0 \, d + P_\ell \, d$$

$$\Rightarrow \int_0^\ell q \, dx + Q \, - P_0 + P_\ell \, dx + P_\ell \, dx$$
Signes opposés pour P_0 et P_ℓ

25/10/2018