


Fig. IV.1 Cas I: poutre sur appuis simples soumise à une force concentrée P (a), une force ponctuelle centrée P (b), une charge répartie p (c) ou un moment ponctuel M_0 en une extrémité (d).

Tableau IV.2 Cas I : ligne élastique, flèche et rotations d'une poutre sur appuis simples.

Cas de charge	Ligne élastique	Flèche maximale	Position de la flèche	Rotations aux extrémités	
	y(x)	f	X	α	β
(Ia)	$y = \frac{P}{6\ell EI} (2ab^2x + a^2bx - bx^3)$	-	$a\sqrt{\frac{1}{3}+\frac{2b}{3a}}$	$\frac{Pab(\ell+b)}{6\ell EI}$	$\frac{-Pab(\ell+a)}{6\ell EI}$
	$y = \frac{P}{6\ell EI} \left[2a^2b(\ell - x) + ab^2(\ell - x) - a(\ell - x)^3 \right] (a \le x \le \ell)$		$ \begin{array}{c} \operatorname{si} a > b \\ \ell - b \sqrt{\frac{1}{3} + \frac{2a}{3b}} \\ \operatorname{si} a < b \end{array} $		
(Ib)	$y = \frac{P}{48EI} (3\ell^2 x - 4x^3) (0 \le x \le \ell/2)$	$\frac{P\ell^3}{48EI}$	<i>l</i> /2	$\frac{P\ell^2}{16EI}$	$\frac{-P\ell^2}{16EI}$
(Ic)	$y = \frac{p}{24EI}(x^4 - 2\ell x^3 + \ell^3 x)$	$\frac{5p\ell^4}{384EI}$	ℓ/2	$\frac{p\ell^3}{24EI}$	$\frac{-p\ell^3}{24EI}$
(Id)	$y = \frac{M_0}{6\ell EI} (x^3 - 3\ell x^2 + 2\ell^2 x)$	$\frac{M_0\ell^2\sqrt{3}}{27EI}$	$\ell \ (1 - \frac{\sqrt{3}}{3})$	$\frac{M_0\ell}{3EI}$	$\frac{-M_0\ell}{6EI}$

Fig. IV.3 Cas II : poutre encastrée soumise à une force concentrée P en son extrémité libre (a), une charge répartie p (b) ou un moment ponctuel M_0 en son extrémité libre (c).

Tableau IV.4 Cas II : ligne élastique, flèche et rotations d'une poutre encastrée.

Cas de charge	Ligne élastique $y(x)$	Flèche maximale f	Position de la flèche	Rotations aux extrémités	
				α	β
(IIa)	$y = \frac{P}{6EI} (3\ell x^2 - x^3)$	$\frac{P\ell^3}{3EI}$	ℓ	0	$\frac{P\ell^2}{2EI}$
(IIb)	$y = \frac{p}{24EI} (6\ell^2 x^2 - 4\ell x^3 + x^4) \ \triangleright$	$rac{p\ell^4}{8EI}$	ℓ	0	$\frac{p\ell^3}{6EI}$
(IIc)	$y = \frac{-M_0}{2EI} x^2$	$\frac{-M_0\ell^2}{2EI}$	ℓ	0	$rac{-M_0\ell}{EI}$