Méthode des éléments finis Formulation intégrale des problèmes aux limites bidimensionnels

Prof. F. Gallaire

• Rappel de la forme faible discrète étudiée

$$\mathbf{K} \mathbf{q} = \mathbf{r} \qquad (q_k = \hat{q}_k, \forall k \mid (x_k, y_k) \in \partial \Omega_u)^h$$

$$\mathbf{K} = \mathbf{A}^{e} \mathbf{K}$$

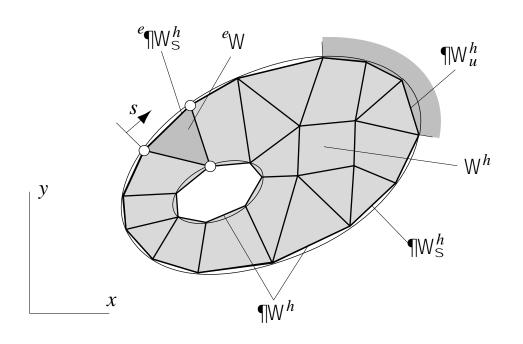
$$e=1$$

$$\mathbf{r} = \mathbf{A}^{e} \mathbf{r}$$

$$e=1$$

$$m$$

$$(\Omega^{h} = \bigcup_{e=1}^{m} \Omega)$$



Rappel des grandeurs structurelles

$${}^{e}\mathbf{K} = \int_{e_{\Omega}} ({}^{e}\kappa^{e}\mathbf{B}^{T}{}^{e}\mathbf{B} + {}^{e}\rho^{e}\mathbf{H}^{T}{}^{e}\mathbf{H}) \, \mathrm{d}x \, \mathrm{d}y$$

$$+ \int_{e_{\partial\Omega}} {}^{h}e^{r}e^{\mathbf{H}^{T}}{}^{e}\mathbf{H} \, \mathrm{d}s \quad \text{matrice \'el\'ementaire de conductivit\'e}$$

$${}^{e}\mathbf{r} = \int_{e_{\Omega}} {}^{e}\mathbf{H}^{T}{}^{e}q \, \mathrm{d}x \, \mathrm{d}y \quad + \int_{e_{\partial\Omega}} {}^{h}_{\sigma} {}^{e}\mathbf{H}^{T}{}^{e}t \, \mathrm{d}s$$

vecteur élémentaire des sources d'énergie-chaleur

$${}^{e}\mathbf{H} = [{}^{e}h_{1}, {}^{e}h_{2}, ..., {}^{e}h_{ep}]$$
 matrice des fonctions de base ${}^{e}\mathbf{B} = \nabla^{e}\mathbf{H} = [\partial^{e}\mathbf{H}/\partial x, \partial^{e}\mathbf{H}/\partial y]^{T}$ matrice-gradient

• Paramétrisation de la modélisation en éléments finis

$$eT: \mathbf{x} = \sum_{i=1}^{e} h_i(\xi, \eta) e_{\mathbf{x}_i} \qquad \mathbf{x} = \{x, y\}^T$$

$$e_{\mathbf{x}_i} = \{e_{\mathbf{x}_i}, e_{\mathbf{y}_i}\}^T$$
Existence de e^T

• Paramétrisation de la modélisation en éléments finis (suite)

$$eu^{h}(x, y) = \sum_{i=1}^{ep} h_{i}(x, y)^{e} q_{i} = \sum_{i=1}^{ep} h_{i}[x(\xi, \eta), y(\xi, \eta)]^{e} q_{i}$$

$$= \sum_{i=1}^{ep} h_{i}(\xi, \eta)^{e} q_{i}$$

$$\Rightarrow h_{i}(\xi, \eta)^{e} q_{i}$$

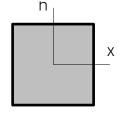
$$\Rightarrow h_{i}(x, y) \rightarrow h_{i}(\xi, \eta)$$

$$\frac{\partial^{e} h_{i}}{\partial x} = \frac{\partial^{a} h_{i}}{\partial \xi} \frac{\partial \xi}{\partial x} + \frac{\partial^{a} h_{i}}{\partial \eta} \frac{\partial \eta}{\partial x} = \underbrace{(J_{11}^{-1})^{o} h_{i}}_{\partial \xi} + \underbrace{(J_{12}^{-1})^{o} h_{i}}_{\partial \eta}$$

$$\frac{\partial^{e} h_{i}}{\partial y} = \frac{\partial^{a} h_{i}}{\partial \xi} \frac{\partial \xi}{\partial y} + \frac{\partial^{a} h_{i}}{\partial \eta} \frac{\partial \eta}{\partial y} = \underbrace{(J_{21}^{-1})^{o} h_{i}}_{\partial \xi} + \underbrace{(J_{22}^{-1})^{o} h_{i}}_{\partial \eta}$$

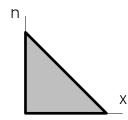
- Insertion de la notion d'élément père ou archétype
 - Traitement des intégrales surfaciques

$$\int_{e_{\Omega}} (\cdot) \, \mathrm{d}x \mathrm{d}y = \int_{e_{\Omega}} (\cdot)^{e} \mathrm{d}\Omega \qquad \qquad \text{transformation } {}^{e}T \\ = \det({}^{e}\mathbf{J}) \\ = \int_{a_{\Omega}} (\cdot)^{e} i^{a} \mathrm{d}\Omega = \int_{a_{\Omega}} (\cdot)^{e} i^{a} \mathrm{d}\xi \mathrm{d}\eta$$



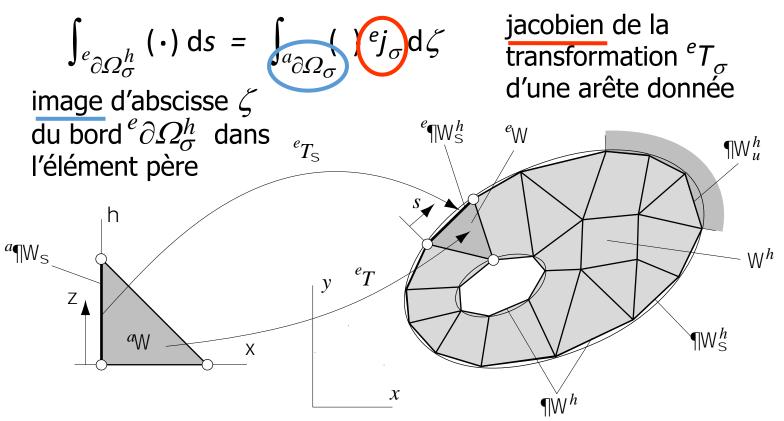
$$\int_{a_{\Omega}} \underline{\qquad} d\xi d\eta = \int_{-1}^{+1} \int_{-1}^{+1} \underline{\qquad} d\eta d\xi$$

jacobien de la



$$\int_{a_{\Omega}} \underline{\qquad} \, \mathrm{d}\xi \mathrm{d}\eta = \underbrace{\int_{0}^{1} \int_{0}^{1-\xi} \underline{\qquad}}_{0} \mathrm{d}\eta \mathrm{d}\xi$$

Traitement des intégrales curvilignes



Traitement des intégrales curvilignes (*suite*) : évaluation du jacobien *e i*

jacobien
$${}^{e}j_{\sigma}$$

$$\int_{a_{\partial\Omega_{\sigma}}} (\cdot) {}^{e}j_{\sigma} \, \mathrm{d}\zeta$$

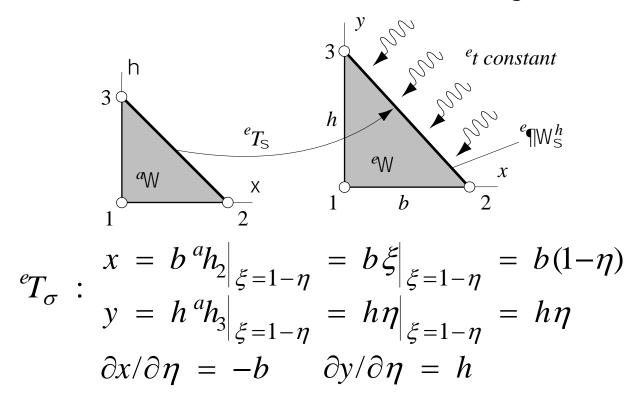
$$= \int_{-1}^{+1} (\cdot) \Big|_{\xi=-1}^{e}j_{\sigma} \, \mathrm{d}\eta$$

$${}^{e}T_{\sigma} \equiv {}^{e}T\Big|_{\xi=-1} : s = s(\eta) \Rightarrow x = x(-1,\eta)$$

$$\mathrm{d}s = \sqrt{\mathrm{d}x^{2} + \mathrm{d}y^{2}}$$

$$= \sqrt{[\partial x(-1,\eta)/\partial \eta]^{2} + [\partial y(-1,\eta)/\partial \eta]^{2}} \, \mathrm{d}\eta = {}^{e}j_{\sigma} \, \mathrm{d}\eta$$

Traitement des intégrales curvilignes (suite) : exemple de flux externe traversant la frontière d'un élément triangulaire



Traitement des intégrales curvilignes (*suite*) : calcul des contributions élémentaires du flux externe donné en exemple

$$e_{j_{\sigma}} = \sqrt{(\partial x/\partial \eta)^{2} + (\partial y/\partial \eta)^{2}} = \sqrt{b^{2} + h^{2}}$$

$$e_{r_{i}} = \int_{e_{\partial O}} h^{e} h_{i} e_{t} ds = \int_{0}^{1} a h_{i} \Big|_{\mathcal{E}=1-\eta} e_{t} e_{j_{\sigma}} d\eta$$

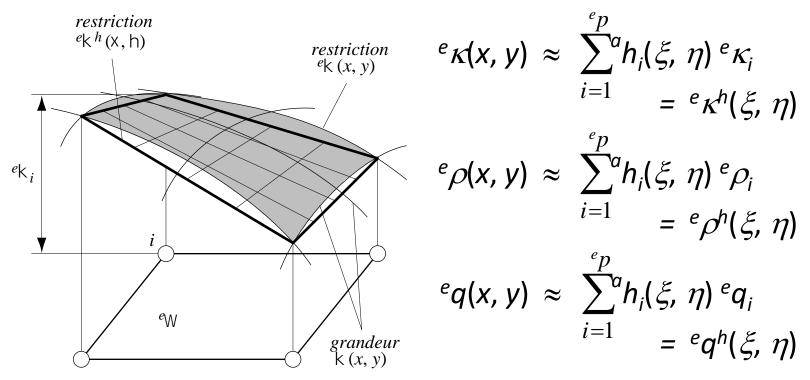
$$e_{1} = \int_{0}^{1} (1 - \xi - \eta) \Big|_{\xi = 1 - \eta} e_{1} \sqrt{b^{2} + h^{2}} d\eta = 0$$

$$e_{2} = \int_{0}^{1} \xi \Big|_{\xi = 1 - \eta} e_{1} \sqrt{b^{2} + h^{2}} d\eta = e_{1} \sqrt{b^{2} + h^{2}} / 2$$

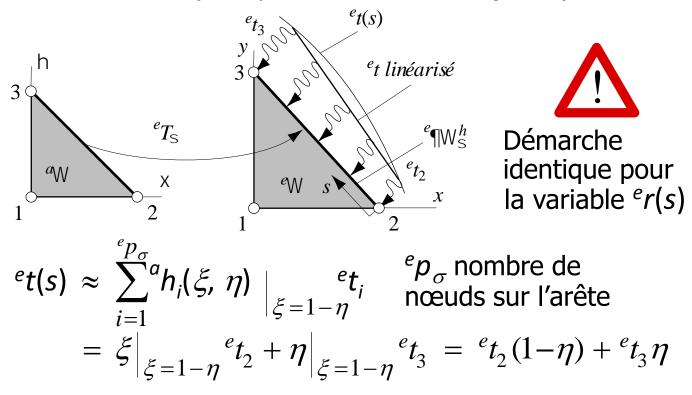
$$e_{3} = \int_{0}^{1} \eta \Big|_{\xi = 1 - \eta} e_{1} \sqrt{b^{2} + h^{2}} d\eta = e_{1} \sqrt{b^{2} + h^{2}} / 2$$

$$e_{3} = \int_{0}^{1} \eta \Big|_{\xi = 1 - \eta} e_{1} \sqrt{b^{2} + h^{2}} d\eta = e_{1} \sqrt{b^{2} + h^{2}} / 2$$

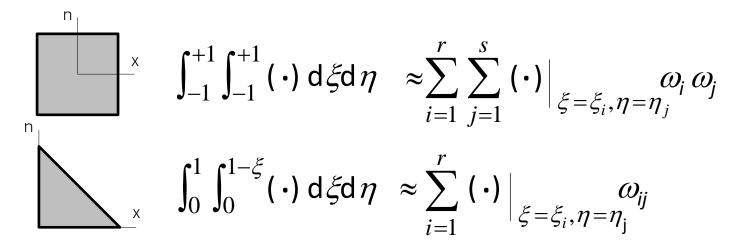
- Paramétrisation des grandeurs physiques
 - Traitement des coefficients surfaciques



 Cas particulier : paramétrisation le long du site des conditions naturelles de bord (exemple d'un élément triangulaire)



- Intégration numérique
 - Quadrature de Gauss-Legendre



 ξ_k , η_k coordonnées du point d'intégration k ω_k coefficient de pondération du point k

Intégration sur les éléments quadrangulaires non optimale

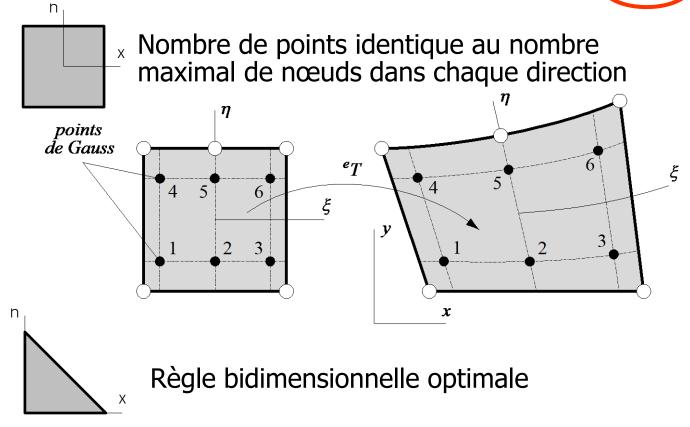
Règles unidimensionnelles appliquées aux éléments quadrangulaires

Abscisse ξ	Coefficient de pondération ω	Précision
0.00000 00000 00000	2.00000 00000 00000	ordre 1
$\pm \ 0.57735 \ 02691 \ 89626$	1.00000 00000 00000	ordre 3
$\begin{array}{c} 0.00000\ 00000\ 00000 \\ \pm\ 0.77459\ 66692\ 41483 \end{array}$	0.88888 88888 88889 0.55555 55555 55556	ordre 5
$\pm 0.33998 \ 10435 \ 84856 \pm 0.86113 \ 63115 \ 94053$	0.65214 51548 62546 0.34785 48451 37454	ordre 7
$\begin{array}{c} 0.00000\ 00000\ 00000\\ \pm\ 0.53846\ 93101\ 05683\\ \pm\ 0.90617\ 98459\ 38664 \end{array}$	0.56888 88888 88889 0.47862 86704 99366 0.23692 68850 56189	ordre 9

Règles bidimensionnelles appliquées aux éléments triangulaires

Abscisse ξ	Abscisse η	Coefficient de pondération ω	Précision
0.33333 33333 33333	0.33333 33333 33333	0.50000 00000 00000	ordre 1
0.20000 00000 00000	0.20000 00000 00000	0.26041 66666 66667	ordre 3
0.60000 00000 00000	$0.20000\ 00000\ 00000$	0.26041 66666 66667	
0.20000 00000 00000	$0.60000\ 00000\ 00000$	0.26041 66666 66667	
0.33333 33333 33333	0.33333 33333 33333	$-0.28125\ 00000\ 00000$	
0.10128 65073 23456	0.10128 65073 23456	0.06296 95902 72413	ordre 5
0.79742 69853 53087	0.10128 65073 23456	0.06296 95902 72413	
0.10128 65073 23456	0.79742 69853 53087	0.06296 95902 72413	
0.47014 20641 05115	0.05971 58717 89770	0.06619 70763 94253	
0.47014 20641 05115	0.47014 20641 05115	0.06619 70763 94253	
0.05971 58717 89770	0.47014 20641 05115	0.06619 70763 94253	
0.33333 33333 33333	0.33333 33333 33333	0.11250 00000 00000	

Choix du nombre de points de Gauss pour une intégration exacte

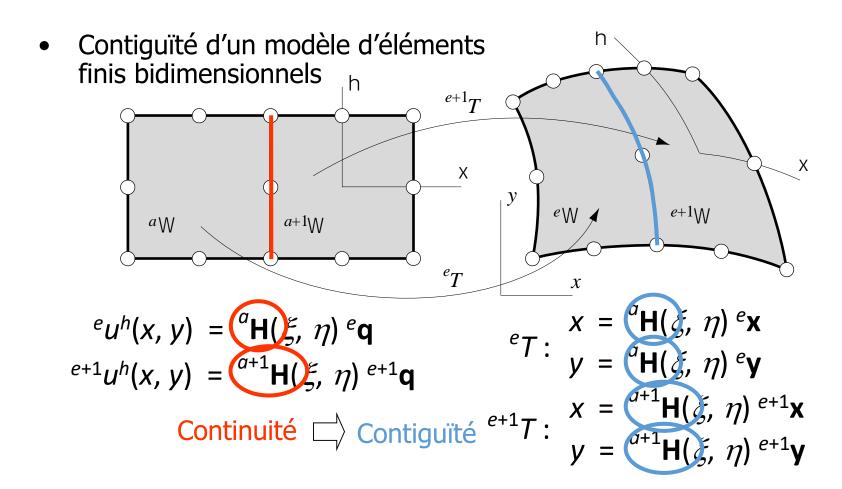


Comparaison des intégrations exacte et réduite

Intégration exacte

- + Stabilité numérique
- Monotonie de la convergence
- Surestimation de la rigidité
- Risque de blocage des éléments linéaires

- + Assouplissement de la rigidité
- Diminution des coûts de calcul
- Perte de la monotonie de convergence
- Risque d'instabilité numérique



- Critères classiques de convergence
 - Critère de continuité
 - Critère de différentiabilité
 - Critère de complétude

Critères non perturbés par le changement de

$$x = {}^{g}\mathbf{p}(\xi, \eta) e_{\mathbf{X}} = \sum_{i=1}^{g} {}^{g}\mathbf{p}_{i}(\xi, \eta) e_{\mathbf{X}_{i}}$$

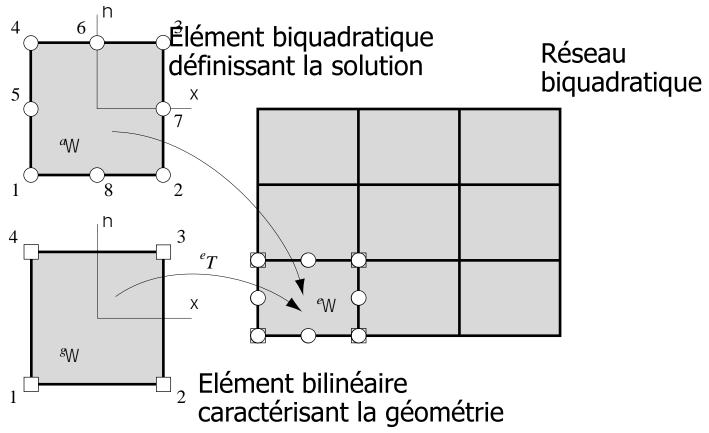
$$e_{T}: \qquad y = {}^{g}\mathbf{p}(\xi, \eta) e_{\mathbf{Y}} = \sum_{i=1}^{g} {}^{g}\mathbf{p}_{i}(\xi, \eta) e_{\mathbf{Y}_{i}}$$

Elément
$${}^g\Omega$$
 caractérisant la géométrie

$$^{e}u^{h}(x, y) = \sum_{i=1}^{^{e}p} {^{e}h_{i}(x, y)} {^{e}q_{i}} = \sum_{i=1}^{^{e}p} {^{a}h_{i}(\xi, \eta)} {^{e}q_{i}}$$
 Elément $^{a}\Omega$ définissant la solution

solution

Critère de complétude (suite)



Critère de complétude (suite)

$$eu^{h}(x,y) = \sum_{i=1}^{ep} ah_{i}(\xi,\eta) \cdot (q_{i}) = \alpha + \beta x + \gamma y$$

$$\Rightarrow eu^{h}(ex_{i}, ey_{i}) \equiv (eq_{i}) = \alpha + \beta ex_{i} + \gamma ey_{i} \text{ la complétion } (i = 1, 2, ..., ep)$$

$$\Rightarrow eu^{h}(x,y) = \alpha \sum_{i=1}^{ep} ah_{i}(\xi,\eta) + \beta \sum_{i=1}^{ep} ah_{i}(\xi,\eta) \cdot ex_{i}$$

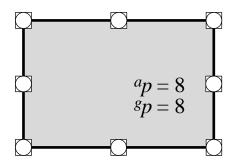
$$+ \chi \sum_{i=1}^{e} ah_{i}(\xi,\eta) \cdot ey_{i}$$
Identification terme \(\text{ a terme}\)

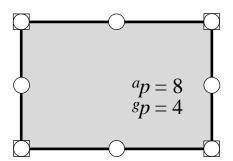
Conditions nécessaires de complétude

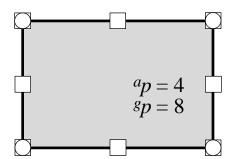
$$\sum_{i=1}^{e_p} {}^a h_i(\xi, \eta) = 1$$
Critère de continuité restreinte
$$\sum_{i=1}^{e_p} {}^a h_i(\xi, \eta) {}^e x_i = x \equiv \sum_{i=1}^{e_p} {}^g h_i(\xi, \eta) {}^e x_i$$

$$\sum_{i=1}^{e_p} {}^a h_i(\xi, \eta) {}^e y_i = y \equiv \sum_{i=1}^{e_p} {}^g h_i(\xi, \eta) {}^e x_i$$
Transformation de coordonnées

 Notion d'éléments finis isoparamétrique, sous-paramétrique et superparamétrique







- opoint de spécification de la fonction cherchée
- point de spécification des coordonnées

Élément isoparamétrique

Géométrie de même ordre que la solution

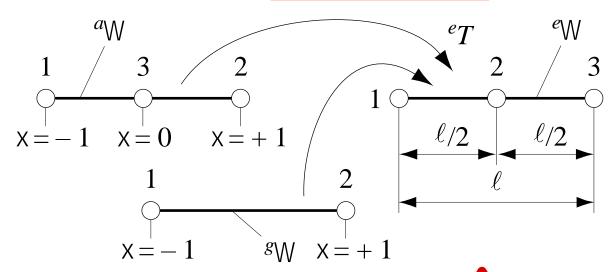
Élément sousparamétrique

Géométrie d'un ordre inférieur à celui de la solution

Élément superparamétrique

Géométrie d'un ordre supérieur à celui de la solution

• Exemple d'un élément fini sous-paramétrique bien connu



$$^{e}T: x = \sum_{i=1}^{3} {^{a}h_{i}(\xi)}^{e}x_{i}$$

$$= \ell(1 - \xi^{2})/2 + \ell \xi(\xi + 1)/2 = \ell(1 + \xi)/2$$
Transformation linéaire

Précision d'un modèle d'éléments finis bidimensionnels

• Estimation H^1 de l'écart entre la restriction eu et son interpolation nodale eu_I

$$\|eu - eu_I\|_{1, e_{\Omega}}^2 \le \|eT^{-1}\|_{1, e_{\Omega}}^2 \le \|eT^{-1}\|_{1, e_{\Omega}}^2$$

• Norme H^{k+1} de la restriction eu transformée par les coordonnées naturelles

$$\|a_{u}\|_{k+1, a_{\Omega}}^{2} \leq \|e_{T}\|_{k+1}^{2} \frac{1}{\min_{e_{\Omega}}(e_{j})} \|e_{u}\|_{k+1, e_{\Omega}}^{2}$$

Influence de la transformation le coordonnées

Précision d'un modèle d'éléments finis bidimensionnels

 Estimation asymptotique locale de l'erreur pour un élément fini père

$$\|au - au_I\|_{1, a\Omega} \le \|aC_1\|_{k+1, a\Omega}$$
 ($^eh \to 0$)

^eh diamètre de l'élément fini

k degré de l'interpolation

 $^{a}C_{1}$ facteur de convergence

Restranscription de l'estimation asymptotique de l'erreur pour un lément fini régulier $(e \rightarrow a)$

Précision d'un modèle d'éléments finis bidimensionnels

 Caractérisation de l'estimation H¹ de l'écart entre la restriction ^{e}u et son interpolation nodale $^{e}u_{I}$

$$\| eu - eu_I \|_{1, e_{\Omega}} \leq \| eT^{-1} \|_{1} \left[\max_{e_{\Omega}} (ej) \right]^{1/2} \| au - au_I \|_{1, a_{\Omega}}$$

$$\leq \| eT^{-1} \|_{1} \left[\max_{e_{\Omega}} (ej) \right]^{1/2} \| aC_1 \|_{1} \| au \|_{1, a_{\Omega}}$$

$$\leq \| eT^{-1} \|_{1} \left[\max_{e_{\Omega}} (ej) \right]^{1/2} \| aC_1 \|_{1} \| eH \|_{1, a_{\Omega}}$$

$$\leq \| eT^{-1} \|_{1} \left[\max_{e_{\Omega}} (ej) \right]^{1/2} \| aC_1 \|_{1} \| eH \|_{1, a_{\Omega}}$$
This interpolation
$$\cdot \left[\min_{e_{\Omega}} (ej) \right]^{-1/2} \| eu \|_{1, a_{\Omega}}$$

Identification terme à terme

• Forme standard de l'estimation H^1 de l'écart entre e^u et e^u

$$\|eu - eu_I\|_{1, e_{\Omega}} \le (eC_1)^{e} h^{k} \|eu\|_{k+1, e_{\Omega}}$$
 $(eh \to 0)$

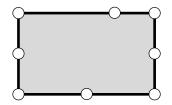
Précision d'un modèle d'éléments finis bidimensionnels

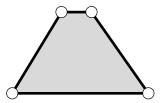
Lien entre les facteurs de convergence

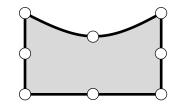
$${}^eC_1 \leq {}^aC_1 \left(\frac{\max({}^ej)}{\min({}^ej)}\right)_{{}^e\Omega}^{1/2} \|{}^eT\|_{k+1} \|{}^eT^{-1}\|_1$$
Dégradation de la précision si $\left(\frac{\max({}^ej)}{\min({}^ej)}\right)_{{}^e\Omega}$ croît

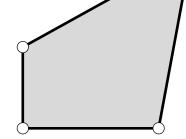
⇒ Forme de l'élément aussi régulière que possible

 Exemples d'éléments entraînant une dégradation de la précision









Précision d'un modèle d'éléments finis bidimensionnels

• Estimation H^1 de l'erreur globale e^h

$$\|e^h\|_{1,\Omega} = \|u - u^h\|_{1,\Omega} \le C_1 h^k \qquad (h \to 0)$$

h longueur caractéristique du réseau ($h = \max_{a} {}^{e}h$)

k degré de l'interpolation

 C_1 facteur de convergence

Longueur ^eh mesurée selon le système local de coordonnées

