Exercises of Chapter 7
State-Space Methods

7. Show that the transfer function is not changed by a linear transformation of state.
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with zero initial conditions, find the steady-state value of x for a step input wu.

15. Given the system,

16. Consider the system shown in Fig. 7.85:

a) Find the transfer function from U to Y.
b) Write state equations for the system using the state variables indicated.

.
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Figure 7.85 : Block diagram of the system in problem 7.16

22. For the system,
. 0 1 0
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g = [ 1 0 } X;
design a state feedback controller that satisfies the following specifications:

e Closed-loop poles have a damping coefficient { = 0.707.

e Step-response peak time is under 3.14 sec.



25. Consider the system in Fig. 7.87.
a) Write a set of equations that describes this system in the control canonical form as x =
Ax + Bu and y = Cx.
b) Design a control law of the form,

w=—| Ky KQ]H;],

which will place the closed-loop poles at s = —2 + 2j.
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Figure 7.87. System for Problem 7.25.

34. Consider the system

ae [ 4] 3= [} =0

and assume that you are using feedback of the form v = —Kx + r, where r is a reference input
signal.

a) Show that (A,C) is observable.

b) Show that there exists a K such that (A — BK,C) is unobservable.

¢) Compute a K of the form K = [1, K] that will make the system unobservable as in part (b);
that is, find K5 so that the closed-loop system is not observable.

d) Compare the open-loop transfer function with the transfer function of the closed-loop system
of part (c). What is the unobservability due to?

37. Consider the electric circuit shown in Fig. 7.90.
a) Write the internal (state) equations for the circuit. The input u(t) is a current, and the
output y is a voltage. Let x1 = iy and z3 = v,.
b) What condition(s) on R, L, and C will guarantee that the system is controllable?
¢) What condition(s) on R, L, and C will guarantee that the system is observable?

Figure 7.90: Electric circuit for Problem 7.37.



46.

48.

The linearized equations of motion of the simple pendulum in Fig. 7.96 are

0 4+ w20 = u.

a) Write the equations of motion in state-space form.

b) Design an estimator (observer) that reconstructs the state of the pendulum given measure-
ments of 6. Assume w =5 rad/sec, and pick the estimator roots to be at s = —10 = 105.

¢) Write the transfer function of the estimator between the measured value of § and the esti-
mated value of §.

d) Design a controller (that is, determine the state feedback gain K) so that the roots of the
closed-loop characteristic equation are at s = —4 4 45.

Figure 7.96: Pendulum diagram for Problem 7.46.

A certain process has the transfer function G(s) = 4/(s? — 4).

a) Find A, B, and C for this system in observer canonical form.

b) If u = —Kx, compute K so that the closed-loop control poles are located at s = —2 + 2j.
¢) Compute L so that the estimator-error poles are located at s = —10 =+ 107.

d) Give the transfer function of the resulting controller (for example, using Eq. (7.177)).

e) What are the gain and phase margins of the controller and the given open-loop system?

51. Consider the control of

_Y(s) 10
T U(s) s(s+1)

G(s)

a) Let y = z; and #; = z2, and write state equations for the system.

b) Find K; and K> so that u = — K21 — Koz yields closed-loop poles with a natural frequency
wp = 3 and a damping ratio ¢ = 0.5.

c¢) Design a state estimator for the system that yields estimator error poles with w,; = 15 and
Cl = 0.5.

d) What is the transfer function of the controller obtained by combining parts (a) through (c)?



58. Consider a system with state matrices,

A:[_g _é],B:[H,C:[l 51

a) Use feedback of the form u(t) = —Kx(t) + Nr(t), where N is a nonzero scalar, to move the
poles to —3 £ 3j.

b) Choose N so that if r is a constant, the system has zero steady-state error; that is yloo) = .
c¢) Show that if A changes to A+ 6A, where JA is an arbitrary 2 x 2 matrix, then your choice of
N in part (b) will no longer make y(co) = r. Therefore, the system is not robust under changes
to the system parameters in A.

d) The system steady-state error performance can be made robust by augmenting the system
with an integrator and using unity feedback; that is, by setting £; = r — y, where x; is the state
of the integrator. To see this, first use state feedback of the form u = —Kx — Kjz; so that the
poles of the augmented system are at —3, —2 =+ j+/3.

e) Show that the resulting system will yield y(oc0) = r no matter how the matrices A and B
are changed, as long as the closed-loop system remains stable.

60. Consider the following system :

S+«

G(s) =

52
1. Give a state-space model of the system in control canonical form. Is this re-
presentation observable for all a?

2. Compute a state feedback controller, K, using the LQR method with @) =TI
and R = 1.

3. Compute a state observer, L, with o = 1 to place all observer poles at -3.

61. Given the following system :

s+ 10
52

G(s) =

a) Compute a state feedback controller with integral action, K, such that the closed-
loop poles are all at -2. This controller gives a zero tracking error e(t) =
r(t) — y(t) for a step signal r(t).

b) Assuming that all states are measured, determine a state space representation
for the closed-loop system :
— between the output disturbance w(t) and the output y(t) = Cx(t) + w(t).
— between r(t) and u(t).



