
Solutions of Written Exercise 1

Control Systems

Solution of Exercise 1:

Compute the transfer function of the system :

Kirchhoff’s voltage law :

v1(t)− va(t) = L
di1(t)

dt

va(t)− v2(t) = L
dia(t)

dt

Kirchhoff’s current law at Va and V2:

i1(t) = ia(t) + C
dva(t)

dt

ia(t) = C
dv2(t)

dt

Taking the Laplace transform gives:

V1(s)− Va(s) = LsI1(s)

Va(s)− V2(s) = LsIa(s)

I1(s) = Ia(s) + CsVa(s)

Ia(s) = CsV2(s)
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Eliminating I1(s) and Ia(s) gives:

V1(s)− Va(s) = LCs2[Va(s) + V2(s)]

Va(s)− V2(s) = LCs2V2(s)

Then eliminating Va(s) gives the transfer function:

V2(s)

V1(s)
=

1

1 + 3LCs2 + L2C2s4

Solution of Exercise 2:

Solution of Exercise 3:

The Kirchhoff’s voltage law for the DC motor gives:

um(t) = Rmim(t) +Kmθ̇(t)

The electrical generated torque is equal to the mechanical torque:

Jθ̈(t) = Kmim(t) = Km
um(t)−Kmθ̇(t)

Rm
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Taking the Laplace transform from the above equations gives:

JRms2Θ(s) = KmUm(s)−K2
msΘ(s)

Which leads to

Θ(s) =
Km

s(JRms+K2
m)

Um(s)

On the other hand the dynamic equation of the tank is:

Aḣ(t) = αθ(t) − βh(t)

Taking the Laplace transform gives:

AsH(s) = αΘ(s)− βH(s)

Therefore:

Q(s) = βH(s) =
αβ

As+ β
Θ(s)

So the the transfer function between the motor voltage and the output flow rate
is:

Q(s)

Um(s)
=

αβKm

s(As+ β)(JRms+K2
m)

Solution of Exercise 4:

Note: The above solution is wrong. The correct response is:

X(s)

I(s)
=

gk/J

s3(s+ b/m)
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Solution of Exercise 5:

Solution of Exercise 6:

4



Solution of Exercise 7:

1. The nonlinear equations of the system are given by:

v(t) = L
di(t)

dt
+Ri(t)

mg − k

(
i(t)

x(t)

)2

= m
d2x(t)

dt2

2. The second term of the above equation is nonlinear and can be linearized
by a Taylor series approximation:

f(t) ≈ f0 +
df(t)

di

∣∣∣∣
i=i0,x=x0

(i(t)− i0) +
df(t)

dx

∣∣∣∣
i=i0,x=x0

(x(t) − x0)

≈ k

(
i0
x0

)2

+
2ki0
x2
0

(i(t)− i0) +
−2ki20
x3
0

(x(t)− x0)

Then we define new variables ∆i(t) = i(t) − i0, ∆x(t) = x(t) − x0 and
∆v(t) = v(t)− v0. With these new variables, the first equation becomes:

∆v(t) + v0 = L
d∆i(t)

dt
+R∆i(t) +Ri0

Since in equilibrium, we have v0 = Ri0, we obtain:

∆v(t) = L
d∆i(t)

dt
+R∆i(t)

In the same way, for the second equation we have:

mg − k

(
i0
x0

)2

− 2ki0
x2
0

∆i(t)− −2ki20
x3
0

∆x(t) = m
d2∆x(t)

dt2

In equilibrium we have mg = ki20/x
2
0 which leads to the following linear

equation:

−2ki0
x2
0

∆i(t) +
2ki20
x3
0

∆x(t) = m
d2∆x(t)

dt2

3. Let’s define the Laplace transform of ∆i(t),∆x(t) and ∆v(t) respectively
I(s), X(s) and V (s). Therefore, by taking the Laplace transform of the
linearized equations, we obtain:

V (s) = LsI(s) +RI(s)

− 2ki0
x2
0

I(s) +
2ki20
x3
0

X(s) = ms2X(s)

From the first equation we compute I(s) = V (s)
Ls+R and replace it in the

second equation to find:

−2ki0V (s)

x2
0(Ls+R)

=

(
ms2 − 2ki20

x3
0

)
X(s) ⇒ X(s)

V (s)
=

−2ki0x0

(Ls+R)(x3
0ms2 − 2ki20)

5


