
Solutions of Exercises of Chapter 3

10. Solution:

There are only two cases to consider.

Case (a) For the case t ≤ 0, there is no overlap between the two

functions u(t− τ) and h(τ), so the output is zero: y1(t) = 0

Case (b) For the case t > 0, the output of the system is given by:

y2(t) =

∫ t

0

h(t− τ)u(τ)dτ =

∫ t

0

2(t− τ)e−2(t−τ)(1)dτ

=

[
2(t− τ)e−2(t−τ)

2

]t
0

+ 2

∫ t

0

e−2(t−τ)

2
dτ

=

[
(t− τ)e−2(t−τ) +

e−2(t−τ)

2

]t
0

=
1

2
− te−2t − 1

2
e−2t
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27.
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35.

5



(f)

ωn =
1.8

tr
=

1.8

4
= 0.45

ω2
n = 0.02K ⇒ K ≥ (0.45)2

0.02
= 10.12
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55. Solution

The characteristic equation is 1 +G(s)H(s) = 0:

1 +
k(s+ 2)

s(s− 1)
= 0 ⇒ s2 + (k − 1)s+ 2k = 0

⇒ 2ζωn = k − 1 and ω2
n = 2k

a) Given ζ = 0.5, we have (k − 1)2 = 2k which leads to k = 2 ± √
3. The

solution k = 2 − √
3 is not acceptable because it leads to an unstable

system as it is shown by the Routh array:

2 1 2k
1 k − 1

0 2k

So for the closed-loop stability k − 1 > 0. Therefore, the acceptable

stabilizing solution is k = 2 +
√
3 = 3.73.

b) Based on the Routh Array, at k = 1, the system has two poles on the

imaginary axis as follows:

s2 + 2 = 0 ⇒ s = ±j
√
2 ⇒ ωn =

√
2 rad/s
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62. Solution

Using the feedback rules straightforwardly gives the following solutions:

Y (s)

R(s)
=

G1(s)G2(s)

1 +G1(s)G2(s)H(s)

Y (s)

Td(s)
=

G2(s)

1 +G1(s)G2(s)H(s)

63. Solution

Let’s name Y1 the output of 10
s+1. Therefore, we have:

Y1(s) =
10

s+ 1
[R(s)− 2Y1(s)− Y (s)]

Y (s) =
1

s
Y1(s)

Replacing Y1(s) = sY (s) in the first equation gives:

sY (s) =
10

s+ 1
[R(s)− 2sY (s)− Y (s)] =

10

s+ 1
R(s)− 10(2s+ 1)

s+ 1
Y (s)

s2 + s+ 20s+ 10

s+ 1
Y (s) =

10R(s)

s+ 1

which leads to:
Y (s)

R(s)
=

10

s2 + 21s+ 10

An alternative is to move the feedback point from Y1(s) to Y (s). Then

we will have a new feedback block as (2s+ 1). So the transfer function can
be computed by the feedback rule as:

Y (s)

R(s)
=

10
s+1

1
s

1 + 10
s+1

1
s(2s+ 1)

=
10

s2 + 21s+ 10

64. Solution:

In order to compute the transfer function, the following steps can be
done:

1. Move the feedback point from A(s) to Z(s), then H3 will be converted
to H3/G2.
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2. Add H2 and H3/G2 and compute the transfer function between W and
Z using the feedback rule:

G3(s) =
Z(s)

W (s)
=

G1G2

1 +G1G2

(
H2 +

H3

G2

)

3. Compute the transfer function between E(s) and Z(s) as:

G4(s) =
Z(s)

E(s)
= K

G3(s)

1 +G3(s)H1(s)
=

KG1G2

1 +G1G2(H1 +H2) +G1H3

4. Compute the transfer function between R(s) and Y (s), using the feed-
back rule:

Y (s)

R(s)
=

G4/s

1 +G4/s
=

KG1G2/s

1 +G1G2(H1 +H2) +G1H3 +KG1G2/s

65. Solution:

a) In the first step, the input of block K is moved to Y , which changes the
block to K(s + 2). In the second step, the inside closed-loop system
including the block 1/(s + 2) and the block 3 in positive feedback is

simplified to 1/(s+2)
1−3/(s+2) =

1
s−1. Then in the final step, T (s) = Y (s)/R(s)

is computed as follows:

T (s) =
Y (s)

R(s)
=

1
s(s+10)

1
s−1

1 + K(s+2)
s(s+10)(s−1)

=
1

s(s+ 10)(s− 1) +K(s+ 2)

b) The closed-loop poles are the roots of the characteristic polynomial:

s(s+ 10)(s− 1) +K(s+ 2) = s3 + 9s2 + (K − 10)s+ 2K = 0

The Routh array is :

3 1 K − 10
2 9 2K

1 −2K−9(K−10)
9 0

0 2K

The closed-loop system is stable if

9(K − 10)− 2K > 0 ⇒ K > 90/7 = 12.85
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