Solutions of Exercises of Chapter 3

10. Solution:

There are only two cases to consider.

Case (a) For the case $t \leq 0$, there is no overlap between the two functions $u(t-\tau)$ and $h(\tau)$, so the output is zero: $y_1(t)=0$

Case (b) For the case t > 0, the output of the system is given by:

$$y_2(t) = \int_0^t h(t-\tau)u(\tau)d\tau = \int_0^t 2(t-\tau)e^{-2(t-\tau)}(1)d\tau$$

$$= \left[\frac{2(t-\tau)e^{-2(t-\tau)}}{2}\right]_0^t + 2\int_0^t \frac{e^{-2(t-\tau)}}{2}d\tau$$

$$= \left[(t-\tau)e^{-2(t-\tau)} + \frac{e^{-2(t-\tau)}}{2}\right]_0^t = \frac{1}{2} - te^{-2t} - \frac{1}{2}e^{-2t}$$

17. Solution:

- (a) If we blindly compute the DC gain $G(0) = \frac{2}{-2} = -1$. This answer is **not** correct as explained in part (b). This is because the DC gain is not defined for an unstable system and the output of the system is unbounded.
- (b) $\lim_{t \to \infty} y(t) = ?$

The poles of the system are: $s^2 + s - 2 = 0 \Longrightarrow s = 1, -2$.

Since the system has an *unstable* pole, the Final Value Theorem is *not* applicable. The output is unbounded:

$$\frac{Y(s)}{R(s)} = \frac{K}{s^2 + 2s + K} = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2},$$

$$\omega_n = \sqrt{K},$$

$$\zeta = \frac{2}{2\omega_n} = \frac{1}{\sqrt{K}}.$$
 (1)

In order to have an overshoot of no more than 10%:

$$M_p = e^{-\pi\zeta/\sqrt{1-\zeta^2}} \le 0.10.$$

Solving for ζ :

$$\zeta = \sqrt{\frac{(\ln M_p)^2}{\pi^2 + (\ln M_p)^2}} \ge 0.591.$$

Using (1) and the solution for ζ :

$$K = \frac{1}{\zeta^2} \le 2.86,$$

 $\therefore 0 < K \le 2.86.$

$$\frac{Y(s)}{R(s)} = \frac{100K}{s^2 + (25+a)s + 25a + 100K} = \frac{100K}{s^2 + 2\zeta\omega_n s + \omega_n^2}.$$

Using the given information:

$$R(s) = \frac{1}{s}$$
 unit step,
 $M_p \leq 25\%$,
 $t_s \leq 0.1 \, \mathrm{sec}$.

Solve for ζ :

$$M_p = e^{-\pi\zeta/\sqrt{1-\zeta^2}},$$

$$\zeta = \sqrt{\frac{(\ln M_p)^2}{\pi^2 + (\ln M_p)^2}} \ge 0.4037.$$

Solve for ω_n :

$$e^{-\zeta \omega_n t_s} = 0.01$$
 For a 1% settling time.

$$t_s \le \frac{4.605}{\zeta \omega_n} = 0.1,$$
$$\Longrightarrow \omega_n \approx 114.07.$$

Now find a and K:

$$2\zeta\omega_n = (25+a),$$

$$a = 2\zeta\omega_n - 25 = 92.10 - 25 = 67.10,$$

$$\omega_n^2 = (25a + 100K),$$

$$K = \frac{\omega_n^2 - 25a}{100} \approx 113.34.$$

33. Solution: The equation of motion is

$$m\ddot{x} + b\dot{x} + kx = F.$$

The transfer function is

$$\frac{X(s)}{F(s)} = G(s) = \frac{\frac{1}{m}}{s^2 + \frac{b}{m}s + \frac{k}{m}}.$$

In this case

$$2G(0) = 0.1,$$

$$2\left(\frac{1}{k}\right) = 0.1,$$

$$k = 20.$$

We observe that

$$\omega_n^2 = \frac{k}{m} = \frac{20}{m}, \quad 2\zeta\omega_n = \frac{b}{m}.$$

From the plot

$$t_r = 1 \sec = \frac{1.8}{\omega_n} \Rightarrow \omega_n = 1.8 = \sqrt{\frac{20}{m}} \Rightarrow m = 6.17,$$

$$M_p = \frac{y(t_p) - y(\infty)}{y(\infty)} = (0.113 - 0.1)/0.1 \times 100\% = 13.1\% \Rightarrow \zeta = 0.543,$$

$$b = 2\zeta\omega_n m = 2(0.543)(1.8)(6.17) = 12.06.$$

$$J_m \ddot{\theta}_m + \left(b + \frac{K_t K_e}{R_a}\right) \dot{\theta}_m = \frac{K_t}{R_a} v_a.$$

(a)

$$J_m \ddot{\theta}_m s^2 + \left(b + \frac{K_t K_e}{R_a}\right) \dot{\theta}_m s = \frac{K_t}{R_a} V_a(s)$$
$$\frac{s\theta_m(s)}{V_a(s)} = \frac{\frac{K_t}{R_a J_m}}{s + \frac{b}{J_m} + \frac{K_t K_e}{R_a J_m}}.$$

$$J_m = 10 \text{ kg} \cdot \text{m}^2,$$

 $b = 1 \text{ N} \cdot \text{m} \cdot \text{sec},$
 $K_e = 2 \text{ V} \cdot \text{sec},$
 $K_t = 2 \text{ N} \cdot \text{m/A},$
 $R_a = 10\Omega$.

$$\frac{s\theta_m(s)}{V_a(s)} = \frac{0.02}{s + 0.14}.$$

(b) Final Value Theorem

$$\dot{\theta}(\infty) = \frac{s(10)(0.02)}{s(s+0.14)}|_{s=0} = \frac{0.2}{0.14} = 1.42.$$

(c)

$$rac{ heta_m(s)}{V_a(s)} = rac{0.02}{s(s+0.14)}$$
 .

(d)

$$\theta_m(s) = \frac{0.02K(\theta_r - \theta_m)}{s(s+0.14)}.$$

$$\frac{\theta_m(s)}{\theta_r(s)} = \frac{0.02K}{s^2 + 0.14s + 0.02K}.$$

$$M_p = e^{-\pi\zeta/\sqrt{1-\zeta^2}} = 0.2$$
 (20%),
 $\zeta = 0.4559$.
 $Y(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$.
 $2\zeta\omega_n = 0.14$,
 $\omega_n = \frac{0.14}{2(0.4559)} = 0.15 \text{ rad/sec}$,
 $\omega_n^2 = 0.02K$,
 $0 < K < 1.2$.

$$\omega_n = \frac{1.8}{t_r} = \frac{1.8}{4} = 0.45$$

$$\omega_n^2 = 0.02K \quad \Rightarrow \quad K \ge \frac{(0.45)^2}{0.02} = 10.12$$

$$J\ddot{\theta} + B\dot{\theta} = T_c$$

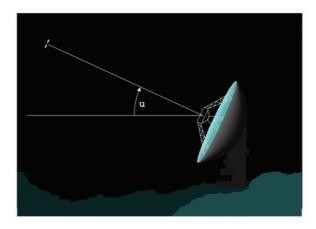


Figure 3.61: Schematic of antenna for Problem 3.36

(a) $J\Theta s^{2} + B\Theta s = T_{c}(s),$ $\frac{\Theta(s)}{T_{c}(s)} = \frac{1}{s(Js+B)},$ $J = 600,000 \text{ kg} \cdot \text{m}^{2},$ $B = 20,000 \text{ N} \cdot \text{m} \cdot \text{sec},$ $\frac{\Theta(s)}{T_{c}(s)} = \frac{1.667 \times 10^{-6}}{s(s+\frac{1}{20})}.$

(b)

$$\Theta(s) = \frac{1.667 \times 10^{-6} K(\Theta_r - \Theta)}{s(s + \frac{1}{30})}, \qquad \omega_n \geq \frac{1.8}{t_r},$$

$$\frac{\Theta(s)}{\Theta_r(s)} = \frac{1.667 K \times 10^{-6}}{s^2 + \frac{1}{30} s + 1.667 K \times 10^{-6}}. \qquad \omega_n^2 = 1.667 K \times 10^{-6},$$

$$K \geq 304.$$

(c) $M_p = e^{-\pi\zeta/\sqrt{1-\zeta^2}} = 0.1 \qquad (10\%),$ $\zeta = 0.591.$ $Y(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2},$ $2\zeta\omega_n = \frac{1}{30},$ $\omega_n = \frac{\frac{1}{30}}{2(0.591)} = 0.0282 \text{ rad/sec},$ $\omega_n^2 = 1.667K \times 10^{-6},$ K < 477.(d) $\omega_n \geq \frac{1.8}{t_r},$ $\omega_n^2 = 1.667K \times 10^{-6},$ $\kappa > 304$

The characteristic equation is 1 + G(s)H(s) = 0:

$$1 + \frac{k(s+2)}{s(s-1)} = 0 \quad \Rightarrow \quad s^2 + (k-1)s + 2k = 0$$
$$\Rightarrow 2\zeta\omega_n = k - 1 \quad \text{and} \quad \omega_n^2 = 2k$$

a) Given $\zeta = 0.5$, we have $(k-1)^2 = 2k$ which leads to $k = 2 \pm \sqrt{3}$. The solution $k = 2 - \sqrt{3}$ is not acceptable because it leads to an unstable system as it is shown by the Routh array:

$$\begin{array}{c|cccc}
2 & 1 & 2k \\
1 & k-1 & \\
0 & 2k & \\
\end{array}$$

So for the closed-loop stability k-1>0. Therefore, the acceptable stabilizing solution is $k=2+\sqrt{3}=3.73$.

b) Based on the Routh Array, at k = 1, the system has two poles on the imaginary axis as follows:

$$s^2 + 2 = 0 \implies s = \pm j\sqrt{2} \implies \omega_n = \sqrt{2} \text{ rad/s}$$

(a) The characteristic equation is,

$$s(s+1) + Ae^{-Ts} = 0$$

(b) Using $e^{-Ts} \cong 1 - Ts$, the characteristic equation is,

$$s^2 + (1 - TA)s + A = 0$$

The Routh's array is,

For stability we must have A > 0 and TA < 1.

Using $e^{-Ts} \cong \frac{(1-\frac{T}{2}s)}{(1+\frac{T}{2}s)}$, the characteristic equation is,

$$s^{3} + \left(1 + \frac{2}{T}\right)s^{2} + \left(\frac{2}{T} - A\right)s + \frac{2}{T}A = 0$$

The Routh's array is,

$$s^{3}$$
 : 1 $\left(\frac{2}{T} - A\right)$
 s^{2} : $\left(1 + \frac{2}{T}\right)$ $\frac{2A}{T}$
 s^{1} : $\frac{\left(1 + \frac{2}{T}\right)\left(\frac{2}{T} - A\right) - \frac{2A}{T}}{\left(1 + \frac{2}{T}\right)}$ 0
 s^{0} : $\frac{2A}{T}$

For stability we must have all the coefficients in the first column be positive.

Using the feedback rules straightforwardly gives the following solutions:

$$\frac{Y(s)}{R(s)} = \frac{G_1(s)G_2(s)}{1 + G_1(s)G_2(s)H(s)}$$
$$\frac{Y(s)}{T_d(s)} = \frac{G_2(s)}{1 + G_1(s)G_2(s)H(s)}$$

63. Solution

Let's name Y_1 the output of $\frac{10}{s+1}$. Therefore, we have:

$$Y_1(s) = \frac{10}{s+1} [R(s) - 2Y_1(s) - Y(s)]$$
$$Y(s) = \frac{1}{s} Y_1(s)$$

Replacing $Y_1(s) = sY(s)$ in the first equation gives:

$$sY(s) = \frac{10}{s+1} [R(s) - 2sY(s) - Y(s)] = \frac{10}{s+1} R(s) - \frac{10(2s+1)}{s+1} Y(s)$$
$$\frac{s^2 + s + 20s + 10}{s+1} Y(s) = \frac{10R(s)}{s+1}$$

which leads to:

$$\frac{Y(s)}{R(s)} = \frac{10}{s^2 + 21s + 10}$$

An alternative is to move the feedback point from $Y_1(s)$ to Y(s). Then we will have a new feedback block as (2s + 1). So the transfer function can be computed by the feedback rule as:

$$\frac{Y(s)}{R(s)} = \frac{\frac{10}{s+1} \frac{1}{s}}{1 + \frac{10}{s+1} \frac{1}{s} (2s+1)} = \frac{10}{s^2 + 21s + 10}$$

64. Solution:

In order to compute the transfer function, the following steps can be done:

1. Move the feedback point from A(s) to Z(s), then H_3 will be converted to H_3/G_2 .

2. Add H_2 and H_3/G_2 and compute the transfer function between W and Z using the feedback rule:

$$G_3(s) = \frac{Z(s)}{W(s)} = \frac{G_1 G_2}{1 + G_1 G_2 \left(H_2 + \frac{H_3}{G_2}\right)}$$

3. Compute the transfer function between E(s) and Z(s) as:

$$G_4(s) = \frac{Z(s)}{E(s)} = K \frac{G_3(s)}{1 + G_3(s)H_1(s)} = \frac{KG_1G_2}{1 + G_1G_2(H_1 + H_2) + G_1H_3}$$

4. Compute the transfer function between R(s) and Y(s), using the feedback rule:

$$\frac{Y(s)}{R(s)} = \frac{G_4/s}{1 + G_4/s} = \frac{KG_1G_2/s}{1 + G_1G_2(H_1 + H_2) + G_1H_3 + KG_1G_2/s}$$

65. Solution:

a) In the first step, the input of block K is moved to Y, which changes the block to K(s+2). In the second step, the inside closed-loop system including the block 1/(s+2) and the block 3 in positive feedback is simplified to $\frac{1/(s+2)}{1-3/(s+2)} = \frac{1}{s-1}$. Then in the final step, T(s) = Y(s)/R(s) is computed as follows:

$$T(s) = \frac{Y(s)}{R(s)} = \frac{\frac{1}{s(s+10)} \frac{1}{s-1}}{1 + \frac{K(s+2)}{s(s+10)(s-1)}} = \frac{1}{s(s+10)(s-1) + K(s+2)}$$

b) The closed-loop poles are the roots of the characteristic polynomial:

$$s(s+10)(s-1) + K(s+2) = s^3 + 9s^2 + (K-10)s + 2K = 0$$

The Routh array is:

The closed-loop system is stable if

$$9(K-10) - 2K > 0 \implies K > 90/7 = 12.85$$