Solutions of Exercises of Chapter 3

10. Solution:

There are only two cases to consider.

Case (a) For the case t < 0, there is no overlap between the two
functions u(t — 7) and h(7), so the output is zero: y;(t) = 0

Case (b) For the case t > 0, the output of the system is given by:

yo(t) = /0 h(t — 7)u(r)dT = /0 2(t — T)e_Q(t_T)(l)dT

[t — 7)e—20t-7)7! t o=2(t—T)
= (= r)e ] + 2/ ¢ dr
2 0 0 2

r —2(t—7) t 1
B R _ 2
(t—T7)e + 5 T3

e 16—275
2

17. Solution:

(a) If we blindly compute the DC gain G(0) = -4 = —1. This answer is
not correct as explained in part (b). This is because the DC gain is
not defined for an unstable system and the output of the system is
unbounded.

(b) lim y(t) =7
t—o0
The poles of the system are: s2 +5—-2=0=s=1,-2.

Since the system has an wunstable pole, the Final Value Theorem is
not applicable. The output is unbounded.



26. Solution:

Y(s) K B w2
R(s)  s2+2s+K s2+20wps+w?’
Wn = \/E:

In order to have an overshoot of no more than 10%:

M, = e~™/V1=¢ < 0.10.

Solving for ( :

(In Mp)?
= > 0.991.
¢ \/71'2 + (In Mp,)? ~ el

Using (1) and the solution for (:

K=C1—2§2.86,
0< K <286



27. Solution:

Y(s) 100K 100K
R(s) 24 (25+a)s+25a+ 100K 52+ 2Cwns + w2’

Using the given information:

1
Ris) = . unit step,
M, < 25%,
ts < 0.lsec.
Solve for ¢ :
M, = e~w¢/v1—c21
In M,,)?
£ = UnMp)* - o 4037.

2 4+ (InM,)? —

Solve for wy:

e~Swnts =001  For a 1% settling time.

=i ey 2114007

Now find a and K :

Bwn, = (25 +a),
a = 20wy, — 25 = 92.10 — 25 = 67.10,
w? = (25a + 100K),



33. Solution: The equation of motion is

mi + bx + kx = F.

The transfer function is

X (s) a
=iGla)= [
F(s) ®) 24+ L2s+ k
In this case
26(0) = 0.,
1
2 (E) = 0.4,
k = 20
We observe that " -
W= —=—, 2w,=
m
From the plot
1. 2
Iy = 1sec=—8=>wn=1.8= —0=>m=6.17,
Wn m

M, = yltp) —y(c0) _ (0.113 — 0.1)/0.1 x 100% = 13.1% = ¢ = 0.543,

y(o0)
b = 2(w,m = 2(0.543)(1.8)(6.17) = 12.06.



35.Solution:

" KiK.\, K;
ImOm + (b+ R, ) i = R, Vi
(a)
" KK . K
860m(8) o Ri(Jm
Val®) st b+ Bk
Jm = 10kg-m?
b = 1N-m-sec,
K. = 2 V:sec,
Kt = 20 m/A,
B, = 1081.

s0m(s) _ _ 0.02
Va(s) s+0.14 "

(b) Final Value Theorem

5(10)(0.02), 0.2
fise) = o(s + 0.14)'”‘3_ 014 — 42

Om(s)  0.02
Va(s)  s(s+0.14)°
(d)
& — 0.02K(6, —06)
Gnlt] = s(s+0.14)
Om(s) 0.02K

0s)  s2+0.14s+0.02K



M, = e™/VI=¢ =02 (20%),

¢ = 0.4559.
2
w
¥ = . ;
(s) 82 + 2¢wns + w2
WUw, = 0.14,
0.14
= —— =0.15rad
- 2(0.4559) ral) e
w?, = 0.02K,
< K-<1.2
o 1.8 1.8
Wy = — = — = 0.45
t, 4
(0.45)?2




36. Solution:

(@

JOs? + BOs

(b)

O(s) =

JO+ Bl =T,

Figure 3.61: Schematic of antenna for Problem 3.36

= TC(S);
1
s(Js+ B)’
= 600,000 kg - m?,
= 20,000 N - m- sec,
1.667 x 10~6
s(s+ zn)

1.667 x 1076 K (O, — ©)

1

s(s+ %)
1.667K x 10~

s2 + 3—10.5 +1.667K x 10-6°

(©

(d)

Wn

3N

v

e ™/VI=¢ =01 (10%),

0.591.
2

wn
82 + 2Cwp s + w2’
1
30’
at &8

m = 0.0282 rad/ sec,
1.667K x 1076,
477.

1.8

1.

1.667K x 105,

304.



55. Solution
The characteristic equation is 1 + G(s)H (s) = 0:

1+——— =0 = P+k-1)s+2k=
s(s — 1) 0 7= ( )s 0

= 2w, =k —1 and w? =2k

n

a) Given ¢ = 0.5, we have (k — 1)?> = 2k which leads to k = 2 4 /3. The
solution k£ = 2 — /3 is not acceptable because it leads to an unstable
system as it is shown by the Routh array:

21 1 2k
11 k-1
0] 2k

So for the closed-loop stability & — 1 > 0. Therefore, the acceptable
stabilizing solution is k = 2 + v/3 = 3.73.

b) Based on the Routh Array, at k = 1, the system has two poles on the
imaginary axis as follows:

s+2=0 = s=+4jvV2 = w,=+V2 rad/s



58. Solution:
(a) The characteristic equation is,
s(s+1)+Ae T =0
(b) Using e~ T 21 — T's, the characteristic equation is,
?+(1-TAs+A=0

The Routh’s array is,

& w 1 A
g o 1L=TA 0
9 A

For stability we must have A > 0 and T A < 1.

i
. g pa (=% 8) — . .
Using e = %1 i) the characteristic equation is,

2 2 2
3 4\ 9 s L=
S+(1+T)s +(T A)3+TA 0

The Routh’s array is,

L HRG-H-%
(1+7)
2A
0 p oo
° T
For stability we must have all the coefficients in the first column be

positive.



62. Solution

Using the feedback rules straightforwardly gives the following solutions:

V() Gis)Gals
R(s) ~ 1+ Ga(s)Ga(s)H(5)
Yis) Gyl

Ta(s) 1+ Gi(s)Ga(s)H(s)

63. Solution

Let’s name Y7 the output of 51+—01. Therefore, we have:

10

Vils) = — < [R(s) — 2Yi(s) = Y (s)

Y(s) = Yi(s)

Replacing Yi(s) = sY (s) in the first equation gives:

SY (s) = 31+01 [R(s) — 25¥ (5) = Y (5)] = - flR(s) - %Y(s)
s*+ 38++2(1)s + 10Y(s) _ lgi(f)

which leads to:
Y(s) 10
R(s) s2+21s+10
An alternative is to move the feedback point from Y;j(s) to Y'(s). Then

we will have a new feedback block as (2s + 1). So the transfer function can
be computed by the feedback rule as:

Y (s) pum B 10

R(s) 1+ 0125+1) s2+21s+ 10

64. Solution:

In order to compute the transfer function, the following steps can be
done:

1. Move the feedback point from A(s) to Z(s), then Hz will be converted
to Hg/Gg.

10



2. Add H, and H3/G5 and compute the transfer function between W and
Z using the feedback rule:

Z(S) G1G2

G3(S) = =
W) 1466y (M + )

3. Compute the transfer function between E(s) and Z(s) as:

Z(S) . G3(S) . KG1G2
E(S) N 1—|—G3(S)H1(S> B 1—|—G1G2(H1+H2)+G1H3

G4(S) =

4. Compute the transfer function between R(s) and Y (s), using the feed-
back rule:

Y(S) . G4/S . KGlGQ/S
R(S) N 1—|—G4/S N 1—|—G1G2(H1+H2) +G1H3+KG1G2/S

65. Solution:

a) In the first step, the input of block K is moved to Y, which changes the
block to K (s + 2). In the second step, the inside closed-loop system
including the block 1/(s + 2) and the block 3 in positive feedback is
simplified to 1%(/8(??2) = L. Then in the final step, 7'(s) = Y (s)/R(s)
is computed as follows:

1 1

T(s) = Y(s) _ _Semos1 !
R(s) 1+% s(s+10)(s—1)+ K(s+ 2)

b) The closed-loop poles are the roots of the characteristic polynomial:
s(s+10)(s — 1)+ K(s+2)=5>4+9s* + (K — 10)s + 2K = 0

The Routh array is :

3 1 K —10

2 9 2K
2K —9(K —10)

1| ——— 0

0 2K

The closed-loop system is stable if
IK—-10)—2K>0 = K >90/7=12.85
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