Solutions of Exercises of Chapter 7

7. Solution:

Assume the original system is,

x = Ax+ Bu,
y = Cx+ Du,
G(s) = C(sI-A)"'B+D.

Assume a change of state from x to z using the nonsingular transformation T,

x =Txz.

The new system matrices are,

The transfer function is,

G.(s) = C(sI-A)'B+D
— CT(sI- T-'AT)"'T"!B + D.

If we factor T on the left and T~ on the right of the (sI — T"*AT)~! term, we obtain,

G.(s) = CT(HETT '-TAT) T 'B+D
= CTT '(sI-A)'TT 'B+D=C(sI-A)" B+ J=G(s).

15. Solution

We are given x = Ax + Bu. Steady-state means that x = 0 and a step input (or unit step)
means u = 1(¢). Thus, assuming that the system is stable and A is invertible (which you can
check), we have,

—1
- _ pam T-% B 0] _1[1/7
0=Axs+B=%s=-A"B= [—2 —1] [1}‘[5/7]'



16. Solution

(a) The block diagram can be simplified by moving the pick up point at x4 to 1. This way, H; will be
changed to 2s + 1/s and we obtain the following block diagram:

+ 1 Xy 1 X,
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Block diagram for solution of Problem 7.16 (a).

In the next step the pick up point in the feedback loop (before 1/s block) will be moved to ;.
This will create a new block 1+ 2s+1/s between 27 and y and eliminate the summation. The final
transfer function will be:

Yis) _ i 262 +s5+1 5257+ s+1)
U(s) 1+ Atz s T 2514853 + 252+ 1

(b) The block diagram includes essentially the integrators. The first order model G can be written in
an equivalent form to emphasise the integrator as follows:

1 T4 Tyl 4 T4
T os+4 [ B S
4 |

The state and output equations can be written from the block diagram of Fig. 7.85 as follows :
:.E1:0.5£L'4 3 3-2‘2:1'1 ; :.C3:LL‘2+JJ4 3 3-2‘4:11,733374334

and y = 1 + z2 + x4. This leads to the following state-space model:

i‘] 0 0 0 % I1 0
To _ 1 0 0 0 o 0
5| — |01 0 1 zs | T o™
T4 0 0 -1 —4 T4 1
y = [ 1 1 01 }x.

The results can be checked for consistency using Matlab’s command ss2tf.

22. Solution:

The natural frequency for a second-order system is related to the peak-time by the following relation
(Chapter 3, Slide 41):
1
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Using full state feedback, we would like the a characteristic equation to be,

32+2§wns+wi=32+23+2=0.

Using state feedback u = —Kx, we get,

0 1

x=(A-BK)x= G-k —5—ky | T

Hence the closed-loop characteristic equation is,

2+ (5+kg)s+ (6 + k) = 0.

Comparing coefficients, k; = —4 and k3 = —3. The MATLAB command place can also be used.

25. Solution:

(a) Let’s write this system in the control canonical form
3'31 _ 0 —4 X1 1
EIN b IR RR
y=[1 0
(b) If u=—[K; Kj]x, the poles of the closed-loop system satisfy det(sI — A + BK) = 0. Thus,

s+ K1 4+ K,

det(sI - A +BK) = { 1 5

] =2+ Kis+4+ K»

The closed-loop characteristic equation is:
(s+2—2j)(s+2+2j) =s>+4s+38

Comparing coefficients, we have K7 =4 and Ko = 4.



34.Solution:
(a)

o~ &[4 1]

is nonsingular. Therefore, (A,C) is observable.
(b) Let,

& C F & 2
IR OA—BK) | T | =B 1-Ks |”

So if det(OQunobs) = 1 — Ko + 2K7 = 0, then (A — BK, C) is unobservable.
Gl By =1 =%l — B4 = ) =S Rl

(d)
- T e - . 5+ 2
Ga(s) = C(sI-A) B= i m—1 s-041d)(s +241d)°
Gold) = Ol —A+BEB—— 219 prs :

2+35+2 (3+2)(5+1) (s+1)

The computations can be carried out using MATLAR’s ss2tf command. So the unobservability
is due to a cancellation of one of the closed-loop poles with the zero of the system. In other
words, this closed-loop mode is unobservable from the output.

37. Solution:

(a) Apply Kirchhoff’s voltage and current laws, with 2; =iy and 2, = v,, we obtain,

Lii+ Rzy = 2+ RCis,
Ciz = u-—um,
y = (u—z)R
Thus,
& —2R/L 1/L [ =1 R/L
[:.:«2} - [—1/(: 0}[32}4_[1/6‘]”’
y = [ -R 0 ]x+Ru

(b) The condition for the system to be uncontrollable is det(C) =0.

C

1/C —-R/LC
det(C) = R*/L?C-1/LC.
Thus, the system is controllable if R? # L/C.
(c¢) The condition for the system to be unobservable is,
o = [oa]=[amfs -]
CA 2R?/L -R/L
det(©®) = RZ*/L.

[B AB]= { R/L —2R%*/L%2+1/LC ]

Since det(@) # 0 for any R, L, C except R = 0 or L = oo, the system is observable.



46. Solution:

(a) Defining 2, = 6 and z, = 6, and anticipating that the measured variable in part (b) is 6, we

have,

1 . 0 1 X1 0 i

fr - —w? 0 o 1|

y = { W L ]x
(b) From,
det(sI—-A+LC) = 0,
s 0| @ I 1 w2 2/ _
det{[o S] [—oﬂ 0]+[52 ][o 1 }} = #+hstw (L +1)=0.

Using w = b and the specified roots for the estimator, we calculate I; = —7, and Iy = 20. This

result can be verified using MATLAB’s place command.

(¢) To find the transfer function from the measured value of 6, y, to the estimated value of 6, 8,
we use the estimator equations,

X

Ax + Bu + L(y — Ci)
(A —LC)x+ Bu+ Ly.

Since this is in state space form, we can now directly compute the transfer function from y to

~

6. It is simply,

(:)(s) ~1

=i 1 e

Y(s) [1 0](sI-A+LC) 'L
—7(s—20/7)
s2 +20s + 200
(d) For controller gain K = [k; k3], we require,

det(sI —A+BK)=0=> s>+ kas +w? + k; =0.

Comparing this with the specified roots equation:

(s +4+j4)(s+4—j4) =52 +85+32=0,

we obtain k; =7, and k; = 8. This result can be verified using MATLAB’s place command.



48. Solution:

(a) From the transfer function, we can read off the elements that will give observer canonical

form,
x = Ax+B,u,
y = Cox,
01 0
By = [4 O],BO:[4],CO=[1 0].
(b) With u = —[k1 ko][z1 z2]7, we want to achieve the following closed-loop characteristic
equation:

ac(s) =(s+2+27)(s+2—2j) =s+45+8=0.
From det(sI — A + BK) = 0, we obtain,

5% + dkos + 4k; — 4 = 0.

Comparing the coefficients yields k1 = 3, and k; = 1. This result can be verified using MATLAB'’s
place command.

(c¢) The estimator roots are determined by the equation a.(s) = 0. We want to find I, and I,
such that,
ae(s) = (s + 10 + 107)(s + 10 — 105) = s* + 20s + 200.

ae(s) = det(sI—- A+ LC)
o S -1 ll
—det([_4 B +[12][1 0])
- S+ll -1 o il "
= det[—él—l—lg k ]—s +lis+ Iz — 4.

Comparing the coefficients yields [; = 20, [; = 204. This result can be verified using MATLAB'’s
place command.

(d) The transfer function of the resulting compensator is,
U(s)
Y(s)

(s 1)[ex -1 720 1 —264s — 692
212 s+4 204 | $2424s+292°

D.(s) = —K(sI- A+BK +LC)™'L,

This result can be verified using MATLAB’s ss2tf command.



(e) The loop gain is given by:

264s + 692 4

—Dc(s)G(s) = 52 4245 +292 52 — 4

Note that if we consider a positive feedback and put the negative sign in the controller D.(s)
then the closed-loop poles are the zeros of 1 — D.(s)G(s) and the Nyquist plot should be drawn
for —D.(s)G(s). We can see the Nyquist plot for this system below from which we notice that
the system has both a positive and negative gain margin (in dB). The gain can be increased
by 5.46 times (GM=1/0.183=5.46), or decreased by 0.41 times (GM=1/2.37=0.41) before the
system becomes unstable. From the plot, we can also see that the phase margin is about 55°.

Nyquist Diagram
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Nyquist plot for Problem 7.48.

51. Solution

(a) The ODE of the system is § + ¢ = 10u. Define the state variables z; = y and x5 = &1 = g, we can

give the state equations as
@ | |0 1 1 0
a L=l AL
y=|

(b) The desired characteristic equation is:
e(s) = 8% + 2Cwps + w2 =52 +35+9
The closed-loop characteristic equation is:
det(sI — A+ BK) = 10K, + s + 10K3s + 52

Equating coefficients and solving gives K1 = 0.9 and K5 = 0.2.



(c) The desired characteristic equation is:
e (s) = 82 + 2Cwns + w2 = s* + 15s + 225
The closed-loop characteristic equation is:
det(sI — A+ LC) = (s+11)(s+1)+lo =5+ (1 +1)s + (I + o)

Equating coefficients and solving gives I; = 14 and Iy = 211.
(d) The transfer function of the controller is:

—(54.85 + 202.5)

D =-K(s-A+BK+ LC) 'L =
e(5) (s +BK +LC) s2 + 175 + 262

58.Solution:
(a) Using feedback of the form, v = —Kx + N, we have,

det(sI — A +BK) = (s + 2+ k1)(s + 3 + ka) + k1 (1 — kp) = 5% + 65+ 18,

when K =[5 —4]. This result can be verified using the MATLAB place command.
(b) We can find the desired value for N by setting the DC gain from r to y equal to unity. The
closed-loop system equations are,

%* = Ax+B(-Kx+ Nr)=(A — BK)x + BNr,

7= 6%,

Therefore, the transfer function is,
T(s) = C(sI — A + BK)"'BN,

and the DC gain is simply,

T(0) = C(—A + BK) !BN = gN = 1.

Hence, we choose N = g.

(c) Change A to (A + 6A), and let the value of N that keeps the tracking error at zero be N'.
Then letting T (s) be the transfer function associated with the perturbed system,

/

N1 = T'(0)=—-C(A +6A - BK) 'B,
= —C[(A-BK)(I-(A-BK) A) !B,
= —C(I-(A-BK)'A) '(A-BK) !B.
For §A small,
(I-—(A—-BK) 16A) ' =1+ (A —-BK) 5A.

Hence,
N-1 = —C(A -BK) 'B - C(A - BK) 15A(A - BK) 'B.

N—-1

And for arbitrary § A we arrive at,



Therefore, small changes in the plant matrix A prevent the steady-state error from reaching
zero. The control system is not robust with respect to changes in A.

(d) Augmenting the system equations with an integrator state, z;, the state equation become,

o] = [ o]la]+[7 ]« (2]

y = [C 0][:1]'

or with z = [x z/]7,

= A.,z+ Bsu+ B,r,
y = GC,z.

Using feedback of the form u = —Kx — krz; = —K,z, we have,

det(sI — A, + B,K,) =0 for s = —3,—-2+ jV/3,

when K, = [ 0.3 1.7 —2.1 |. This result can be verified using the MATLAB place command.
(e) We can show that the closed-loop DC gain from r to y is independent of A,

v = T | AN B;“’]_l[‘l’]rm
_ [C g [ ; (A—BK)—lBkI[C)EA—BK)—l Bk ] [ (11 ]Tw

= [C(A —BK) 'Bk;|[C(A — BK) !Bk;] 7o = ro independent of A, B, C.

Remark: In the second line of the above equations, the following matrix inversion lemma is used :

[A U]“_'f A-IU]“[A 0 ]“[ I 0]"
¥ i@l | 2 0 C-VA'U VAl I

(I -A—IUHA—l 0 H I 0]
o a1 0 (C=vap)y?rll-vAar 1

(A~ + A"'U(C - VA"\U)'VA™! —A"'U(C - VA™'U)™! ]
~(C - VAU) VA (C - VA1)

(=]




60. Solution

1. The state-space model is given by:

A{‘l)g] B—H], c=[1 a], D=0

The observability matrix is:

O:[CCA}:{; a} = det(0)=—-a?#0, iffa#0

2. We should find P = PT > 0 from the following equation:
ATP+PA—-PBR 'BTP+Q=0
0 1 Py Pro n Py Pro 0 0| | Pu P 1
00 Pia P Py P 1o Pia P 0
Pra P n Py 0 | P11 O Pii o Py
0 0 Py O Py 0 Pio Py

[2P12 Poo ]_[ PE P11 Pio ] [1 0]:0

+
| —
O =
—= O
—_

I

(=)

Py 0 PPy P 0 1
~PL+1=0 = Pp=1
2Py —PL +1=0 = P1=3
Py — P11P12=0 = Pay =3

Then K = R~'BTP = [ V3 1 }
3. The characteristic polynomial is: a,(s) = (s + 3)? = s2 + 65 + 9. We have:

det(sI — A+ LC) = a,(s)

s 0 0 0 ll ll 2
det({o s]_[l 0]4—[[2 12})—3 +6s+9

s+ 10 l1 B B -,
det(|:l2_1 5+l2 :|>(S+l1)(s+l2)+l1(1 lQ)iS +65+9

which leads to LT =9 —3].

Therefore:

10

o O
—_
L —
jaclias
o=
oo
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L —
O =
_= O
—_
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61. Solution

a) The controllable canonical representation is given by:

A:HS: B:[l] C=[1 10|

The augmented system with integrator is defined as:

0 0 0 1
A—[_Acg}: 1 0 o B:[ﬂ: 0
-1 —-10 0 0

We should solve det(s] — A+ BK) = (s + 2)3 to find the state feedback controller K = [k1 ko k3.

S 0 0 kl kg k’3 s+ kl k’g k3
det -1 s 0|+ 0 0 0 =det| —1 s 0 | =(s+k)s?+kops—10ks — kss
S

1 10 0 0 O 1 10 s

—_

Therefore (54 ky1)s? + kas — 10kz — k3s = s34+ 652+ 125+ 8 that leads to k; = 6, ko = 11.2 and k3 = —0.8.
If we use an observer canonical representation we will compute k; = 1.12, ko = 0.488 and k3 = —0.8.
b) The closed-loop state space equations are:

i(t) = Ax(t) + Bu(t) = () Blky  ko)z(t) — Bksar(t) + Br(t)
ar(t) =r(t) —y(t) =r(t) — Ca(t) — w(t)

u(t) = —[k1  kola(t) — ksxr(t) +r(t)

y(t) = Cx(t) +w(?)

B | _[A=Bla kel -Brs [ 20 ] [ B0 ] O g
oo N i B il | o B R ECRY Y

~ B k1 —ky —ks3 1 0
Acl:A_BK: 1 0 0 , Bcl: 0 ’ él: 0
-1 —10 0 1 -1

— Between w(t) and y(t): (A, B, [C 0],1)
— Between r(t) and u(t): (Ae, Ber, —K, 1)
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