Solutions of Exercises of Chapter 4

4. Solution:
(a)
A
_ G(s) _ s(s+a) A
T(S)_l—i—G(s)_ A s24as4+ A’
e
s(s+a)
dl _ (s*+as+tA)—-A
dA (24+as+A)?
r_Adl _A(s®+as+A) s°+as _ s(s+a)
AT TdA A (s2+as+ A2  s(s+a)+ A
(b)
af —sA
da (82 +as+ A)?’
adl' _a(s®+as+A) —sA
T da A (s2+as+ A)?

T —as

Sa = s(s+a)+ A

(c) In this case,
G(s)
1+ BG(s)’
ar _ —G(s)?
dg — (1+BG(s))*’
Bdr _ p(1+8G) -G*  —BG
Tdg G (1+8G)? 1+8G’
—BA
ST _ s(s+a) —BA
- 14 BA  s(s+a)+BA°
s(s+a)

Ths] =




10. Solution:

(a)

K(s+a)?
D(s)Gls) = (s2 + ig;_s(2+ 1)’
E(s) 1
R(s) ~ 1+D.G’

s(s + 1)(s” + w?)
(2 +w?)s(s+1)+ K(s+ a)z'

The gain of this transfer function is zero at s = +jw, and we expect
the error to be zero if R is a sinusoid at that frequency. More formally,

let R(s) = 82:177;2 then
s(s+1)(s* + w?) Wn,
(s2 +w)s(s+1) + K(s +a)® s2+wi

E(s) =

Assuming the (closed-loop) system is stable, then if w,, # w,, E(s)
has a pole on the imaginary axis and the FVT does not apply. The
final error will NOT be zero in this case. However, if w,, = w, we
can use the FVT and

s — Hm sBla) =10
s—0
To test for stability, the characteristic equation is,
5% 4 (K +w2)s® + 8% + (@2 4 20K)s+ Ka® =0

Using the Routh array

1 w2+ K Ka?
: 1 (w2 + 2aK)
s K(1-2a) Ka?
i NS 2 200K CEZ
& 3§ WO+ e —_ m
g0 : Kao?

If « = 0.25, we must have K >0, and K > -1.75



15. Solution:

(a) The transfer function between the reference signal and the tracking error
is:

E(s) 1 1 s* (s +5)

R(s) ~ 1+G(s)D(s) 1+ sl ~ (s +5) + 10(s + 2)

For a step reference signal we have R(s) = 1/s and:

lim e(t) = lim sE(s) =0
s—0

t—o00

For a ramp reference signal we have R(s) = 1/s* and:

lim e(t) = lim sE(s) =0
s—0

t—o0
For a parabolic reference signal we have R(s) = 1/s* and:

lim e(t) = lim sE(s) = lim 50 _ 0

=0.25
t—00 s—0 5—0 82(3 + 5) —+ 10(8 + 2) 20

(b) The transfer function between the disturbance w and the error signal is:

E(s) _ G(s) _ 1/s* _ (s+5)
W(s) 1+ G(s)D.(s) 1+ SLQ% s?(s+5) + 10(s + 2)

Therefore, for a step disturbance W (s) = 1/s, we have

€es = lim e(t) = 111% SE(S) = lim — (3 + 5)
s—

= —-0.25
{00 s—0  s2(s+5) 4+ 10(s + 2)

Note that, in practice when we talk usually about the absolute value of
the steady-state error. Therefore, eg, = 0.25 is fine as well.

16. Solution:

(a) Yes, because G(s)D.(s) includes an integrator. It can be confirmed by
computing the steady-state error for a step reference signal R(s) = 1/s.
The transfer function between the reference signal and the tracking error
is:

E(s) 1 1 B s(s+2)(s + 30)

R(s) 1+G(s)Do(s) 1+ A D T (s +2)(s + 30) + 160(s +4)

2 30
lim e(t) = lim sE(s) = lim s(s +2)(s + 30) =0
t—o00 s—0 s—0 S(S —f- 2)(8 —|— 30) —|— 160(8 + 4)
For a ramp reference signal we have R(s) = 1/s* and:
‘ , (s +2)(s+30) 60
1 t)=1 = = 0.09375
Jim e(t) = lim s(s+2)(s+30) + 160(s +4) 160 x 4



(b) No, because the controller has no integrator. It can be confirmed by com-
puting the steady-state error. The transfer function between the distur-
bance w and the error signal is:

E(s) G(s) - (s +30)
W(s)  1+G(s)De(s)  s(s+2)(s+30) + 160(s + 4)

Therefore, for a step disturbance W (s) = 1/s, we have

ess = lim e(t) = lim sE(s) = lim — (s + 30)
t—oo 50 s=0  s(s+2)(s+30) 4+ 160(s +4)

= —0.046

(c) The closed loop transfer function is:

G(s)De(s) 160(s +4)

M) = T G D) ~ s+ a)(s +30) 1 160(s + 1

where a was inserted for the pole at -2. By definition

r  adl
% =T
But:
oTr 160(s +4)s(s + 30)
da  [s(s+30)(s+a) + 160(s + 4)]2
therefore, the sensitivity at a = 2 is:
gT_ O 160(s + 4)s(s + 30) B 2s(s + 30)

a T [s(s +30)(s+a) + 160(s + 42 s(s+2)(s+ 30) 4 160(s + 4)

(d) The real tracking error is e(t) = r(t) — y(¢) which is not shown in the
block diagram. Therefore, E(s) = R(s) — Y (s) and
Y(s) G(s)D.(s
= 1 —
R(s)] R(s) [ T H(s)C(s)Di(5)) T

E(s) = R(s)=Y(s) = [1 —

For a step reference signal, R(s) =1/s and

lim e(t) = lim sE(s) = lim s [1 —

t—o00 s—0 s—0

G(s)D.(s } 1
1+ H(s)G(s)De(s)
o 160(s + 4)(s + 20)

- s=0 s(s + 2)(s +30)(s + 20) 4+ 160(s + 4)20

S

=0

For a ramp reference signal, R(s) = 1/s? and

cont) 1
1+ H(s)G(s)D.(s)

S

— lim s(s +2)(s +30)(s + 20) + 160(s + 4)20 — 160(s + 4)(s +20) 1
50 s(s+2)(s +30)(s +20) + 160(s + 4)20 s

. s(s4+2)(s +30)(s +20) — 160(s +4)s 1T 1200 — 640
= 111m =

s=05(s 4+ 2)(s 4+ 30)(s + 20) + 160(s + 4)20 s 20(640)

lim e(t) = ll_I)I(l) sE(s) = lim ll -

t—00 s—0

= 0.04375
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For a step disturbance, we have W(s) = 1/s and E(s) = R(s) — Y (s)
with R(s) =0 and:

G
Y(3> T 14+ H(S)G(s)DC(S) W(S)
Therefore,
Jim e(t) = lim s B(s) = limy —s¥ (s) = limg 7 H(_S)GGSZ)DC(S)
. —(s +20)(s + 30) — —0.046

s=0 s(s + 2)(s +30)(s + 20) + 160(s + 4)20

Remark: Since the steady-state gain of H(s) is one, it does not change
the steady-state errors for step reference and step disturbance signals.

30. Solution:

(a) Y(s) 10(kr + kps)
R(s)  s[s(s+ 1) +20] + 10(k; + Kps)
Y(s) 10s

(b) Wi(s)  s[s(s+1)+20] + 10(k; + Kps)

(c) The controller has an integrator and a unity feedback so the steady-state
error for a step reference is zero. It can be verified using the final value
theorem. For a step reference signal R(s) = 1/s:

: : s(s* 4+ s + 20) 1
1 t) =limsE(s) = li =0
tilgo 6( ) SIL%S ( ) sg% 8(82 + s+ 20) + 10(kp8 + ]{71)
For a ramp reference signal R(s) = 1/s%
. : s(s* + s+ 20) 1 2
1 t) =1 E(s) =1 S
e e(t) o5 ° (s) = o0 s(s? 4+ s+ 20) + 10(kps + ky) 2 kg

(d) The controller has an integrator and a unity feedback so the steady-state
error for a step disturbance is zero. It can be verified using the final value
theorem. For a step disturbance signal W(s) = 1/s:

10s 1
lim e(t) = lim sE(s) = li - =0
Hm e(t) =l s Es) =l s ey 201 + 100 + Kps) 5
For a ramp reference signal W (s) = 1/s%
10s 1 1

lim e(t) = lim sE(s) = 5=
tiréloe() sliI(l)S (S) S%SS[S(S—Fl)—|—20]—|—10(l€[—|—Kp8)82 ]{7[

(e) The characteristic equation is s* + s + (10kp + 20)s + 10k; = 0. The
Routh’s array is

s3: 1 10kp + 20
82 . 1 10]€[
st: 10kp + 20 — 10k;

s0 10k;

For stability we must have k; > 0 and kp > k; — 2.



34. Solution:
(a) The characteristic equation is:
J*+ Hhp=0 = s +kp/J=0

The Routh’s array is:

82 1 kp

st: 0
Since we have one zero in the first column, the system is unstable wha-
tever the value of kp is.

(b) The transfer function between ©(s) and O,.(s) is:

O(s)  H.(kp+kps)7=  H.(kp+kps)
©,(s) 1+ Hy(kp+kps)7= Js*+ Hy(kp+ kps)

It is clear that for some values of kp and kp the closed loop system can

be stable. In this case, E(s) = ©,(s) — O(s) and

lim e(t) = lim sE(s) = lim s {1 _ 96 ] 0,(s)

t—o0 s—0 s—0 @T (8)

For a step reference signal ©,.(s) = 1/s and

{1— @(3)}1—1 B _

li =i S S P
im e(t) = lim s o.05) | 5 i,

t—ro0 s—0
The transfer function between W (s) and O(s) is:

1
O(s) _ 7 _ 1
Wi(s) 1+ Hy(kp+ kps) Js? + Hy(kp + kps)

1
Js?
and the error is E(s) = 0—0O(s). For a step disturbance we have W (s) =
1/s:

: : . O(s) ] 1 1
Jm o) = B o (9) = iy [0~ o] = Tk

(c) The characteristic equation of the system with a PI controller is:
Js* + Hykps + Hykr = 0

Since the coefficient of s? is zero using the Routh’s test we can conclude
that there is at least one unstable pole in closed-loop. Therefore, a PI
controller cannot stabilize the system and the steady-state errors go to
infinity.

(d) The characteristic equation of the system with a PID controller is:
Js* + Hykps® + Hykps + Hykr = 0
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so the closed-loop system can be stabilized. The transfer function between

O©(s) and O,(s) is:

@(8) _ Hr(kP—Fk‘[/S-FkDS)ﬁ - HT(/{]—F/{pS-l-kDSQ)
©.(s) 1+ Hy(kp+kr/s+kps)-s  Js*+ Hy(kr + kps + kps?)

For a step reference signal ©,(s) = 1/s and

. . Os) |1 H,
et =t 1= gi05] S =1 57 =0
The transfer function between W (s) and O(s) is:
O(s) ﬁ s

W(s) 1 +Hy(kP+kI/3+kDS)ﬁ N + Hy(k; + kps + kps?)

and the error is E(s) = 0—O(s). For a step disturbance we have W (s) =

1/s:
, , , O(s) |1
Jm o) = iy o816) = iy 0~ 5| £ =
36. Solution:
(a) From step response: L = 14 ~ 0.65 sec
102 i
B= e 0.33 sec™.
From Table 4.1:
Controller Gain P : K = % = 4.62,
L
PI : K=§§=415 Tr=_c=217
PID: K=12=551 T;=2L=13Tp=05L=0.33

(b) From the impulse response: P, ~ 2.33 sec. and from Table 4.2:

Controller Gain P K =05K, =428,
PI : K=045K,,=386 Tr= 11—2}3'u =186,
1 1
PID : K =06K, =513 Tr= §P.u = 1.12Tp = gPu = 0.28.



37. Solution:

(a) From the transfer function: L = 74 ~ 2 sec

H= % ~0.33 sec”l.
From Table 4.1:
. 1
Controller Gain P J = ﬁlﬁ,
L
Pl K:R—g=135 T1=ﬁ=6.66,
PLDn K = % =18 T;=2L=4Tp=0bL= 10

(b) From the impulse response: P, ~ 7 sec From Table 4.2:

Controller Gain P : K =05k, =152
1
BT : K=045K; =137 Tr = EPH = 5.83,
il 1
PID :  K=06K,=182 Tj=;P,=35Ip= 3P, =087

41. Solution:

The Laplace transform of the step response of the system is computed as:

Y(s) = . 1 _ o—30s 0.01 _ o—30s 1_ 1
100s +1s s(s+0.01) s s+0.01

In the time-domain it is equal to the 1 — e %9 delayed by 30 sec. From the following
figure, we can drive the parameters R = 0.01 and L = 30. The P, PI and PID controllers
based on the ZN tuning rule are:

1

P troller: K(s) = —== =333

controller (s) =T

0.9 1 0.01

PI controller: K(s) = L (1 + 3.3Ls) =3 <1 + T)
1.2 1 0.017

PID ller: K(s)=— 1+ — DHls ) =411 1

controller (s) RL( +2L8+O5 s) ( t— "t 53)

The integral term is welcome since the system we want to control does not have one. This
term will eliminate steady-state error in the case of a constant disturbance. The derivative
term is necessary in order to tackle the destabilizing effect of the delay of 30s. Our choice
is, hence, the PID controller, a choice that will be validated from a detailed analysis of
the stability of the system in closed loop.
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FIGURE 1 — Step response in open-loop with the tangent line of maximum slope

For a proportional controller, the transfer function between Y.(s) and E(s) is:

E(s) 1
—30s

)/;(8) 1 + Kp 1%08+1

Therefore, for a step reference input we have:

1 1 1
lim e(t) = lim s s = 0.231

teo 520 1+ Kp 100s+1 1+ Kp

42. Solution:

The step response together with the tangent line of maximum slope is shown in Fig. 2.
From this figure we can find L ~ 2.7 and R ~ 5/6 = 0.83. Therefore, the PID controllers
based on the ZN tuning rule is:

1.2 1 0.185
K(s)=—=|1+— bLs ) =0. 1 1.
(s) RL( +2LS+05 s) 053( + S + 353)

The parameters of the first-order model with delay G(s) are vy = 5,7 = 6 and 6§ = 2.7 and

—0s 5672.75

e
G pr— p—
(8) Ts+1 6s+1

The settling time for the step response of a first-order system with time constant 7, is
about 47,,. A settling time of 10 seconds is equivalent of 7, ~ 10/4 = 2.5. The reference

model is then chosen as:

672.73

T 255+ 1

M(s)
Then, the controller is given by:

B M(s) B 1+ 6s
K = Gaa—Me) ~ 505 265 — 27
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FIGURE 2 — Step response of the open-loop system with its tangent of maximum slope

If we approximate the delay with a first-order Pade approximation, we obtain:

0/2+ 1 1.35+6
K, = = =0.28
Py +0)  5(25+2.7)
T,=0/2+717=135+6=7.35
76

04 27

T, = =1.1

43. Solution:

From the step response, we have K = 0.5,¢, = 0.8635 and y(t,) = 0.6269. Therefore,
v= K =0.5 and

(i,

y(t,) — K —¢r/\/1-¢2 S St oA
M, =) =R 9538 — = -
K ¢ = ST\ miLe

p

- T~y

tpy/ 1 — (2
The desired bandwidth is 1.2w,, = 4.8 which leads to 7, = 1/4.8 = 0.21. The parameters
of the PID controller for MRC are :

Wn

2 0.8
K, = ¢ = =19
YorTm 0.5 x4 x0.21
2
% g5
T, = = 0.3125
*7 2w,
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