Solutions of Exercises of Chapter 7

7. Solution:

Assume the original system is,

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}u,
y = \mathbf{C}\mathbf{x} + Du,
G(s) = \mathbf{C}(s\mathbf{I} - \mathbf{A})^{-1}\mathbf{B} + D.$$

Assume a change of state from \mathbf{x} to \mathbf{z} using the nonsingular transformation \mathbf{T} ,

$$x = Tz$$
.

The new system matrices are,

$$\bar{\mathbf{A}} = \mathbf{T}^{-1}\mathbf{A}\mathbf{T}, \ \bar{\mathbf{B}} = \mathbf{T}^{-1}\mathbf{B}, \ \bar{\mathbf{C}} = \mathbf{C}\mathbf{T}, \ \bar{D} = D.$$

The transfer function is,

$$G_z(s) = \bar{\mathbf{C}}(s\mathbf{I} - \bar{\mathbf{A}})^{-1}\bar{\mathbf{B}} + \bar{D}$$

= $\mathbf{C}\mathbf{T}(s\mathbf{I} - \mathbf{T}^{-1}\mathbf{A}\mathbf{T})^{-1}\mathbf{T}^{-1}\mathbf{B} + D.$

If we factor **T** on the left and \mathbf{T}^{-1} on the right of the $(s\mathbf{I} - \mathbf{T}^{-1}\mathbf{A}\mathbf{T})^{-1}$ term, we obtain,

$$G_z(s) = \mathbf{CT}(s\mathbf{TT}^{-1} - \mathbf{T}^{-1}\mathbf{AT})^{-1}\mathbf{T}^{-1}\mathbf{B} + D$$

= $\mathbf{CTT}^{-1}(s\mathbf{I} - \mathbf{A})^{-1}\mathbf{TT}^{-1}\mathbf{B} + D = \mathbf{C}(s\mathbf{I} - \mathbf{A})^{-1}\mathbf{B} + J = G(s).$

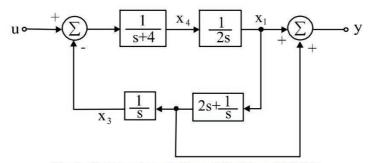
15. Solution

We are given $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}u$. Steady-state means that $\dot{\mathbf{x}} = 0$ and a step input (or unit step) means u = 1(t). Thus, assuming that the system is stable and \mathbf{A} is invertible (which you can check), we have,

$$\mathbf{0} = \mathbf{A}\mathbf{x}_{ss} + \mathbf{B} \Longrightarrow \mathbf{x}_{ss} = -\mathbf{A}^{-1}\mathbf{B} = -\begin{bmatrix} -5 & 1 \\ -2 & -1 \end{bmatrix}^{-1} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1/7 \\ 5/7 \end{bmatrix}.$$

16. Solution

(a) The block diagram can be simplified by moving the pick up point at x_4 to x_1 . This way, H_1 will be changed to 2s + 1/s and we obtain the following block diagram:



Block diagram for solution of Problem 7.16 (a).

In the next step the pick up point in the feedback loop (before 1/s block) will be moved to x_1 . This will create a new block 1 + 2s + 1/s between x_1 and y and eliminate the summation. The final transfer function will be:

$$\frac{Y(s)}{U(s)} = \frac{\frac{1}{s+4}\frac{1}{2s}}{1 + \frac{1}{s+4}\frac{1}{2s}\frac{2s^2+1}{s^2}} \frac{2s^2+s+1}{s} = \frac{s(2s^2+s+1)}{2s^4+8s^3+2s^2+1}$$

(b) The block diagram includes essentially the integrators. The first order model G_1 can be written in an equivalent form to emphasise the integrator as follows:

$$- \boxed{\frac{1}{s+4}} x_4 \equiv - \overrightarrow{x_4} \boxed{\frac{1}{s}} x_4$$

The state and output equations can be written from the block diagram of Fig. 7.85 as follows:

$$\dot{x}_1 = 0.5x_4$$
 ; $\dot{x}_2 = x_1$; $\dot{x}_3 = x_2 + x_4$; $\dot{x}_4 = u - x_3 - 4x_4$

and $y = x_1 + x_2 + x_4$. This leads to the following state-space model:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \\ \dot{x}_4 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & \frac{1}{2} \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & -1 & -4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} u,$$

$$y = \begin{bmatrix} 1 & 1 & 0 & 1 \end{bmatrix} \mathbf{x}.$$

The results can be checked for consistency using Matlab's command ss2tf.

22. Solution:

The natural frequency for a second-order system is related to the peak-time by the following relation (Chapter 3, Slide 41):

$$\omega_n = \frac{\pi}{t_p \sqrt{1 - \zeta^2}} = \frac{1}{\sqrt{1 - (0.707)^2}} = 1.414 \quad \text{rad/s}$$

Using full state feedback, we would like the a characteristic equation to be,

$$s^2 + 2\zeta\omega_n s + \omega_n^2 = s^2 + 2s + 2 = 0.$$

Using state feedback $u = -\mathbf{K}\mathbf{x}$, we get,

$$\dot{\mathbf{x}} = (\mathbf{A} - \mathbf{B}\mathbf{K})\mathbf{x} = \begin{bmatrix} 0 & 1 \\ -6 - k_1 & -5 - k_2 \end{bmatrix} \mathbf{x}.$$

Hence the closed-loop characteristic equation is,

$$s^2 + (5 + k_2)s + (6 + k_1) = 0.$$

Comparing coefficients, $k_1 = -4$ and $k_2 = -3$. The MATLAB command place can also be used.

25. Solution:

(a) Let's write this system in the control canonical form

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & -4 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u,$$
$$y = \begin{bmatrix} 1 & 0 \end{bmatrix} \mathbf{x}$$

(b) If $u = -[K_1 \quad K_2]\mathbf{x}$, the poles of the closed-loop system satisfy $\det(s\mathbf{I} - \mathbf{A} + \mathbf{B}\mathbf{K}) = 0$. Thus,

$$\det(s\mathbf{I} - \mathbf{A} + \mathbf{B}\mathbf{K}) = \begin{bmatrix} s + K_1 & 4 + K_2 \\ -1 & s \end{bmatrix} = s^2 + K_1s + 4 + K_2$$

The closed-loop characteristic equation is:

$$(s+2-2i)(s+2+2i) = s^2+4s+8$$

Comparing coefficients, we have $K_1 = 4$ and $K_2 = 4$.

34. Solution:

(a)

$$\mathcal{O} = \left[\begin{array}{c} \mathbf{C} \\ \mathbf{C}\mathbf{A} \end{array} \right] = \left[\begin{array}{cc} 1 & 2 \\ 0 & 1 \end{array} \right],$$

is nonsingular. Therefore, (A,C) is observable.

(b) Let,

$$\mathcal{O}_{unobs} = \begin{bmatrix} \mathbf{C} \\ \mathbf{C}(\mathbf{A} - \mathbf{B}\mathbf{K}) \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ -K_1 & 1 - K_2 \end{bmatrix}.$$

So if $det(\mathcal{O}_{unobs}) = 1 - K_2 + 2K_1 = 0$, then $(\mathbf{A} - \mathbf{BK}, \mathbf{C})$ is unobservable.

(c)
$$K_1 = 1 \Longrightarrow 1 - K_2 + 2 = 0 \Longrightarrow K_2 = 3$$
.

(d)

$$G_{ol}(s) = \mathbf{C}(s\mathbf{I} - \mathbf{A})^{-1}\mathbf{B} = \frac{s+2}{s^2 + 2s - 1} = \frac{s+2}{(s - 0.414)(s + 2.414)}.$$

$$G_{cl}(s) = \mathbf{C}(s\mathbf{I} - \mathbf{A} + \mathbf{B}\mathbf{K})^{-1}\mathbf{B} = \frac{s+2}{s^2 + 3s + 2} = \frac{s+2}{(s+2)(s+1)} = \frac{1}{(s+1)}.$$

The computations can be carried out using MATLAB's ss2tf command. So the unobservability is due to a **cancellation** of one of the closed-loop poles with the zero of the system. In other words, this closed-loop mode is unobservable from the output.

37. Solution:

(a) Apply Kirchhoff's voltage and current laws, with $x_1 = i_L$ and $x_2 = v_c$, we obtain,

$$L\dot{x}_1 + Rx_1 = x_2 + RC\dot{x}_2,$$

 $C\dot{x}_2 = u - x_1,$
 $y = (u - x_1)R$

Thus,

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} -2R/L & 1/L \\ -1/C & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} R/L \\ 1/C \end{bmatrix} u,$$

$$y = \begin{bmatrix} -R & 0 \end{bmatrix} \mathbf{x} + Ru.$$

(b) The condition for the system to be uncontrollable is $det(\mathcal{C}) = 0$.

$$\mathcal{C} = \begin{bmatrix} \mathbf{B} & \mathbf{A}\mathbf{B} \end{bmatrix} = \begin{bmatrix} R/L & -2R^2/L^2 + 1/LC \\ 1/C & -R/LC \end{bmatrix}.$$

$$\det(\mathcal{C}) = R^2/L^2C - 1/LC^2.$$

Thus, the system is controllable if $R^2 \neq L/C$.

(c) The condition for the system to be unobservable is,

$$\mathcal{O} \ = \ \left[\begin{array}{c} \mathbf{C} \\ \mathbf{C}\mathbf{A} \end{array} \right] = \left[\begin{array}{c} -R & 0 \\ 2R^2/L & -R/L \end{array} \right].$$

$$\det(\mathcal{O}) \ = \ R^2/L.$$

Since $det(\mathcal{O}) \neq 0$ for any R, L, C except R = 0 or $L = \infty$, the system is observable.

46. Solution:

(a) Defining $x_1 = \theta$ and $x_2 = \dot{\theta}$, and anticipating that the measured variable in part (b) is $\dot{\theta}$, we have.

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\omega^2 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u,$$

$$y = \begin{bmatrix} 0 & 1 \end{bmatrix} \mathbf{x}.$$

(b) From,

$$\det(s\mathbf{I} - \mathbf{A} + \mathbf{LC}) = 0,$$

$$\det\left\{ \begin{bmatrix} s & 0 \\ 0 & s \end{bmatrix} - \begin{bmatrix} 0 & 1 \\ -\omega^2 & 0 \end{bmatrix} + \begin{bmatrix} l_1 \\ l_2 \end{bmatrix} \begin{bmatrix} 0 & 1 \end{bmatrix} \right\} = s^2 + l_2 s + \omega^2 (-l_1 + 1) = 0.$$

Using $\omega = 5$ and the specified roots for the estimator, we calculate $l_1 = -7$, and $l_2 = 20$. This result can be verified using MATLAB's place command.

(c) To find the transfer function from the measured value of $\dot{\theta}$, y, to the estimated value of θ , $\hat{\theta}$, we use the estimator equations,

$$\hat{\mathbf{x}} = \mathbf{A}\hat{\mathbf{x}} + \mathbf{B}u + \mathbf{L}(y - \mathbf{C}\hat{x})
= (\mathbf{A} - \mathbf{L}\mathbf{C})\hat{\mathbf{x}} + \mathbf{B}u + \mathbf{L}y.$$

Since this is in state space form, we can now directly compute the transfer function from y to $\hat{\theta}$. It is simply,

$$\frac{\hat{\Theta}(s)}{Y(s)} = \begin{bmatrix} 1 & 0 \end{bmatrix} (s\mathbf{I} - \mathbf{A} + \mathbf{LC})^{-1}\mathbf{L}$$
$$= \frac{-7(s - 20/7)}{s^2 + 20s + 200}.$$

(d) For controller gain $\mathbf{K} = [k_1 \ k_2]$, we require,

$$\det(s\mathbf{I} - \mathbf{A} + \mathbf{B}\mathbf{K}) = 0 \Longrightarrow s^2 + k_2 s + \omega^2 + k_1 = 0.$$

Comparing this with the specified roots equation:

$$(s+4+j4)(s+4-j4) = s^2 + 8s + 32 = 0,$$

we obtain $k_1 = 7$, and $k_2 = 8$. This result can be verified using MATLAB's place command.

48. Solution:

(a) From the transfer function, we can read off the elements that will give observer canonical form,

$$\begin{array}{rcl} \dot{\mathbf{x}} & = & \mathbf{A}_o \mathbf{x} + \mathbf{B}_o u, \\ y & = & \mathbf{C}_o \mathbf{x}, \\ \mathbf{A}_o & = & \begin{bmatrix} 0 & 1 \\ 4 & 0 \end{bmatrix}, \ \mathbf{B}_o = \begin{bmatrix} 0 \\ 4 \end{bmatrix}, \ \mathbf{C}_o = \begin{bmatrix} 1 & 0 \end{bmatrix}. \end{array}$$

(b) With $u = -[k_1 \ k_2][x_1 \ x_2]^T$, we want to achieve the following closed-loop characteristic equation:

$$\alpha_c(s) = (s+2+2j)(s+2-2j) = s^2+4s+8 = 0.$$

From $det(s\mathbf{I} - \mathbf{A} + \mathbf{B}\mathbf{K}) = 0$, we obtain,

$$s^2 + 4k_2s + 4k_1 - 4 = 0.$$

Comparing the coefficients yields $k_1 = 3$, and $k_2 = 1$. This result can be verified using MATLAB's place command.

(c) The estimator roots are determined by the equation $\alpha_e(s) = 0$. We want to find l_1 and l_2 such that,

$$\alpha_e(s) = (s+10+10j)(s+10-10j) = s^2 + 20s + 200.$$

$$\begin{array}{rcl} \alpha_e(s) & = & \det(s\mathbf{I} - \mathbf{A} + \mathbf{LC}) \\ & = & \det\left(\left[\begin{array}{cc} s & -1 \\ -4 & s \end{array}\right] + \left[\begin{array}{c} l_1 \\ l_2 \end{array}\right] \left[\begin{array}{cc} 1 & 0 \end{array}\right] \right) \\ & = & \det\left[\begin{array}{cc} s + l_1 & -1 \\ -4 + l_2 & s \end{array}\right] = s^2 + l_1 s + l_2 - 4. \end{array}$$

Comparing the coefficients yields $l_1 = 20$, $l_2 = 204$. This result can be verified using MATLAB's place command.

(d) The transfer function of the resulting compensator is,

$$D_c(s) = \frac{U(s)}{Y(s)} = -\mathbf{K}(s\mathbf{I} - \mathbf{A} + \mathbf{B}\mathbf{K} + \mathbf{L}\mathbf{C})^{-1}\mathbf{L},$$

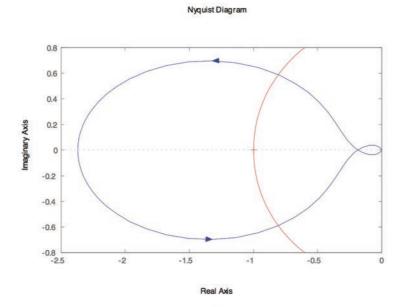
$$= -\begin{bmatrix} 3 & 1 \end{bmatrix} \begin{bmatrix} s+20 & -1 \\ 212 & s+4 \end{bmatrix}^{-1} \begin{bmatrix} 20 \\ 204 \end{bmatrix} = \frac{-264s - 692}{s^2 + 24s + 292}.$$

This result can be verified using MATLAB's ss2tf command.

(e) The loop gain is given by:

$$-D_c(s)G(s) = \frac{264s + 692}{s^2 + 24s + 292} \frac{4}{s^2 - 4}$$

Note that if we consider a positive feedback and put the negative sign in the controller $D_c(s)$ then the closed-loop poles are the zeros of $1 - D_c(s)G(s)$ and the Nyquist plot should be drawn for $-D_c(s)G(s)$. We can see the Nyquist plot for this system below from which we notice that the system has both a positive and negative gain margin (in dB). The gain can be increased by 5.46 times (GM=1/0.183=5.46), or decreased by 0.41 times (GM=1/2.37=0.41) before the system becomes unstable. From the plot, we can also see that the phase margin is about 55°.



Nyquist plot for Problem 7.48.

51. Solution

(a) The ODE of the system is $\ddot{y} + \dot{y} = 10u$. Define the state variables $x_1 = y$ and $x_2 = \dot{x}_1 = \dot{y}$, we can give the state equations as

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 10 \end{bmatrix} u$$
$$y = \begin{bmatrix} 1 & 0 \end{bmatrix} \boldsymbol{x}$$

(b) The desired characteristic equation is:

$$\alpha_c(s) = s^2 + 2\zeta\omega_n s + \omega_n^2 = s^2 + 3s + 9$$

The closed-loop characteristic equation is:

$$\det(s\mathbf{I} - \mathbf{A} + \mathbf{B}\mathbf{K}) = 10K_1 + s + 10K_2s + s^2$$

Equating coefficients and solving gives $K_1 = 0.9$ and $K_2 = 0.2$.

(c) The desired characteristic equation is:

$$\alpha_e(s) = s^2 + 2\zeta\omega_n s + \omega_n^2 = s^2 + 15s + 225$$

The closed-loop characteristic equation is:

$$\det(s\mathbf{I} - \mathbf{A} + \mathbf{LC}) = (s + l_1)(s + 1) + l_2 = s^2 + (l_1 + 1)s + (l_1 + l_2)$$

Equating coefficients and solving gives $l_1 = 14$ and $l_2 = 211$.

(d) The transfer function of the controller is:

$$D_c(s) = -K(sI - A + BK + LC)^{-1}L = \frac{-(54.8s + 202.5)}{s^2 + 17s + 262}$$

58. Solution:

(a) Using feedback of the form, $u = -\mathbf{K}\mathbf{x} + \bar{N}r$, we have,

$$\det(s\mathbf{I} - \mathbf{A} + \mathbf{B}\mathbf{K}) = (s+2+k_1)(s+3+k_2) + k_1(1-k_2) = s^2 + 6s + 18,$$

when $\mathbf{K} = \begin{bmatrix} 5 & -4 \end{bmatrix}$. This result can be verified using the MATLAB place command.

(b) We can find the desired value for N by setting the DC gain from r to y equal to unity. The closed-loop system equations are,

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}(-\mathbf{K}\mathbf{x} + \bar{N}r) = (\mathbf{A} - \mathbf{B}\mathbf{K})\mathbf{x} + \mathbf{B}\bar{N}r,$$

 $y = \mathbf{C}\mathbf{x}.$

Therefore, the transfer function is,

$$T(s) = \mathbf{C}(s\mathbf{I} - \mathbf{A} + \mathbf{B}\mathbf{K})^{-1}\mathbf{B}\bar{N},$$

and the DC gain is simply,

$$T(0) = \mathbf{C}(-\mathbf{A} + \mathbf{B}\mathbf{K})^{-1}\mathbf{B}\bar{N} = \frac{5}{9}\bar{N} = 1.$$

Hence, we choose $\bar{N} = \frac{9}{5}$.

(c) Change **A** to $(\mathbf{A} + \delta \mathbf{A})$, and let the value of \bar{N} that keeps the tracking error at zero be N'. Then letting T'(s) be the transfer function associated with the perturbed system,

$$N^{'-1} = T'(0) = -\mathbf{C}(\mathbf{A} + \delta \mathbf{A} - \mathbf{B}\mathbf{K})^{-1}\mathbf{B},$$

= $-\mathbf{C}[(\mathbf{A} - \mathbf{B}\mathbf{K})(\mathbf{I} - (\mathbf{A} - \mathbf{B}\mathbf{K})^{-1}\delta \mathbf{A})]^{-1}\mathbf{B},$
= $-\mathbf{C}(\mathbf{I} - (\mathbf{A} - \mathbf{B}\mathbf{K})^{-1}\delta \mathbf{A})^{-1}(\mathbf{A} - \mathbf{B}\mathbf{K})^{-1}\mathbf{B}.$

For $\delta \mathbf{A}$ small,

$$(\mathbf{I} - (\mathbf{A} - \mathbf{B}\mathbf{K})^{-1}\delta\mathbf{A})^{-1} = \mathbf{I} + (\mathbf{A} - \mathbf{B}\mathbf{K})^{-1}\delta\mathbf{A}.$$

Hence,

$$N^{'-1} = \underbrace{-\mathbf{C}(\mathbf{A} - \mathbf{B}\mathbf{K})^{-1}\mathbf{B}}_{\overline{N}^{-1}} - \mathbf{C}(\mathbf{A} - \mathbf{B}\mathbf{K})^{-1}\delta\mathbf{A}(\mathbf{A} - \mathbf{B}\mathbf{K})^{-1}\mathbf{B}.$$

And for arbitrary $\delta \mathbf{A}$ we arrive at,

$$N'^{-1} \neq \bar{N}^{-1}$$

Therefore, small changes in the plant matrix A prevent the steady-state error from reaching zero. The control system is not robust with respect to changes in A.

(d) Augmenting the system equations with an integrator state, x_I , the state equation become,

or with $\mathbf{z} = [\mathbf{x} \ x_I]^T$,

$$\dot{\mathbf{z}} = \mathbf{A}_a \mathbf{z} + \mathbf{B}_a u + \mathbf{B}_r r,
y = \mathbf{C}_a \mathbf{z}.$$

Using feedback of the form $u = -\mathbf{K}\mathbf{x} - k_I x_I = -\mathbf{K}_a \mathbf{z}$, we have,

$$\det(s\mathbf{I} - \mathbf{A}_a + \mathbf{B}_a\mathbf{K}_a) = 0 \text{ for } s = -3, -2 \pm j\sqrt{3},$$

when $\mathbf{K}_a = [0.3 \ 1.7 \ -2.1]$. This result can be verified using the MATLAB place command.

(e) We can show that the closed-loop DC gain from r to y is independent of A,

$$y_{\infty} = T(0)r_{\infty} = [\mathbf{C} \ \mathbf{0}] \begin{bmatrix} -\mathbf{A} + \mathbf{B}\mathbf{K} & \mathbf{B}k_I \\ \mathbf{C} & \mathbf{0} \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{0} \\ 1 \end{bmatrix} r_{\infty}$$

$$= [\mathbf{C} \ \mathbf{0}] \begin{bmatrix} * & (\mathbf{A} - \mathbf{B}\mathbf{K})^{-1}\mathbf{B}k_I [\mathbf{C}(\mathbf{A} - \mathbf{B}\mathbf{K})^{-1}\mathbf{B}k_I]^{-1} \\ * \end{bmatrix} \begin{bmatrix} \mathbf{0} \\ 1 \end{bmatrix} r_{\infty}$$

$$= [\mathbf{C}(\mathbf{A} - \mathbf{B}\mathbf{K})^{-1}\mathbf{B}k_I] [\mathbf{C}(\mathbf{A} - \mathbf{B}\mathbf{K})^{-1}\mathbf{B}k_1]^{-1} r_{\infty} = r_{\infty} \text{ independent of } \mathbf{A}, \mathbf{B}, \mathbf{C}.$$

Remark: In the second line of the above equations, the following matrix inversion lemma is used:

$$\begin{split} \begin{bmatrix} A & U \\ V & C \end{bmatrix}^{-1} &= \begin{bmatrix} I & A^{-1}U \\ 0 & I \end{bmatrix}^{-1} \begin{bmatrix} A & 0 \\ 0 & C - VA^{-1}U \end{bmatrix}^{-1} \begin{bmatrix} I & 0 \\ VA^{-1} & I \end{bmatrix}^{-1} \\ &= \begin{bmatrix} I & -A^{-1}U \\ 0 & I \end{bmatrix} \begin{bmatrix} A^{-1} & 0 \\ 0 & (C - VA^{-1}U)^{-1} \end{bmatrix} \begin{bmatrix} I & 0 \\ -VA^{-1} & I \end{bmatrix} \\ &= \begin{bmatrix} A^{-1} + A^{-1}U(C - VA^{-1}U)^{-1}VA^{-1} & -A^{-1}U(C - VA^{-1}U)^{-1} \\ -(C - VA^{-1}U)^{-1}VA^{-1} & (C - VA^{-1}U)^{-1} \end{bmatrix} \end{split}$$

60. Solution

1. The state-space model is given by:

$$A = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \qquad B = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \qquad C = \begin{bmatrix} 1 & \alpha \end{bmatrix}, \qquad D = 0$$

The observability matrix is:

$$\mathcal{O} = \begin{bmatrix} C \\ CA \end{bmatrix} = \begin{bmatrix} 1 & \alpha \\ \alpha & 0 \end{bmatrix} \Rightarrow \det(\mathcal{O}) = -\alpha^2 \neq 0, \text{ iff } \alpha \neq 0$$

2. We should find $P = P^T > 0$ from the following equation:

$$\boldsymbol{A}^T \boldsymbol{P} + \boldsymbol{P} \boldsymbol{A} - \boldsymbol{P} \boldsymbol{B} \boldsymbol{R}^{-1} \boldsymbol{B}^T \boldsymbol{P} + \boldsymbol{Q} = 0$$

$$\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} P_{11} & P_{12} \\ P_{12} & P_{22} \end{bmatrix} + \begin{bmatrix} P_{11} & P_{12} \\ P_{12} & P_{22} \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} - \begin{bmatrix} P_{11} & P_{12} \\ P_{12} & P_{22} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} P_{11} & P_{12} \\ P_{12} & P_{22} \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = 0$$

$$\Rightarrow \begin{bmatrix} P_{12} & P_{22} \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} P_{12} & 0 \\ P_{22} & 0 \end{bmatrix} - \begin{bmatrix} P_{11} & 0 \\ P_{12} & 0 \end{bmatrix} \begin{bmatrix} P_{11} & P_{12} \\ P_{12} & P_{22} \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = 0$$

$$\Rightarrow \begin{bmatrix} 2P_{12} & P_{22} \\ P_{22} & 0 \end{bmatrix} - \begin{bmatrix} P_{11}^2 & P_{11}P_{12} \\ P_{12}P_{11} & P_{12}^2 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = 0$$

$$-P_{12}^2 + 1 = 0$$

$$\Rightarrow P_{12} = 1$$

$$2P_{12} - P_{11}^2 + 1 = 0$$

$$\Rightarrow P_{11} = \sqrt{3}$$

$$P_{22} - P_{11}P_{12} = 0$$

$$\Rightarrow P_{22} = \sqrt{3}$$

Then
$$\mathbf{K} = R^{-1}\mathbf{B}^T\mathbf{P} = \begin{bmatrix} \sqrt{3} & 1 \end{bmatrix}$$
.

3. The characteristic polynomial is: $\alpha_o(s) = (s+3)^2 = s^2 + 6s + 9$. We have:

$$\det(s\mathbf{I} - \mathbf{A} + \mathbf{LC}) = \alpha_o(s)$$

Therefore:

$$\det\left(\begin{bmatrix} s & 0 \\ 0 & s \end{bmatrix} - \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} + \begin{bmatrix} l_1 & l_1 \\ l_2 & l_2 \end{bmatrix}\right) = s^2 + 6s + 9$$

$$\det\left(\begin{bmatrix} s + l_1 & l_1 \\ l_2 - 1 & s + l_2 \end{bmatrix}\right) = (s + l_1)(s + l_2) + l_1(1 - l_2) = s^2 + 6s + 9$$

which leads to $\mathbf{L}^T = \begin{bmatrix} 9 & -3 \end{bmatrix}$.

61. Solution

a) The controllable canonical representation is given by:

$$A = \left[\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array} \right] \qquad B = \left[\begin{array}{c} 1 \\ 0 \end{array} \right] \qquad C = \left[\begin{array}{cc} 1 & 10 \end{array} \right]$$

The augmented system with integrator is defined as:

$$\bar{A} = \begin{bmatrix} A & 0 \\ -C & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ -1 & -10 & 0 \end{bmatrix} \qquad \bar{B} = \begin{bmatrix} B \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

We should solve $\det(sI - \bar{A} + \bar{B}K) = (s+2)^3$ to find the state feedback controller $K = [k_1 \quad k_2 \quad k_3]$.

$$\det \left(\begin{bmatrix} s & 0 & 0 \\ -1 & s & 0 \\ 1 & 10 & s \end{bmatrix} + \begin{bmatrix} k_1 & k_2 & k_3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \right) = \det \begin{bmatrix} s + k_1 & k_2 & k_3 \\ -1 & s & 0 \\ 1 & 10 & s \end{bmatrix} = (s + k_1)s^2 + k_2s - 10k_3 - k_3s$$

Therefore $(s+k_1)s^2+k_2s-10k_3-k_3s=s^3+6s^2+12s+8$ that leads to $k_1=6, k_2=11.2$ and $k_3=-0.8$. If we use an observer canonical representation we will compute $k_1=1.12, k_2=0.488$ and $k_3=-0.8$. b) The closed-loop state space equations are:

$$\dot{x}(t) = Ax(t) + Bu(t) = Ax(t) - B[k_1 \quad k_2]x(t) - Bk_3x_I(t) + Br(t)$$

$$\dot{x}_I(t) = r(t) - y(t) = r(t) - Cx(t) - w(t)$$

$$u(t) = -[k_1 \quad k_2]x(t) - k_3x_I(t) + r(t)$$

$$y(t) = Cx(t) + w(t)$$

$$\begin{bmatrix} \dot{x}(t) \\ \dot{x}_{I}(t) \end{bmatrix} = \begin{bmatrix} A - B[k_{1} & k_{2}] & -Bk_{3} \\ -C & 0 \end{bmatrix} \begin{bmatrix} x(t) \\ x_{I}(t) \end{bmatrix} + \begin{bmatrix} B \\ 1 \end{bmatrix} r(t) + \begin{bmatrix} 0 \\ -1 \end{bmatrix} w(t)$$

$$A_{cl} = \bar{A} - \bar{B}K = \begin{bmatrix} -k_{1} & -k_{2} & -k_{3} \\ 1 & 0 & 0 \\ -1 & -10 & 0 \end{bmatrix} , B_{cl} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} , B'_{cl} = \begin{bmatrix} 0 \\ 0 \\ -1 \end{bmatrix}$$

- Between w(t) and y(t): $(A_{cl}, B'_{cl}, [C \quad 0], 1)$
- Between r(t) and u(t): $(A_{cl}, B_{cl}, -K, 1)$