
Solutions of Exercises of Chapter 4
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15. Solution:

(a) The transfer function between the reference signal and the tracking error
is:

E(s)

R(s)
=

1

1 +G(s)Dc(s)
=

1

1 + 1
s2

10(s+2)
s+5

=
s2(s+ 5)

s2(s+ 5) + 10(s+ 2)

For a step reference signal we have R(s) = 1/s and:

lim
t→∞

e(t) = lim
s→0

sE(s) = 0

For a ramp reference signal we have R(s) = 1/s2 and:

lim
t→∞

e(t) = lim
s→0

sE(s) = 0

For a parabolic reference signal we have R(s) = 1/s3 and:

lim
t→∞

e(t) = lim
s→0

sE(s) = lim
s→0

s+ 5

s2(s + 5) + 10(s+ 2)
=

5

20
= 0.25

(b) The transfer function between the disturbance w and the error signal is:

E(s)

W (s)
= − G(s)

1 +G(s)Dc(s)
= − 1/s2

1 + 1
s2

10(s+2)
s+5

= − (s+ 5)

s2(s+ 5) + 10(s+ 2)

Therefore, for a step disturbance W (s) = 1/s, we have

ess = lim
t→∞

e(t) = lim
s→0

sE(s) = lim
s→0

− (s+ 5)

s2(s+ 5) + 10(s+ 2)
= −0.25

Note that, in practice when we talk usually about the absolute value of
the steady-state error. Therefore, ess = 0.25 is fine as well.

16. Solution:

(a) Yes, because G(s)Dc(s) includes an integrator. It can be confirmed by
computing the steady-state error for a step reference signal R(s) = 1/s.
The transfer function between the reference signal and the tracking error
is:

E(s)

R(s)
=

1

1 +G(s)Dc(s)
=

1

1 + 1
s(s+2)

160(s+4)
s+30

=
s(s+ 2)(s+ 30)

s(s+ 2)(s+ 30) + 160(s+ 4)

lim
t→∞

e(t) = lim
s→0

sE(s) = lim
s→0

s(s+ 2)(s+ 30)

s(s+ 2)(s+ 30) + 160(s+ 4)
= 0

For a ramp reference signal we have R(s) = 1/s2 and:

lim
t→∞

e(t) = lim
s→0

(s+ 2)(s+ 30)

s(s+ 2)(s+ 30) + 160(s+ 4)
=

60

160× 4
= 0.09375
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(b) No, because the controller has no integrator. It can be confirmed by com-
puting the steady-state error. The transfer function between the distur-
bance w and the error signal is:

E(s)

W (s)
= − G(s)

1 +G(s)Dc(s)
= − (s+ 30)

s(s+ 2)(s+ 30) + 160(s+ 4)

Therefore, for a step disturbance W (s) = 1/s, we have

ess = lim
t→∞

e(t) = lim
s→0

sE(s) = lim
s→0

− (s+ 30)

s(s + 2)(s+ 30) + 160(s+ 4)
= −0.046

(c) The closed loop transfer function is:

T (s) =
G(s)Dc(s)

1 +G(s)Dc(s)
=

160(s+ 4)

s(s+ a)(s+ 30) + 160(s+ 4)

where a was inserted for the pole at -2. By definition

ST
a =

a

T

∂T

∂a

But:
∂T

∂a
= − 160(s+ 4)s(s+ 30)

[s(s + 30)(s+ a) + 160(s+ 4)]2

therefore, the sensitivity at a = 2 is:

ST
a = − a

T

160(s+ 4)s(s+ 30)

[s(s+ 30)(s+ a) + 160(s+ 4)]2
= − 2s(s+ 30)

s(s + 2)(s+ 30) + 160(s+ 4)

(d) The real tracking error is e(t) = r(t) − y(t) which is not shown in the
block diagram. Therefore, E(s) = R(s)− Y (s) and

E(s) = R(s)−Y (s) =

[
1− Y (s)

R(s)

]
R(s) =

[
1− G(s)Dc(s)

1 +H(s)G(s)Dc(s)

]
R(s)

For a step reference signal, R(s) = 1/s and

lim
t→∞

e(t) = lim
s→0

sE(s) = lim
s→0

s

[
1− G(s)Dc(s)

1 +H(s)G(s)Dc(s)

]
1

s

= 1− lim
s→0

160(s+ 4)(s+ 20)

s(s+ 2)(s+ 30)(s+ 20) + 160(s+ 4)20
= 0

For a ramp reference signal, R(s) = 1/s2 and

lim
t→∞

e(t) = lim
s→0

sE(s) = lim
s→0

[
1− G(s)Dc(s)

1 +H(s)G(s)Dc(s)

]
1

s

= lim
s→0

s(s+ 2)(s+ 30)(s+ 20) + 160(s+ 4)20− 160(s+ 4)(s+ 20)

s(s+ 2)(s+ 30)(s+ 20) + 160(s+ 4)20

1

s

= lim
s→0

s(s+ 2)(s+ 30)(s+ 20)− 160(s+ 4)s

s(s+ 2)(s+ 30)(s+ 20) + 160(s+ 4)20

1

s
=

1200− 640

20(640)
= 0.04375
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For a step disturbance, we have W (s) = 1/s and E(s) = R(s) − Y (s)
with R(s) = 0 and:

Y (s) =
G(s)

1 +H(s)G(s)Dc(s)
W (s)

Therefore,

lim
t→∞

e(t) = lim
s→0

sE(s) = lim
s→0

−sY (s) = lim
s→0

−G(s)

1 +H(s)G(s)Dc(s)

= lim
s→0

−(s + 20)(s+ 30)

s(s+ 2)(s+ 30)(s+ 20) + 160(s+ 4)20
= −0.046

Remark: Since the steady-state gain of H(s) is one, it does not change
the steady-state errors for step reference and step disturbance signals.

30. Solution:

(a)
Y (s)

R(s)
=

10(kI + kP s)

s[s(s+ 1) + 20] + 10(kI +KP s)

(b)
Y (s)

W (s)
=

10s

s[s(s+ 1) + 20] + 10(kI +KPs)

(c) The controller has an integrator and a unity feedback so the steady-state
error for a step reference is zero. It can be verified using the final value
theorem. For a step reference signal R(s) = 1/s:

lim
t→∞

e(t) = lim
s→0

sE(s) = lim
s→0

s
s(s2 + s+ 20)

s(s2 + s+ 20) + 10(kPs+ kI)

1

s
= 0

For a ramp reference signal R(s) = 1/s2:

lim
t→∞

e(t) = lim
s→0

sE(s) = lim
s→0

s
s(s2 + s+ 20)

s(s2 + s+ 20) + 10(kPs+ kI)

1

s2
=

2

kI

(d) The controller has an integrator and a unity feedback so the steady-state
error for a step disturbance is zero. It can be verified using the final value
theorem. For a step disturbance signal W (s) = 1/s:

lim
t→∞

e(t) = lim
s→0

sE(s) = lim
s→0

s
10s

s[s(s+ 1) + 20] + 10(kI +KP s)

1

s
= 0

For a ramp reference signal W (s) = 1/s2:

lim
t→∞

e(t) = lim
s→0

sE(s) = lim
s→0

s
10s

s[s(s+ 1) + 20] + 10(kI +KP s)

1

s2
=

1

kI

(e) The characteristic equation is s3 + s2 + (10kP + 20)s + 10kI = 0. The
Routh’s array is

s3 : 1 10kP + 20
s2 : 1 10kI
s1 : 10kP + 20− 10kI
s0 : 10kI

For stability we must have kI > 0 and kP > kI − 2.
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34. Solution:

(a) The characteristic equation is:

Js2 +HykP = 0 ⇒ s2 + kP/J = 0

The Routh’s array is:
s2 : 1 kP
s1 : 0

Since we have one zero in the first column, the system is unstable wha-
tever the value of kP is.

(b) The transfer function between Θ(s) and Θr(s) is:

Θ(s)

Θr(s)
=

Hr(kP + kDs)
1

Js2

1 +Hy(kP + kDs)
1

Js2

=
Hr(kP + kDs)

Js2 +Hy(kP + kDs)

It is clear that for some values of kP and kD the closed loop system can
be stable. In this case, E(s) = Θr(s)−Θ(s) and

lim
t→∞

e(t) = lim
s→0

sE(s) = lim
s→0

s

[
1− Θ(s)

Θr(s)

]
Θr(s)

For a step reference signal Θr(s) = 1/s and

lim
t→∞

e(t) = lim
s→0

s

[
1− Θ(s)

Θr(s)

]
1

s
= 1− Hr

Hy
= 0

The transfer function between W (s) and Θ(s) is:

Θ(s)

W (s)
=

1
Js2

1 +Hy(kP + kDs)
1

Js2

=
1

Js2 +Hy(kP + kDs)

and the error is E(s) = 0−Θ(s). For a step disturbance we have W (s) =
1/s:

lim
t→∞

e(t) = lim
s→0

sE(s) = lim
s→0

s

[
0− Θ(s)

W (s)

]
1

s
= − 1

HykP

(c) The characteristic equation of the system with a PI controller is:

Js3 +HykP s+HykI = 0

Since the coefficient of s2 is zero using the Routh’s test we can conclude
that there is at least one unstable pole in closed-loop. Therefore, a PI
controller cannot stabilize the system and the steady-state errors go to
infinity.

(d) The characteristic equation of the system with a PID controller is:

Js3 +HykDs
2 +HykPs+HykI = 0

6



so the closed-loop system can be stabilized. The transfer function between
Θ(s) and Θr(s) is:

Θ(s)

Θr(s)
=

Hr(kP + kI/s+ kDs)
1

Js2

1 +Hy(kP + kI/s+ kDs)
1

Js2

=
Hr(kI + kP s+ kDs

2)

Js3 +Hy(kI + kP s+ kDs2)

For a step reference signal Θr(s) = 1/s and

lim
t→∞

e(t) = lim
s→0

s

[
1− Θ(s)

Θr(s)

]
1

s
= 1− Hr

Hy
= 0

The transfer function between W (s) and Θ(s) is:

Θ(s)

W (s)
=

1
Js2

1 +Hy(kP + kI/s+ kDs)
1

Js2

=
s

Js3 +Hy(kI + kP s+ kDs2)

and the error is E(s) = 0−Θ(s). For a step disturbance we have W (s) =
1/s:

lim
t→∞

e(t) = lim
s→0

sE(s) = lim
s→0

s

[
0− Θ(s)

W (s)

]
1

s
= 0

36.
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37. Solution:

41. Solution:

The Laplace transform of the step response of the system is computed as:

Y (s) =
e−30s

100s+ 1

1

s
= e−30s 0.01

s(s+ 0.01)
= e−30s

(
1

s
− 1

s + 0.01

)

In the time-domain it is equal to the 1 − e−0.01t delayed by 30 sec. From the following
figure, we can drive the parameters R = 0.01 and L = 30. The P, PI and PID controllers
based on the ZN tuning rule are:

P controller: K(s) =
1

RL
= 3.33

PI controller: K(s) =
0.9

RL

(
1 +

1

3.3Ls

)
= 3

(
1 +

0.01

s

)

PID controller: K(s) =
1.2

RL

(
1 +

1

2Ls
+ 0.5Ls

)
= 4

(
1 +

0.017

s
+ 15s

)

The integral term is welcome since the system we want to control does not have one. This
term will eliminate steady-state error in the case of a constant disturbance. The derivative
term is necessary in order to tackle the destabilizing effect of the delay of 30s. Our choice
is, hence, the PID controller, a choice that will be validated from a detailed analysis of
the stability of the system in closed loop.
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Figure 1 – Step response in open-loop with the tangent line of maximum slope

For a proportional controller, the transfer function between Yc(s) and E(s) is:

E(s)

Yc(s)
=

1

1 +Kp
e−30s

100s+1

Therefore, for a step reference input we have:

lim
t→∞

e(t) = lim
s→0

s
1

1 +Kp
e−30s

100s+1

1

s
=

1

1 +Kp

= 0.231

42. Solution:

The step response together with the tangent line of maximum slope is shown in Fig. 2.
From this figure we can find L ≈ 2.7 and R ≈ 5/6 = 0.83. Therefore, the PID controllers
based on the ZN tuning rule is:

K(s) =
1.2

RL

(
1 +

1

2Ls
+ 0.5Ls

)
= 0.53

(
1 +

0.185

s
+ 1.35s

)

The parameters of the first-order model with delay G(s) are γ = 5, τ = 6 and θ = 2.7 and

G(s) =
γe−θs

τs + 1
=

5e−2.7s

6s+ 1

The settling time for the step response of a first-order system with time constant τm is
about 4τm. A settling time of 10 seconds is equivalent of τm ≈ 10/4 = 2.5. The reference
model is then chosen as:

M(s) =
e−2.7s

2.5s+ 1

Then, the controller is given by:

K(s) =
M(s)

G(s)(1−M(s))
=

1 + 6s

5(1 + 2.5s− e−2.7s)
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Figure 2 – Step response of the open-loop system with its tangent of maximum slope

If we approximate the delay with a first-order Pade approximation, we obtain:

Kp =
θ/2 + τ

γ(τm + θ)
=

1.35 + 6

5(2.5 + 2.7)
= 0.28

Ti = θ/2 + τ = 1.35 + 6 = 7.35

Td =
τθ

θ + 2τ
= 1.1

43. Solution:

From the step response, we have K = 0.5, tp = 0.8635 and y(tp) = 0.6269. Therefore,
γ = K = 0.5 and

Mp =
y(tp)−K

K
= 0.2538 = e−ζπ/

√
1−ζ2 ⇒ ζ =

√
(lnMp)2

π2 + (lnMp)2
= 0.4

ωn =
π

tp
√

1− ζ2
≈ 4

The desired bandwidth is 1.2ωn = 4.8 which leads to τm = 1/4.8 = 0.21. The parameters
of the PID controller for MRC are :

Kp =
2ζ

γωnτm
=

0.8

0.5× 4× 0.21
= 1.9

Ti =
2ζ

ωn
= 0.2

Td =
1

2ζωn
= 0.3125
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