
Solutions of Exercises of Chapter 7

7.

15. Solution
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16. Solution

(a) The block diagram can be simplified by moving the pick up point at x4 to x1. This way, H1 will be
changed to 2s+ 1/s and we obtain the following block diagram:

In the next step the pick up point in the feedback loop (before 1/s block) will be moved to x1.
This will create a new block 1+ 2s+1/s between x1 and y and eliminate the summation. The final
transfer function will be:

Y (s)

U(s)
=

1
s+4

1
2s

1 + 1
s+4

1
2s

2s2+1
s2

2s2 + s+ 1

s
=

s(2s2 + s+ 1)

2s4 + 8s3 + 2s2 + 1

(b) The block diagram includes essentially the integrators. The first order model G1 can be written in
an equivalent form to emphasise the integrator as follows:

1
s+4

1
s

4

x4

−
ẋ4≡x4

The state and output equations can be written from the block diagram of Fig. 7.85 as follows :

ẋ1 = 0.5x4 ; ẋ2 = x1 ; ẋ3 = x2 + x4 ; ẋ4 = u− x3 − 4x4

and y = x1 + x2 + x4. This leads to the following state-space model:

1

The results can be checked for consistency using Matlab’s command ss2tf.

22. Solution:

The natural frequency for a second-order system is related to the peak-time by the following relation
(Chapter 3, Slide 41):

ωn =
π

tp
√
1− ζ2

=
1√

1− (0.707)2
= 1.414 rad/s
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22.

25. Solution:

(a) Let’s write this system in the control canonical form

[
ẋ1

ẋ2

]
=

[
0 −4
1 0

] [
x1

x2

]
+

[
1
0

]
u,

y = [1 0]x

(b) If u = −[K1 K2]x, the poles of the closed-loop system satisfy det(sI−A+BK) = 0. Thus,

det(sI−A+BK) =

[
s+K1 4 +K2

−1 s

]
= s2 +K1s+ 4 +K2

The closed-loop characteristic equation is:

(s+ 2− 2j)(s+ 2 + 2j) = s2 + 4s+ 8

Comparing coefficients, we have K1 = 4 and K2 = 4.
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34.

37.

C
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46.
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48.
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(e) The loop gain is given by:

−Dc(s)G(s) =
264s+ 692

s2 + 24s+ 292

4

s2 − 4

Note that if we consider a positive feedback and put the negative sign in the controller Dc(s)
then the closed-loop poles are the zeros of 1−Dc(s)G(s) and the Nyquist plot should be drawn
for −Dc(s)G(s). We can see the Nyquist plot for this system below from which we notice that
the system has both a positive and negative gain margin (in dB). The gain can be increased
by 5.46 times (GM=1/0.183=5.46), or decreased by 0.41 times (GM=1/2.37=0.41) before the
system becomes unstable. From the plot, we can also see that the phase margin is about 55◦.

51. Solution

(a) The ODE of the system is ÿ + ẏ = 10u. Define the state variables x1 = y and x2 = ẋ1 = ẏ, we can
give the state equations as

[
ẋ1

ẋ2

]
=

[
0 1
0 −1

] [
x1

x2

]
+

[
0
10

]
u

y =
[
1 0

]
x

(b) The desired characteristic equation is:

αc(s) = s2 + 2ζωns+ ω2
n = s2 + 3s+ 9

The closed-loop characteristic equation is:

det(sI −A+BK) = 10K1 + s+ 10K2s+ s2

Equating coefficients and solving gives K1 = 0.9 and K2 = 0.2.

7



(c) The desired characteristic equation is:

αe(s) = s2 + 2ζωns+ ω2
n = s2 + 15s+ 225

The closed-loop characteristic equation is:

det(sI −A+LC) = (s+ l1)(s+ 1) + l2 = s2 + (l1 + 1)s+ (l1 + l2)

Equating coefficients and solving gives l1 = 14 and l2 = 211.

(d) The transfer function of the controller is:

Dc(s) = −K(sI −A+BK +LC)−1L =
−(54.8s+ 202.5)

s2 + 17s+ 262

58.
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Remark: In the second line of the above equations, the following matrix inversion lemma is used :
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60. Solution

1. The state-space model is given by:

A =

[
0 0
1 0

]
, B =

[
1
0

]
, C =

[
1 α

]
, D = 0

The observability matrix is:

O =

[
C
CA

]
=

[
1 α
α 0

]
⇒ det(O) = −α2 �= 0, iff α �= 0

2. We should find P = P T > 0 from the following equation:

ATP + PA− PBR−1BTP +Q = 0

[
0 1
0 0

] [
P11 P12

P12 P22

]
+

[
P11 P12

P12 P22

] [
0 0
1 0

]
−
[

P11 P12

P12 P22

] [
1 0
0 0

] [
P11 P12

P12 P22

]
+

[
1 0
0 1

]
= 0

⇒
[

P12 P22

0 0

]
+

[
P12 0
P22 0

]
−
[

P11 0
P12 0

] [
P11 P12

P12 P22

]
+

[
1 0
0 1

]
= 0

⇒
[

2P12 P22

P22 0

]
−
[

P 2
11 P11P12

P12P11 P 2
12

]
+

[
1 0
0 1

]
= 0

− P 2
12 + 1 = 0 ⇒ P12 = 1

2P12 − P 2
11 + 1 = 0 ⇒ P11 =

√
3

P22 − P11P12 = 0 ⇒ P22 =
√
3

Then K = R−1BTP =
[ √

3 1
]
.

3. The characteristic polynomial is: αo(s) = (s+ 3)2 = s2 + 6s+ 9. We have:

det(sI −A+LC) = αo(s)

Therefore:

det

([
s 0
0 s

]
−
[

0 0
1 0

]
+

[
l1 l1
l2 l2

])
= s2 + 6s+ 9

det

([
s+ l1 l1
l2 − 1 s+ l2

])
= (s+ l1)(s+ l2) + l1(1− l2) = s2 + 6s+ 9

which leads to LT = [9 − 3].
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61. Solution

a) The controllable canonical representation is given by:

A =

[
0 0
1 0

]
B =

[
1
0

]
C =

[
1 10

]

The augmented system with integrator is defined as:

Ā =

[
A 0
−C 0

]
=


 0 0 0

1 0 0
−1 −10 0


 B̄ =

[
B
0

]
=


 1

0
0




We should solve det(sI − Ā+ B̄K) = (s+ 2)3 to find the state feedback controller K = [k1 k2 k3].

det




 s 0 0

−1 s 0
1 10 s


+


 k1 k2 k3

0 0 0
0 0 0




 = det


 s+ k1 k2 k3

−1 s 0
1 10 s


 = (s+ k1)s

2 + k2s− 10k3 − k3s

Therefore (s+k1)s
2+k2s−10k3−k3s = s3+6s2+12s+8 that leads to k1 = 6, k2 = 11.2 and k3 = −0.8.

If we use an observer canonical representation we will compute k1 = 1.12, k2 = 0.488 and k3 = −0.8.
b) The closed-loop state space equations are:

ẋ(t) = Ax(t) +Bu(t) = Ax(t) −B[k1 k2]x(t) −Bk3xI(t) +Br(t)

ẋI(t) = r(t) − y(t) = r(t)− Cx(t) − w(t)

u(t) = −[k1 k2]x(t) − k3xI(t) + r(t)

y(t) = Cx(t) + w(t)

[
ẋ(t)
ẋI(t)

]
=

[
A−B[k1 k2] −Bk3

−C 0

] [
x(t)
xI(t)

]
+

[
B
1

]
r(t) +

[
0
−1

]
w(t)

Acl = Ā− B̄K =


 −k1 −k2 −k3

1 0 0
−1 −10 0


 , Bcl =


 1

0
1


 , B′

cl =


 0

0
−1




– Between w(t) and y(t): (Acl, B
′
cl, [C 0], 1)

– Between r(t) and u(t): (Acl, Bcl,−K, 1)
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