State Space Methods

Control Systems

Fall 2024

Analysis and synthesis of feedback control systems

Transform Methods (classical control)

- Use Laplace transform (or Z-transform) for analysis and synthesis.
- The plant and the controller are represented by transfer functions.
- The closed-loop performance are defined in the frequency domain (bandwidth, gain margin, phase margin, modulus margin, desired open-loop transfer function, reference model, etc.)
- Appropriate for industrial PID controller design.

State-Space Methods (modern control)

- Use the state space for analysis and synthesis.
- The plant model and the controller are represented in the state space.
- The closed-loop performance is defined in time-domain.
- It is appropriate for multi-input multi-output systems.
- It can be used for nonlinear systems.

Outline

State-Space Models

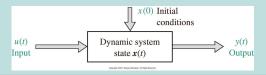
- State-space model of physical systems
- From transfer function to state-space model
- Controllability and observability
- From state-space model to transfer function
- Stability of state-space models

Full-State Feedback Control

- Pole Placement design
- Linear Quadratic Regulator design
- Introducing the reference signal
- Integral control
- Estimator (Observer) Design
- Combining Control and Observer Design

State

The state of a system is a set of variables whose values, together with the input signals and the equations describing the dynamics, will provide the future state and output of the system.



Example

- For mass-spring-damper systems, the states are usually the position and the velocity of the mass.
- For RLC circuits, the states are the capacitor voltage and the inductor current.
- In general, in a dynamic system represented by a differential equation, the initial conditions are related to the state variables.

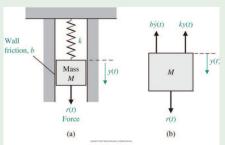
Example (Mass-Spring-Damper)

$$r(t) = Ma(t) + bv(t) + ky(t)$$

States:

$$x_1(t) = y(t)$$

$$x_2(t) = v(t)$$



State-Space Equations : Keep the derivative of the states in one side.

$$\dot{x}_1(t) = x_2(t)$$
 $\dot{x}_2(t) = -\frac{k}{M}x_1(t) - \frac{b}{M}x_2(t) + \frac{1}{M}r(t)$
 $y(t) = x_1(t)$

Matrix form of state-space equations

The state space equations can be represented in matrix form as :

$$\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}u(t)$$

 $y(t) = \mathbf{C}\mathbf{x}(t) + Du(t)$

where $\mathbf{x}(t) \in \mathbb{R}^{n \times 1}$ is the state vector, $\mathbf{A} \in \mathbb{R}^{n \times n}$ is the state matrix, $\mathbf{B} \in \mathbb{R}^{n \times 1}$, $\mathbf{C} \in \mathbb{R}^{1 \times n}$.

Example

The state-space equations for the mass-spring-damper is given as :

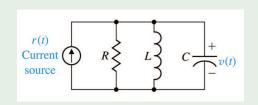
$$\begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ \frac{-k}{M} & \frac{-b}{M} \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{1}{M} \end{bmatrix} r(t)$$
$$y(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}$$

Example (RLC Circuit)

$$r(t) = \frac{1}{R}v(t) + C\frac{dv(t)}{dt} + i_L(t)$$

States:

$$x_1(t) = v(t)$$
$$x_2(t) = i_1(t)$$



State-Space Equations : Keep the derivative of the states in one side.

$$\dot{x}_1(t) = -\frac{1}{RC}x_1(t) - \frac{1}{C}x_2(t) + \frac{1}{C}r(t)
\dot{x}_2(t) = \frac{1}{L}x_1(t)
y(t) = x_1(t)$$

$$\mathbf{A} = \begin{bmatrix} \frac{-1}{RC} & \frac{-1}{C} \\ \frac{1}{L} & 0 \end{bmatrix} \quad \mathbf{B} = \begin{bmatrix} \frac{1}{C} \\ 0 \end{bmatrix}$$

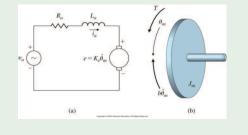
$$\mathbf{C} = \begin{bmatrix} 1 & 0 \end{bmatrix} \quad D = 0$$

Example (DC Motor)

$$egin{aligned} v_a &= R_a \dot{i}_a + L_a rac{d i_a}{d t} + K_e \dot{ heta}_m \ K_t \dot{i}_a &= J_m \ddot{ heta}_m + b \dot{ heta}_m \end{aligned}$$

States:

$$\mathbf{x}(t) = \begin{bmatrix} \theta_m(t) & \omega_m(t) & i_a(t) \end{bmatrix}^T$$



State-Space Equations:

$$\dot{x}_{1}(t) = x_{2}(t)
\dot{x}_{2}(t) = -\frac{b}{J_{m}}x_{2}(t) + \frac{K_{t}}{J_{m}}x_{3}(t)
\dot{x}_{3}(t) = -\frac{K_{e}}{L_{a}}x_{2}(t) - \frac{R_{a}}{L_{a}}x_{3}(t) + \frac{1}{L_{a}}v_{a}(t)
y(t) = x_{1}(t)$$

$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & \frac{-b}{J_{m}} & \frac{K_{t}}{J_{m}} \\ 0 & \frac{-K_{e}}{L_{a}} & \frac{-R_{a}}{L_{a}} \end{bmatrix} \quad \mathbf{B} = \begin{bmatrix} 0 \\ 0 \\ \frac{1}{L_{a}} \end{bmatrix}$$

$$\mathbf{C} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \quad D = 0$$

$$\mathbf{A} = \left[egin{array}{cccc} 0 & 1 & 0 \ 0 & rac{-b}{J_m} & rac{k}{J_m} \ 0 & rac{-K_e}{L_a} & rac{-L}{L_m} \end{array}
ight.$$

$$\mathbf{B} = \begin{bmatrix} 0 \\ \frac{1}{2} \end{bmatrix}$$

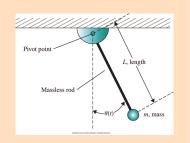
$$D = 0$$

Exercise

For a simple pendulum, the linearized equation of motion is :

$$\ddot{\theta}(t) + \frac{g}{L}\theta(t) + \frac{k}{m}\dot{\theta}(t) = 0$$

Obtain a state space representation (output is $\theta(t)$).



(A)
$$A = \begin{bmatrix} 0 & 1 \\ -g/L & -k/m \end{bmatrix}$$
 $B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ $C = \begin{bmatrix} 0 & 1 \end{bmatrix}$
(B) $A = \begin{bmatrix} 0 & 0 \\ g/L & k/m \end{bmatrix}$ $B = 0$ $C = \begin{bmatrix} 0 & 1 \end{bmatrix}$
(C) $A = \begin{bmatrix} 0 & 1 \\ -g/L & -k/m \end{bmatrix}$ $B = 0$ $C = \begin{bmatrix} 1 & 0 \end{bmatrix}$
(D) $A = \begin{bmatrix} 0 & 1 \\ -g/L & -k/m \end{bmatrix}$ $B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ $C = \begin{bmatrix} 1 & 0 \end{bmatrix}$

Example (From TF model to SS model)

Consider the following transfer function:

$$G(s) = \frac{Y(s)}{U(s)} = \frac{6}{s^3 + 6s^2 + 11s + 6}$$

Find a state-space equivalent representation of G(s).

Solution : We have : $\ddot{y} + 6\ddot{y} + 11\dot{y} + 6y = 6u$. Let's take $x_1 = \ddot{y}, x_2 = \dot{y}$ and $x_3 = y$. Then :

$$\dot{x}_1 = -6x_1 - 11x_2 - 6x_3 + 6u
\dot{x}_2 = x_1
\dot{x}_3 = x_2
y = x_3$$

$$\mathbf{A} = \begin{bmatrix} -6 & -11 & -6 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \quad \mathbf{B} = \begin{bmatrix} 6 \\ 0 \\ 0 \end{bmatrix}$$
$$\mathbf{C} = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \qquad D = 0$$

Example (From TF model to SS model)

Find a state-space equivalent representation of G(s).

$$G(s) = \frac{Y(s)}{U(s)} = \frac{s+2}{s^2+7s+12}$$

Solution:

$$\Rightarrow Y(s) = \frac{sU(s)}{s^2 + 7s + 12} + \frac{2U(s)}{s^2 + 7s + 12} = sY_1(s) + 2Y_1(s)$$

We have : $\ddot{y}_1+7\dot{y}_1+12y_1=u$. Let's take $x_1=\dot{y}_1,x_2=y_1$. Therefore, $y=\dot{y}_1+2y_1=x_1+2x_2$

$$\dot{x}_1 = -7x_1 - 12x_2 + u$$
 $\dot{x}_2 = x_1$
 $y = x_1 + 2x_2$

$$\mathbf{A} = \begin{bmatrix} -7 & -12 \\ 1 & 0 \end{bmatrix} \qquad \mathbf{B} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
$$\mathbf{C} = \begin{bmatrix} 1 & 2 \end{bmatrix} \qquad D = 0$$

Control Canonical Form

The state space representation of the following transfer function

$$G(s) = \frac{b_1 s^{n-1} + b_2 s^{n-2} + \dots + b_n}{s^n + a_1 s^{n-1} + a_2 s^{n-2} + \dots + a_n}$$

in control canonical form is given by :

$$\mathbf{A}_{c} = \begin{bmatrix} -a_{1} & -a_{2} & \cdots & \cdots & -a_{n} \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ \vdots & & \ddots & 0 & \vdots \\ 0 & \cdots & \cdots & 1 & 0 \end{bmatrix} \qquad \mathbf{B}_{c} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$
$$\mathbf{C}_{c} = \begin{bmatrix} b_{1} & b_{2} & \cdots & \cdots & b_{n} \end{bmatrix} \qquad D_{c} = 0$$

Example (Modal Form)

Find a state-space equivalent representation of G(s) in Modal Form :

$$G(s) = \frac{Y(s)}{U(s)} = \frac{s+2}{s^2+7s+12} = \frac{2}{s+4} + \frac{-1}{s+3}$$

$$\Rightarrow Y(s) = \frac{2U(s)}{s+4} + \frac{-U(s)}{s+3} = 2Y_1(s) - Y_2(s)$$

We have : $\dot{y}_1=-4y_1+u$ and $\dot{y}_2=-3y_2+u$. Let's take $x_1=y_1$ and $x_2=y_2$. Therefore, $y=2x_1-x_2$.

$$\dot{x}_1 = -4x_1 + u
\dot{x}_2 = -3x_2 + u
y = 2x_1 - x_2$$

$$\mathbf{A}_m = \begin{bmatrix} -4 & 0 \\ 0 & -3 \end{bmatrix} \qquad \mathbf{B}_m = \begin{bmatrix} 1 \\ 1 \end{bmatrix}
\mathbf{C}_m = \begin{bmatrix} 2 & -1 \end{bmatrix} \qquad D_m = 0$$

Remark: \mathbf{A}_m is a diagonal matrix of the poles of G(s), \mathbf{B}_m is a column vector of all 1, \mathbf{C}_m is a row vector of the poles' residues and $D_m = 0$.

Example (From TF model to SS model)

Find another state-space equivalent representation of G(s).

$$G(s) = \frac{Y(s)}{U(s)} = \frac{s+2}{s^2+7s+12}$$

Solution:

$$\Rightarrow s^{2}Y(s) = s[U(s) - 7Y(s)] + [2U(s) - 12Y(s)]$$
$$\Rightarrow sY(s) = [U(s) - 7Y(s)] + \frac{1}{s}[2U(s) - 12Y(s)]$$

Let's take $x_1 = y$ and $\dot{x}_2 = 2u - 12y$. Therefore, $\dot{y} = u - 7y + x_2$.

$$\dot{x}_1 = -7x_1 + x_2 + u
\dot{x}_2 = -12x_1 + 2u
y = x_1$$

$$\mathbf{A}_o = \begin{bmatrix} -7 & 1 \\ -12 & 0 \end{bmatrix}
\mathbf{B}_o = \begin{bmatrix} 1 \\ 2 \end{bmatrix}
\mathbf{C}_o = \begin{bmatrix} 1 & 0 \end{bmatrix}
D_o = 0$$

Observer Canonical Form

The state space representation of the following transfer function

$$G(s) = \frac{b_1 s^{n-1} + b_2 s^{n-2} + \dots + b_n}{s^n + a_1 s^{n-1} + a_2 s^{n-2} + \dots + a_n}$$

in observer canonical form is given by :

$$\mathbf{A}_{o} = \begin{bmatrix} -a_{1} & 1 & 0 & \cdots & 0 \\ -a_{2} & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ -a_{n-1} & 0 & \cdots & \cdots & 1 \\ -a_{n} & 0 & \cdots & \cdots & 0 \end{bmatrix} \qquad \mathbf{B}_{o} = \begin{bmatrix} b_{1} \\ b_{2} \\ \vdots \\ \vdots \\ b_{n} \end{bmatrix}$$

$$\mathbf{C}_{o} = \begin{bmatrix} 1 & 0 & \cdots & \cdots & 0 \end{bmatrix} \qquad D_{o} = 0$$

Exercise

Find a state-space representation for : $G(s) = \frac{K}{\tau s + 1}$.

(A)
$$A = -1/\tau$$
 $B = K$ $C = 1$ $D = 0$

(B)
$$A = -\tau$$
 $B = K$ $C = 1$ $D = 0$

(C)
$$A = 1/\tau$$
 $B = K/\tau$ $C = 1$ $D = 0$

(D)
$$A = -1/\tau$$
 $B = 1$ $C = K/\tau$ $D = 0$

Exercise

Find a state-space representation for : $G(s) = \frac{s+1}{s+2}$

(A)
$$A = -2$$
 $B = 1$ $C = 1$ $D = 0$

(B)
$$A = -2$$
 $B = -1$ $C = 1$ $D = 1$

(C)
$$A = -2$$
 $B = 1$ $C = -1$ $D = 0$

(D)
$$A = -2$$
 $B = 1$ $C = 1$ $D = 1$

Similarity Transformation

- State-space representation of a system is not unique.
- Some representations (e.g. modal, control or observer canonical forms) can be easily obtained from the system transfer function.
- All representations are related by a state transformation. If \mathbf{x} is the state vector of a system then $\mathbf{z} = \mathbf{T}\mathbf{x}$ is also a state vector of the system where $\mathbf{T} \in \mathbb{R}^{n \times n}$ is a nonsingular matrix.

$$\dot{\mathbf{z}} = \mathbf{T}\dot{\mathbf{x}} = \mathbf{T}\mathbf{A}\mathbf{x} + \mathbf{T}\mathbf{B}u = \mathbf{T}\mathbf{A}\mathbf{T}^{-1}\mathbf{z} + \mathbf{T}\mathbf{B}u$$

$$y = \mathbf{C}\mathbf{x} + Du = \mathbf{C}\mathbf{T}^{-1}\mathbf{z} + Du$$

Therefore, if (A, B, C, D) is a state-space model of a system then $(TAT^{-1}, TB, CT^{-1}, D)$ is also a state-space model for the same system.

Controllability

A state-space model is completely controllable if there is a control signal u(t) that can transfer any initial state $\mathbf{x}(0)$ to any other desired location $\mathbf{x}(t)$ in a finite time. For a controllable system the controllability matrix $\mathcal C$ is nonsingular.

Observability

A state-space model is completely observable if the initial state $\mathbf{x}(0)$ can be determined from the observation history y(t) in a finite time, given the control u(t). For an observable system, the observability matrix \mathcal{O} is nonsingular.

$$\mathcal{O} = \begin{bmatrix} \mathbf{C} \\ \mathbf{C}\mathbf{A} \\ \vdots \\ \mathbf{C}\mathbf{A}^{n-1} \end{bmatrix}$$

Remark : Control canonical form is always *controllable* and observer canonical form is always *observable*.

Example

Is the following state-space model controllable and observable?

$$\mathbf{A} = \begin{bmatrix} -7 & 1 \\ -12 & 0 \end{bmatrix} \qquad \mathbf{B} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \qquad \mathbf{C} = \begin{bmatrix} 1 & 0 \end{bmatrix}$$

Solution : We compute the controllability and observability matrices :

$$\mathcal{C} = \begin{bmatrix} \mathbf{B} & \mathbf{AB} \end{bmatrix} = \begin{bmatrix} 1 & -5 \\ 2 & -12 \end{bmatrix} \quad \Rightarrow \quad \det[\mathcal{C}] = -2 \neq 0$$

$$\mathcal{O} = \left[egin{array}{c} \mathbf{C} \\ \mathbf{CA} \end{array}
ight] = \left[egin{array}{c} 1 & 0 \\ -7 & 1 \end{array}
ight] \quad \Rightarrow \quad \mathsf{det}[\mathcal{O}] = 1
eq 0$$

The state-space model is controllable and observable.

Exercise

Consider the system

$$\begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & -4 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} 0 \\ 2 \end{bmatrix} u(t)$$
$$y(t) = \begin{bmatrix} 0 & 2 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}$$

The system is:

- (A) Controllable, observable
- (B) Not Controllable, not observable
- (C) Controllable, not observable
- (D) Not Controllable, observable

From SS model to TF model

Given the following state-space model, find the transfer function of the system.

$$\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}u(t)$$
 $y(t) = \mathbf{C}\mathbf{x}(t) + Du(t)$

Taking the Laplace transform (assuming zero initial condition), we obtain :

$$sX(s) = AX(s) + BU(s) \Rightarrow (sI - A)X(s) = BU(s)$$

Therefore, $\mathbf{X}(s) = (s\mathbf{I} - \mathbf{A})^{-1}\mathbf{B}U(s)$ and the output is :

$$Y(s) = \mathbf{CX}(s) + DU(s) = \mathbf{C}(s\mathbf{I} - \mathbf{A})^{-1}\mathbf{B}U(s) + DU(s)$$

The transfer function of the system is :

$$G(s) = \frac{Y(s)}{U(s)} = \mathbf{C}(s\mathbf{I} - \mathbf{A})^{-1}\mathbf{B} + D := \begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & D \end{bmatrix}$$

Example (From SS model to TF model)

Find the transfer function of the following state-space model :

$$\mathbf{A} = \begin{bmatrix} -7 & 1 \\ -12 & 0 \end{bmatrix} \qquad \mathbf{B} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \qquad \mathbf{C} = \begin{bmatrix} 1 & 0 \end{bmatrix} \qquad D = 0$$

Solution:

$$s\mathbf{I} - \mathbf{A} = \begin{bmatrix} s+7 & -1 \\ 12 & s \end{bmatrix} \quad \Rightarrow \quad (s\mathbf{I} - \mathbf{A})^{-1} = \frac{\begin{bmatrix} s & 1 \\ -12 & s+7 \end{bmatrix}}{s(s+7)+12}$$

Since $G(s) = \mathbf{C}(s\mathbf{I} - \mathbf{A})^{-1}\mathbf{B} + D$, we compute

$$G(s) = \frac{\left[\begin{array}{ccc} 1 & 0 \end{array}\right] \left[\begin{array}{ccc} s & 1 \\ -12 & s+7 \end{array}\right] \left[\begin{array}{c} 1 \\ 2 \end{array}\right]}{s^2 + 7s + 12} = \frac{\left[\begin{array}{ccc} s & 1 \end{array}\right] \left[\begin{array}{c} 1 \\ 2 \end{array}\right]}{s^2 + 7s + 12} = \frac{s+2}{s^2 + 7s + 12}$$

Exercise

For the following state-space model

$$\dot{\mathbf{x}}(t) = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & -5 \end{bmatrix} \mathbf{x}(t) + \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} u(t) \qquad y(t) = \begin{bmatrix} 1 & 2 & -1 \end{bmatrix} \mathbf{x}(t)$$

Find the transfer function model G(s) between U(s) and Y(s).

(A)
$$G(s) = \frac{5s^2 + 32s + 35}{s^3 + 9s^2 + 23s + 15}$$
 (B) $G(s) = \frac{5s^2 + 32s + 35}{s^4 + 9s^2 + 23s + 15}$

(C)
$$G(s) = \frac{2s^2 + 16s + 22}{s^3 + 9s^2 + 23s + 15}$$
 (D) $G(s) = \frac{5s + 32}{s^2 + 32s + 9}$

Time- and Frequency-Domain Analysis

By converting the state-space model to a transfer function using

$$G(s) = \mathbf{C}(s\mathbf{I} - \mathbf{A})^{-1}\mathbf{B} + D$$

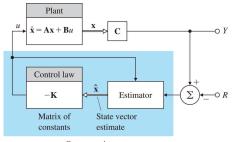
the response of the system to any input can be analysed.

Stability

- The poles of G(s) are the roots of $det(s\mathbf{I} \mathbf{A}) = 0$.
- The eigenvalues of **A** are the roots of $det(\lambda \mathbf{I} \mathbf{A}) = 0$. Therefore, the eigenvalues of **A** are the poles of G(s).

A state-space model is stable if the eigenvalues of **A** are all in the LHP.

Feedback Control of State-Space Models



Compensation
Copyright GOODS Present Education, All Rights Reserved

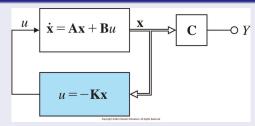
Design a state feedback controller assuming all states are measurable.

$$u = -\mathbf{K}\mathbf{x} = -\begin{bmatrix} K_1 & K_2 & \cdots & K_n \end{bmatrix} \begin{vmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{vmatrix}$$

- Design a state estimator or observer.
- Combine the state estimator and the state feedback $u = -\mathbf{K}\hat{\mathbf{x}}$.

State Feedback Controller

State feedback for autonomous operation



- We assume that all states are measurable.
- We assume that the system is in autonomous mode, i.e., there is no reference and disturbance input.
- We should compute the feedback gain **K** such that we have *good* closed-loop dynamics. Two approaches are investigated :
 - Pole Placement
 - Optimal Control

State Feedback Controller

Closed-loop Pole Placement

- The closed-loop modes are related to the place of closed-loop poles.
- Good closed-loop dynamics can be achieved by assigning the desired closed-loop poles.

Closed-loop state-space model : Using a state feedback controller $u = -\mathbf{K}\mathbf{x}$ the closed-loop state space model can be computed (assuming D = 0):

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}u$$
 $y = \mathbf{C}\mathbf{x}$
 $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} - \mathbf{B}\mathbf{K}\mathbf{x} = (\mathbf{A} - \mathbf{B}\mathbf{K})\mathbf{x}$
 $y = \mathbf{C}\mathbf{x}$

- The closed-loop poles are the roots of det[sI (A BK)] = 0 or the eigenvalues of A BK.
- They can be assigned in any desired place if the system is controllable.

Example

The state variables of a cruise control system are $\mathbf{x}(t) = \begin{bmatrix} x(t) & v(t) \end{bmatrix}$ and the state space model is :

$$\begin{aligned} \dot{x}_1(t) &= x_2(t) \\ \dot{x}_2(t) &= \frac{-b}{m} x_2(t) + \frac{1}{m} u(t) \\ y(t) &= x_2(t) \end{aligned} \qquad \mathbf{A} = \begin{bmatrix} 0 & 1 \\ 0 & \frac{-b}{m} \end{bmatrix} \quad \mathbf{B} = \begin{bmatrix} 0 \\ \frac{1}{m} \end{bmatrix}$$

$$\mathbf{C} = \begin{bmatrix} 0 & 1 \end{bmatrix} \quad D = 0$$

With m=1000 and b=50 compute the controller $\mathbf{K}=[K_1 \quad K_2]$ such that the closed-loop poles are placed at $p_1=-0.1$ and $p_2=-0.2$.

Solution:

$$\begin{split} \det(s\mathbf{I} - (\mathbf{A} - \mathbf{BK})) &= \det\left(\left[\begin{array}{cc} s & -1 \\ 0 & s + 0.05 \end{array}\right] + \left[\begin{array}{cc} 0 \\ 0.001 \end{array}\right] \left[\begin{array}{cc} \mathcal{K}_1 & \mathcal{K}_2 \end{array}\right]\right) \\ &= \det\left(\left[\begin{array}{cc} s & -1 \\ 0.001\mathcal{K}_1 & s + 0.05 + 0.001\mathcal{K}_2 \end{array}\right]\right) \\ &= s^2 + (0.05 + 0.001\mathcal{K}_2)s + 0.001\mathcal{K}_1 = (s + 0.1)(s + 0.2) \end{split}$$

which leads to $K_1 = 20$ and $K_2 = 250$.

General Solution

Assume that the desired closed-loop characteristic polynomial is

$$\alpha_c(s) = s^n + \alpha_1 s^{n-1} + \alpha_2 s^{n-2} + \dots + \alpha_n$$

Then the state feedback controller **K** is computed from the following equation :

$$\det(s\mathbf{I} - (\mathbf{A} - \mathbf{BK})) = \alpha_c(s)$$

- If the state-space model is in control canonical form, the solutions becomes trivial.
- If the state-space model is controllable, there are two solutions :
 - Compute the control canonical form representation of the system transfer function :

$$G(s) = \mathbf{C}(s\mathbf{I} - \mathbf{A})^{-1}\mathbf{B} + D$$

Then the solution becomes trivial.

2 Use the Ackermann's formula.

Trivial Solution

Consider the state-space model in the control canonical form :

$$\mathbf{A}_{c} = \begin{bmatrix} -a_{1} & -a_{2} & \cdots & \cdots & -a_{n} \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ \vdots & & \ddots & 0 & \vdots \\ 0 & \cdots & \cdots & 1 & 0 \end{bmatrix} \qquad \mathbf{B}_{c} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

Then the closed-loop system matrix $\mathbf{A}_c - \mathbf{B}_c \mathbf{K}$ becomes :

$$\mathbf{A}_c - \mathbf{B}_c \mathbf{K} = \left[\begin{array}{ccccc} -a_1 - K_1 & -a_2 - K_2 & \cdots & \cdots & -a_n - K_n \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ \vdots & & \ddots & 0 & \vdots \\ 0 & \cdots & \cdots & 1 & 0 \end{array} \right]$$

Trivial Solution(suit)

Therefore the closed-loop characteristic equation will be :

$$s^{n} + (a_{1} + K_{1})s^{n-1} + (a_{2} + K_{2})s^{n-2} + \cdots + (a_{n} + K_{n}) = 0$$

The desired closed-loop characteristic equation is :

$$\alpha_c(s) = s^n + \alpha_1 s^{n-1} + \alpha_2 s^{n-2} + \dots + \alpha_n = 0$$

which leads to : $K_i = -a_i + \alpha_i$ for i = 1, ..., n.

Example

For the following state-space model compute a controller **K** to have $\alpha_c(s) = s^2 + 2\zeta\omega_n s + \omega_n^2$ with $\zeta = 0.7$ and $\omega_n = 4$.

$$\mathbf{A} = \begin{bmatrix} -7 & -12 \\ 1 & 0 \end{bmatrix} \quad , \quad \mathbf{B} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \quad , \quad \mathbf{C} = \begin{bmatrix} 1 & 2 \end{bmatrix} \quad , \quad D = 0$$

Solution : we have $K_1 = -7 + 2(0.7)(4) = -1.4$ and $K_2 = -12 + 16 = 4$.

Ackermann's formula

The controller is given by:

$$\mathbf{K} = \begin{bmatrix} 0 & 0 & \cdots & 1 \end{bmatrix} C^{-1} \alpha_c(\mathbf{A})$$

where $\mathcal C$ is the controllability matrix

and $\alpha_c(\mathbf{A})$ is a matrix defined as :

$$\alpha_c(\mathbf{A}) = \mathbf{A}^n + \alpha_1 \mathbf{A}^{n-1} + \alpha_2 \mathbf{A}^{n-2} + \dots + \alpha_n \mathbf{I}$$

The Ackermann's formula shows clearly that the pole placement problem has a solution if and only if the state-space model is controllable.

Example

Using the Ackermann's formula compute a controller ${\bf K}$ for the following state-space model :

$$\mathbf{A} = \begin{bmatrix} -7 & 1 \\ -12 & 0 \end{bmatrix} \quad , \quad \mathbf{B} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \quad , \quad \mathbf{C} = \begin{bmatrix} 1 & 0 \end{bmatrix} \quad , \quad D = 0$$

to have $\alpha_c(s) = s^2 + 2\zeta\omega_n s + \omega_n^2$ with $\zeta = 0.7$ and $\omega_n = 4$.

Solution: we have

$$C = [\mathbf{B} \quad \mathbf{A}\mathbf{B}] = \begin{bmatrix} 1 & -5 \\ 2 & -12 \end{bmatrix} \quad \Rightarrow \quad C^{-1} = \frac{1}{-2} \begin{bmatrix} -12 & 5 \\ -2 & 1 \end{bmatrix}$$

$$\alpha_c(\mathbf{A}) = \begin{bmatrix} -7 & 1 \\ -12 & 0 \end{bmatrix}^2 + 5.6 \begin{bmatrix} -7 & 1 \\ -12 & 0 \end{bmatrix} + \begin{bmatrix} 16 & 0 \\ 0 & 16 \end{bmatrix} = \begin{bmatrix} 13.8 & -1.4 \\ 16.8 & 4 \end{bmatrix}$$

$$\mathbf{K} = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} 6 & -2.5 \\ 1 & -0.5 \end{bmatrix} \begin{bmatrix} 13.8 & -1.4 \\ 16.8 & 4 \end{bmatrix} = \begin{bmatrix} 5.4 & -3.4 \end{bmatrix}$$

Exercise

Consider the system :
$$G(s) = \frac{3s^2 + 5s - 5}{s^3 + 12s^2 + 10s + 5}$$
.

Determine a state feedback controller ${\bf K}$ so that the closed-loop poles are -3, -4 and -6.

$$(A)K = \begin{bmatrix} 1 & 44 & 67 \end{bmatrix}$$
 $(B)K = \begin{bmatrix} 10 & 44 & 67 \end{bmatrix}$ $(C)K = \begin{bmatrix} 44 & 1 & 1 \end{bmatrix}$ $(D)K = \begin{bmatrix} 1 & 67 & 44 \end{bmatrix}$

How to choose the desired closed-loop poles

- \bullet For an n-th order system, we can assign n closed-loop poles.
- The closed-loop modes are $e^{p_i t}$, so smaller poles give faster response and faster dynamics.
- Faster response requires larger control signal u(t). Since the magnitude of u(t) is always limited, we cannot increase the speed of the response arbitrarily.
- A typical choice is a second-order polynomial as $s^2 + 2\zeta\omega_n s + \omega_n^2$ whose roots represent the dominant dynamics and some auxiliary non dominant fast poles : $\alpha_c(s) = (s^2 + 2\zeta\omega_n s + \omega_n^2)(s + \alpha)^{n-2}$, where $\zeta = 0.7$ and ω_n is close to the desired bandwidth. The fast pole α is chosen much larger than ω_n , i.e. $\alpha \gg \omega_n$.
- For stable plant models, if we choose the dominant closed-loop poles equal to the dominant poles of the plant model, the energy of the control signal is reduced.

State Feedback Controller (Optimal Control)

Linear Quadratic Regulator (LQR)

Consider a linear multivariable system $\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t)$ with the controller $\mathbf{u}(t) = -\mathbf{K}\mathbf{x}(t)$. Compute \mathbf{K} such that the following performance criterion is minimized :

$$\mathcal{J} = \int_0^\infty [\mathbf{x}^T(t)\mathbf{Q}\mathbf{x}(t) + \mathbf{u}^T(t)\mathbf{R}\mathbf{u}(t)]dt$$

where $\mathbf{Q} = \mathbf{Q}^T \geq 0$ (positive semi-definite) and $\mathbf{R} = \mathbf{R}^T > 0$ (positive definite) matrices that determine the relative importance of the states and the control signal.

Solution : The optimal controller is $\left[\mathbf{K} = \mathbf{R}^{-1}\mathbf{B}^T\mathbf{P}\right]$ when $\mathbf{P} = \mathbf{P}^T > 0$ is the solution of the following *Riccati Equation*:

$$\boxed{\mathbf{A}^T \mathbf{P} + \mathbf{P} \mathbf{A} - \mathbf{P} \mathbf{B} \mathbf{R}^{-1} \mathbf{B}^T \mathbf{P} + \mathbf{Q} = 0}$$

Proof of the LQR control problem

We replace $\mathbf{u}(t) = -\mathbf{K}\mathbf{x}(t)$ in the criterion :

$$\mathcal{J} = \int_0^\infty [\mathbf{x}^T(t)\mathbf{Q}\mathbf{x}(t) + \mathbf{x}^T(t)\mathbf{K}^T\mathbf{R}\mathbf{K}\mathbf{x}(t)]dt$$
$$= \int_0^\infty \mathbf{x}^T(t)(\mathbf{Q} + \mathbf{K}^T\mathbf{R}\mathbf{K})\mathbf{x}(t)dt$$

We postulate the existence of an exact differential so that :

$$\mathbf{x}^{T}(t)(\mathbf{Q} + \mathbf{K}^{\mathsf{T}}\mathbf{R}\mathbf{K})\mathbf{x}(t) = -rac{d}{dt}[\mathbf{x}^{T}(t)\mathbf{P}\mathbf{x}(t)]$$

where $\mathbf{P} = \mathbf{P}^T > 0$ is a matrix to be determined. Then

$$\mathbf{x}^{T}(t)(\mathbf{Q} + \mathbf{K}^{T}\mathbf{R}\mathbf{K})\mathbf{x}(t) = -\dot{\mathbf{x}}^{T}(t)\mathbf{P}\mathbf{x}(t) - \mathbf{x}^{T}(t)\mathbf{P}\dot{\mathbf{x}}(t)$$
$$= -\mathbf{x}^{T}(t)[(\mathbf{A} - \mathbf{B}\mathbf{K})^{T}\mathbf{P} + \mathbf{P}(\mathbf{A} - \mathbf{B}\mathbf{K})]\mathbf{x}(t)$$

Proof of the LQR control problem (suit)

Therefore, we require $(\mathbf{A} - \mathbf{B}\mathbf{K})^T \mathbf{P} + \mathbf{P}(\mathbf{A} - \mathbf{B}\mathbf{K}) = -(\mathbf{Q} + \mathbf{K}^T \mathbf{R}\mathbf{K})$. Rewriting the equation gives the following *Riccati* equation :

$$\mathbf{A}^T\mathbf{P} + \mathbf{P}\mathbf{A} - \mathbf{P}\mathbf{B}\mathbf{R}^{-1}\mathbf{B}^T\mathbf{P} + \mathbf{Q} + (\mathbf{K}^T - \mathbf{P}\mathbf{B}\mathbf{R}^{-1})\mathbf{R}(\mathbf{K} - \mathbf{R}^{-1}\mathbf{B}^T\mathbf{P}) = 0$$

On the other hand the criterion can be written as :

$$\mathcal{J} = \int_0^\infty \mathbf{x}^T(t)(\mathbf{Q} + \mathbf{K}^\mathsf{T} \mathbf{R} \mathbf{K}) \mathbf{x}(t) dt = \int_0^\infty \frac{-d}{dt} \mathbf{x}^T(t) \mathbf{P} \mathbf{x}(t) dt$$
$$= -\mathbf{x}^T(t) \mathbf{P} \mathbf{x}(t) \Big|_0^\infty = -\mathbf{x}^T(\infty) \mathbf{P} \mathbf{x}(\infty) + \mathbf{x}^T(0) \mathbf{P} \mathbf{x}(0)$$

For stable systems, the first term is zero. The smallest \mathbf{P} (that minimizes \mathcal{J}) is obtained when the last term of the Riccati equation is zero, i.e.

$$K = R^{-1}B^TP$$
 and $A^TP + PA - PBR^{-1}B^TP + Q = 0$

This can be proved using the comparison Lemma.

Comparison Lemma

Consider P_1 and P_2 as positive definite solutions to the Riccati equations :

$$\mathbf{A}^T \mathbf{P}_1 + \mathbf{P}_1 \mathbf{A} - \mathbf{P}_1 \mathbf{B} \mathbf{R}^{-1} \mathbf{B}^T \mathbf{P}_1 + \mathbf{Q}_1 = 0$$
$$\mathbf{A}^T \mathbf{P}_2 + \mathbf{P}_2 \mathbf{A} - \mathbf{P}_2 \mathbf{B} \mathbf{R}^{-1} \mathbf{B}^T \mathbf{P}_2 + \mathbf{Q}_2 = 0$$

If $\mathbf{Q}_1 \leq \mathbf{Q}_2$, then $\mathbf{P}_1 \leq \mathbf{P}_2$.

Proof of the LQR control problem (suit)

The optimal controller minimizes $\mathcal{J} = \mathbf{x}^T(0)\mathbf{P}\mathbf{x}(0)$ for all initial conditions, where $\mathbf{P} > 0$ is a solution to :

$$\mathbf{A}^{T}\mathbf{P} + \mathbf{P}\mathbf{A} - \mathbf{P}\mathbf{B}\mathbf{R}^{-1}\mathbf{B}^{T}\mathbf{P} + \mathbf{Q} + (\mathbf{K}^{T} - \mathbf{P}\mathbf{B}\mathbf{R}^{-1})\mathbf{R}(\mathbf{K} - \mathbf{R}^{-1}\mathbf{B}^{T}\mathbf{P}) = 0$$

Take
$$\mathbf{Q}_1 = \mathbf{Q}$$
 and $\mathbf{Q}_2 = \mathbf{Q} + (\mathbf{K}^T - \mathbf{P}\mathbf{B}\mathbf{R}^{-1})\mathbf{R}(\mathbf{K} - \mathbf{R}^{-1}\mathbf{B}^T\mathbf{P})$.

Since the second term is always positive we have $\mathbf{Q}_1 \leq \mathbf{Q}_2$. Therefore, according to the comparison lemma, the smallest \mathbf{P} is obtained when the second term is zero, which leads to the optimal controller : $\mathbf{K} = \mathbf{R}^{-1}\mathbf{B}^T\mathbf{P}$

How to design an LQR controller

A Matlab command can be used as : K=lqr(A,B,Q,R);

- We can start with $\mathbf{Q} = \mathbf{I}$ and simulate the states of the system. We can then increase (or decrease) the diagonal values of \mathbf{Q} to have faster (or slower) convergence of the corresponding states.
- We can start with $\mathbf{R} = \mathbf{I}$ and simulate the inputs of the system. We can then increase (or decrease) the diagonal values of \mathbf{R} to decrease (or increase) the magnitude of the control signals.
- We can minimize the output of the system (instead of the states) : Note that $\mathbf{y} = \mathbf{C}\mathbf{x}$ so $\mathbf{y}^T\mathbf{y} = \mathbf{x}^T\mathbf{C}^T\mathbf{C}\mathbf{x}$, which leads to $\mathbf{Q} = \mathbf{C}^T\mathbf{C}$.
- In general, Q and R are tuned iteratively. A good starting value is diagonal matrices with

$$Q_{ii} = 1/\text{maximum}$$
 acceptable value of x_i^2
 $R_{ii} = 1/\text{maximum}$ acceptable value of u_i^2

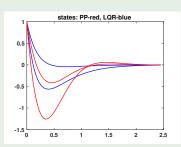
Example (LQR versus Pole Placement)

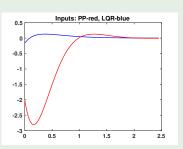
Consider the following system:

$$\mathbf{A} = \begin{bmatrix} -7 & 1 \\ -12 & 0 \end{bmatrix} \quad , \quad \mathbf{B} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \quad , \quad \mathbf{C} = \begin{bmatrix} 1 & 0 \end{bmatrix} \quad , \quad D = 0$$

Pole placement : Design a controller to have $\alpha_c(s) = s^2 + 2\zeta\omega_n s + \omega_n^2$ with $\zeta = 0.7$ and $\omega_n = 4$.

LQR: Design a controller with $\mathbf{Q} = \mathbf{I}$ and R = 1.





Example (LQR versus Pole Placement)

```
% Simulation model
A=[-7 1;-12 0]; B=[1;2]; C=[1,0]; D=0;
% Pole placement
zeta=0.7; wn=4; Pd=roots([1 2*zeta*wn wn^2]);
K_pp=acker(A,B,Pd)
% Closed-loop simulation
CL_pp=ss(A-B*K_pp,[],C,[]);
x0=[1;1];
[y_pp,t,x_pp]=initial(CL_pp,x0);
u_pp=-K_pp*x_pp';
% LQR design
R=1:
K_{lgr} = lgr(A, B, eve(2), R);
% Closed-loop simulation
CL\_lqr=ss(A-B*K\_lqr,[],C,[])
[y_lqr,t,x_lqr]=initial(CL_lqr,x0,t);
u_lqr=-K_lqr*x_lqr';
```

Exercise

Consider a first order unstable system : $G(s) = \frac{3}{s-2}$

Give a state-space representation of the system.

(A)
$$A = -2, B = 3, C = 1$$
 (B) $A = 2, B = 1, C = 3$

(C)
$$A = 2, B = 1, C = -3$$
 (D) $A = -2, B = -1, C = 3$

② Compute an LQR controller that minimizes $\mathcal{J} = \int_0^\infty [y^2(t) + u^2(t)] dt$.

(A)
$$K = 2 \pm \sqrt{13}$$
 (B) $K = 2 - \sqrt{13}$

(C)
$$K = 2 + \sqrt{13}$$
 (D) None of the above

Introducing the reference input

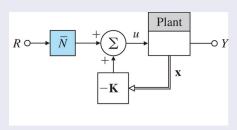
A reference input r(t) with a feedforward gain can be added to the control signal as follows :

$$u(t) = -\mathbf{K}\mathbf{x}(t) + \bar{N}r(t)$$

Therefore, the state-space equation of the closed-loop system becomes :

$$\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}(-\mathbf{K}\mathbf{x}(t) + \bar{N}r(t)) = (\mathbf{A} - \mathbf{B}\mathbf{K})\mathbf{x}(t) + \mathbf{B}\bar{N}r(t)$$

 $y(t) = \mathbf{C}\mathbf{x}(t)$



Compute \bar{N} to have zero steady-state tracking error

- Assume that the closed-loop system is stable and the reference signal r(t) converges to a constant value r_{ss} at steady-state.
- The objective is to find \bar{N} such that at steady-state $y(\infty)=r_{\rm ss}$.
- At steady-state we have

$$\dot{\mathbf{x}}(\infty) = 0$$
 $\mathbf{x}(\infty) = \mathbf{x}_{ss}$ $y(\infty) = y_{ss}$ $r(\infty) = r_{ss}$

This leads to the following equations at steady-state :

$$egin{aligned} \mathbf{0} &= (\mathbf{A} - \mathbf{B}\mathbf{K})\mathbf{x}_{ss} + \mathbf{B}ar{N}r_{ss} \ y_{ss} &= \mathbf{C}\mathbf{x}_{ss} \end{aligned}$$

Therefore,

$$y_{ss} = \mathbf{C}(-\mathbf{A} + \mathbf{B}\mathbf{K})^{-1}\mathbf{B}\bar{N}r_{ss} \quad \Rightarrow \quad \left[\bar{N} = \left[\mathbf{C}(-\mathbf{A} + \mathbf{B}\mathbf{K})^{-1}\mathbf{B}\right]^{-1}\right]$$

Example (Introducing the reference input)

For the following system compute the feedforward gain for zero steady-state error of a step reference.

$$\mathbf{K} = \begin{bmatrix} 5.4 & -3.4 \end{bmatrix} \quad \mathbf{A} = \begin{bmatrix} -7 & 1 \\ -12 & 0 \end{bmatrix} \quad \mathbf{B} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \quad \mathbf{C} = \begin{bmatrix} 1 & 0 \end{bmatrix} \quad D = 0$$

Solution:

$$\mathbf{C}(-\mathbf{A} + \mathbf{B}\mathbf{K})^{-1}\mathbf{B} = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{pmatrix} \begin{bmatrix} 7 & -1 \\ 12 & 0 \end{bmatrix} + \begin{bmatrix} 1 \\ 2 \end{bmatrix} \begin{bmatrix} 5.4 & -3.4 \end{bmatrix} \end{pmatrix}^{-1} \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} -0.425 & 0.275 \\ -1.425 & 0.775 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
$$= 0.125 \quad \Rightarrow \quad 0.125\overline{N} = 1 \quad \Rightarrow \quad \overline{N} = 8$$

State Feedback Controller (Integral Control)

- ullet Using a feedforward gain N the steady-state tracking error for a step signal goes to zero.
- \bullet \bar{N} depends on the model parameters. Therefore, in the presence of modelling error, the tracking error will not converge to zero.

Solution: Add an integrator into the loop!

Define a new artificial state

$$x_I(t) = \int_0^t e(\tau)d au$$
 where $e(t) = r(t) - y(t)$ and $\dot{x}_I(t) = e(t)$

Therefore, we have a new state equation : $\dot{x}_I(t) = -\mathbf{C}\mathbf{x} + r(t)$

• Make an augmented model with the integrator :

$$\left[\begin{array}{c} \dot{\mathbf{x}} \\ \dot{\mathbf{x}}_I \end{array}\right] = \left[\begin{array}{cc} \mathbf{A} & \mathbf{0} \\ -\mathbf{C} & \mathbf{0} \end{array}\right] \left[\begin{array}{c} \mathbf{x} \\ \mathbf{x}_I \end{array}\right] + \left[\begin{array}{c} \mathbf{B} \\ \mathbf{0} \end{array}\right] u + \left[\begin{array}{c} \mathbf{0} \\ \mathbf{1} \end{array}\right] r$$

- Design a state feedback controller **K** for the augmented plant.
- At steady-state $\dot{x}_l(t) = e(t) = 0$.

State Feedback Controller (Integral Control)

Example (State feedback with integral action)

For the following system compute a state feedback controller for zero steady-state error of a step reference.

$$\mathbf{A} = \begin{bmatrix} -7 & 1 \\ -12 & 0 \end{bmatrix} \quad \mathbf{B} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \quad \mathbf{C} = \begin{bmatrix} 1 & 0 \end{bmatrix} \quad D = 0$$

Solution : We compute first the augmented plant matrices

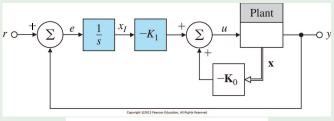
$$\bar{\mathbf{A}} = \begin{bmatrix} \mathbf{A} & \mathbf{0} \\ -\mathbf{C} & 0 \end{bmatrix} = \begin{bmatrix} -7 & 1 & 0 \\ -12 & 0 & 0 \\ -1 & 0 & 0 \end{bmatrix} \qquad \bar{\mathbf{B}} = \begin{bmatrix} \mathbf{B} \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$$

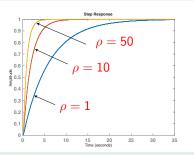
Then we can design a state feedback controller $\mathbf{K} = [\mathbf{K}_0 \quad K_1]$ for the augmented plant using pole placement or LQR method.

$$Q=rho*eye(3);R=1;$$

State Feedback Controller (Integral Control)

Example (State feedback with integral action)





- The full state feedback controller is given by $u = -\mathbf{K}\mathbf{x} + \bar{N}r$.
- In practice the states are not all measurable. If an estimate of the states $\hat{\mathbf{x}}$ is available we can compute the control signal as : $u = -\mathbf{K}\hat{\mathbf{x}} + \bar{N}r$.
- We can estimate the states if we know the model of the plant :

$$\mathbf{\dot{\hat{x}}} = \mathbf{A}\mathbf{\hat{x}} + \mathbf{B}u$$

However, we need $\hat{\mathbf{x}}(0)$ which is usually unknown.

 \bullet The dynamics of the estimation error $\tilde{\mathbf{x}} = \mathbf{x} - \hat{\mathbf{x}}$ is given by

$$\dot{\tilde{\mathbf{x}}} = \dot{\mathbf{x}} - \dot{\hat{\mathbf{x}}} = \mathbf{A}\tilde{\mathbf{x}}, \qquad \tilde{\mathbf{x}}(0) = \mathbf{x}(0) - \hat{\mathbf{x}}(0)$$

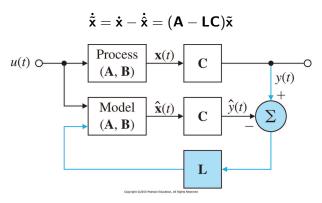
- The estimation error has the same dynamics as the plant model.
 - If the plant model is unstable, the estimation error diverges.
 - We need stable and fast dynamics for state estimation.

Solution: Use feedback to stabilize the estimator and improve its dynamics. The dynamics of the estimator should be 3 to 10 (or 2 to 6 in your reference book) times faster than the control dynamics.

Full-Order Estimator Design : Define the estimator equation as

$$\dot{\hat{\mathbf{x}}} = \mathbf{A}\hat{\mathbf{x}} + \mathbf{B}u + \mathbf{L}(y - \mathbf{C}\hat{\mathbf{x}})$$

where the estimator gain $\mathbf{L} = [l_1, l_2, \dots, l_n]^T$ is designed to have satisfactory error dynamics :



Estimator Design by Pole Placement : Define the desired estimator characteristic polynomial as $\alpha_e(s) = s^n + \alpha_1 s^{n-1} + \cdots + \alpha_n$.

Then, compute **L** such that $det(s\mathbf{I} - \mathbf{A} + \mathbf{LC}) = \alpha_e(s)$.

Trivial Solution : Suppose that the plant model is given in observer canonical form :

$$\mathbf{A}_{o} = \begin{bmatrix} -a_{1} & 1 & 0 & \cdots & 0 \\ -a_{2} & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & & 1 \\ -a_{n} & 0 & \cdots & 0 & 0 \end{bmatrix} \quad \mathbf{B}_{o} = \begin{bmatrix} b_{1} \\ b_{2} \\ \vdots \\ b_{n} \end{bmatrix} \quad \mathbf{C}_{o} = \begin{bmatrix} 1 & 0 & \cdots & 0 \end{bmatrix}$$

Then the closed-loop state matrix for the estimator error is :

$$\mathbf{A}_{o} - \mathbf{LC}_{o} = \begin{bmatrix} -a_{1} - l_{1} & 1 & 0 & \cdots & 0 \\ -a_{2} - l_{2} & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & & 1 \\ -a_{n} - l_{n} & 0 & \cdots & \cdots & 0 \end{bmatrix}$$

and the characteristic equation is $s^n + (a_1 + l_1)s^{n-1} + \cdots + (a_n + l_n) = 0$ which leads to $l_i = \alpha_i - a_i$ for $i = 1, \dots, n$.

Ackermann's Formula

The Estimator gain is given by :

$$\mathbf{L} = \alpha_{e}(\mathbf{A})\mathcal{O}^{-1} \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix} = \alpha_{e}(\mathbf{A}) \begin{bmatrix} \mathbf{C} \\ \mathbf{C}\mathbf{A} \\ \vdots \\ \mathbf{C}\mathbf{A}^{n-1} \end{bmatrix}^{-1} \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}$$

where $\mathcal O$ is the observability matrix and $\alpha_{\rm e}(\mathbf A)$ is a matrix defined as :

$$\alpha_{e}(\mathbf{A}) = \mathbf{A}^{n} + \alpha_{1}\mathbf{A}^{n-1} + \dots + \alpha_{n}\mathbf{I}$$

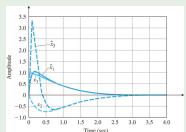
The Ackermann's formula shows clearly that the estimator design has a solution if and only if the state-space model is observable.

Example (Estimator Design by Pole Placement)

The state-space model of a system is given by :

$$\mathbf{A} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \quad \mathbf{B} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \quad \mathbf{C} = \begin{bmatrix} 1 & 0 \end{bmatrix} \quad D = 0$$

Design $\mathbf{L} = [l_1 \quad l_2]^T$ to place the two estimator error poles at -10. **Solution :** The estimator characteristic polynomial is $\alpha_e(s) = (s+10)^2 = s^2 + 20s + 100$. Since the state-space model is in observer canonical form, $l_1 = 20 - 0 = 20$ and $l_2 = 100 - 1 = 99$.



Design by Duality

- State feedback design and estimator design are mathematically equivalent. This property is called duality.
- Note that $\mathbf{A} \mathbf{LC}$ and $\mathbf{A}^T \mathbf{C}^T \mathbf{L}^T$ have the same eigenvalues. So computing \mathbf{L}^T to place the eigenvalues of $\mathbf{A}^T \mathbf{C}^T \mathbf{L}^T$ is the same problem as computing \mathbf{K} to place the eigenvalues of $\mathbf{A} \mathbf{B}\mathbf{K}$.
- We can make a duality table :

Control	Estimation
Α	\mathbf{A}^T
В	\mathbf{C}^T
С	B^{T}

 The Matlab command acker and lqr can be used for controller design as well as for the estimator design.

Exercise

Given the transfer function of a system : $G(s) = \frac{2}{0.2s - 1}$

- Find a state-space model for the system.
 - (A) A = 0.2, B = 1, C = 2 (B) A = 5, B = 1, C = 10
 - (C) A = -5, B = 10, C = 1 (D) A = -0.2, B = 2, C = 1
- 2 Compute the gain of observer L as a function of Q (take R=1).
 - (A) $L = 5 + \sqrt{100 + Q}$ (B) $L = 5 \sqrt{100 + Q}$
 - (C) $L = 0.5 + \sqrt{0.25 + Q}$ (D) $L = 0.5 \sqrt{0.25 + Q}$

- The control signal in the autonomous case is $u = -K\hat{x}$
- The plant equation with feedback is

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} - \mathbf{B}\mathbf{K}\hat{\mathbf{x}} = \mathbf{A}\mathbf{x} - \mathbf{B}\mathbf{K}(\mathbf{x} - \tilde{\mathbf{x}})$$

- The estimator error equation is $\dot{\tilde{\mathbf{x}}} = (\mathbf{A} \mathbf{LC})\tilde{\mathbf{x}}$.
- Combining these equations, we obtain :

$$\left[\begin{array}{c} \dot{x} \\ \dot{\tilde{x}} \end{array}\right] = \left[\begin{array}{cc} A - BK & BK \\ 0 & A - LC \end{array}\right] \left[\begin{array}{c} x \\ \tilde{x} \end{array}\right]$$

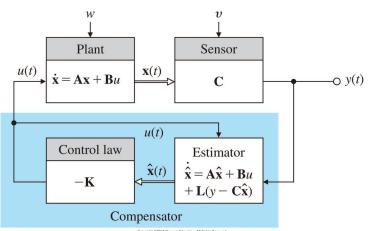
• The characteristic equation of the closed-loop system is :

$$\det \begin{bmatrix} s\mathbf{I} - \mathbf{A} + \mathbf{B}\mathbf{K} & -\mathbf{B}\mathbf{K} \\ \mathbf{0} & s\mathbf{I} - \mathbf{A} + \mathbf{L}\mathbf{C} \end{bmatrix} = \det(s\mathbf{I} - \mathbf{A} + \mathbf{B}\mathbf{K}) \det(s\mathbf{I} - \mathbf{A} + \mathbf{L}\mathbf{C})$$
$$= \alpha_c(s)\alpha_e(s) = 0$$

• The closed-loop poles are the poles of controller and the poles of estimator.

Separation Principle

The designs of control law and estimator can be done independently.



Copyright ©2015 Pearson Education, All Rights Reserved

$$\dot{\hat{\mathbf{x}}} = (\mathbf{A} - \mathbf{B}\mathbf{K} - \mathbf{L}\mathbf{C})\hat{\mathbf{x}} + \mathbf{L}y
u = -\mathbf{K}\hat{\mathbf{x}}$$

$$\Rightarrow D_c(s) = \frac{U(s)}{Y(s)} = -\mathbf{K}(s\mathbf{I} - \mathbf{A} + \mathbf{B}\mathbf{K} + \mathbf{L}\mathbf{C})^{-1}\mathbf{L}$$

Exercise

Design a compensator for $G(s)=1/s^2$ such that the control poles are at $\omega_n=1$ rad/s and $\zeta=0.707$ and the estimator poles all at -5.

• Give an observer canonical representation for the system.

(A)
$$A = [0 \ 1; 1 \ 0] \quad B = [1 \ 0]^T \quad C = [1 \ 0]$$

(B)
$$A = \begin{bmatrix} 0 & 1; 0 & 0 \end{bmatrix}$$
 $B = \begin{bmatrix} 0 & 1 \end{bmatrix}^T$ $C = \begin{bmatrix} 1 & 0 \end{bmatrix}$

(C)
$$A = \begin{bmatrix} 0 & 1; 0 & 0 \end{bmatrix}$$
 $B = \begin{bmatrix} 0 & 1 \end{bmatrix}^T$ $C = \begin{bmatrix} 1 & 1 \end{bmatrix}$

(D)
$$A = \begin{bmatrix} 0 & 0; 1 & 0 \end{bmatrix}$$
 $B = \begin{bmatrix} 1 & 1 \end{bmatrix}^T$ $C = \begin{bmatrix} 1 & 0 \end{bmatrix}$

Compute the controller K :

(A)
$$K = \begin{bmatrix} 1 & 0.707 \end{bmatrix}$$
 (B) $K = \begin{bmatrix} 1 & \sqrt{2} \end{bmatrix}$

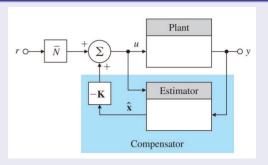
(C)
$$K = \begin{bmatrix} \sqrt{2} & 1 \end{bmatrix}$$
 (D) $K = \begin{bmatrix} 0.707 & \sqrt{2} \end{bmatrix}$

3 Compute the observer gain L:

(A)
$$L = [5 \ 5]$$
 (B) $L = [-5 \ -5]$

(C)
$$L = \begin{bmatrix} 25 & 5 \end{bmatrix}$$
 (D) $L = \begin{bmatrix} 10 & 25 \end{bmatrix}$

Introduction of the reference signal



Main equations:

States of the plant : $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}u$

Output equation : $y = \mathbf{C}\mathbf{x}$

Estimator equation : $\hat{\mathbf{x}} = \mathbf{A}\hat{\mathbf{x}} + \mathbf{B}u + \mathbf{L}(y - \mathbf{C}\hat{\mathbf{x}})$

Control law: $u = -\mathbf{K}\hat{\mathbf{x}} + \bar{N}r$

Introduction of the reference signal

Closed-loop equations:

$$\begin{split} \dot{\mathbf{x}} &= \mathbf{A}\mathbf{x} + \mathbf{B}(-\mathbf{K}\hat{\mathbf{x}} + \bar{N}r) = \mathbf{A}\mathbf{x} - \mathbf{B}\mathbf{K}\hat{\mathbf{x}} + \mathbf{B}\bar{N}r \\ \dot{\hat{\mathbf{x}}} &= \mathbf{A}\hat{\mathbf{x}} + \mathbf{B}(-\mathbf{K}\hat{\mathbf{x}} + \bar{N}r) + \mathbf{L}(y - \mathbf{C}\hat{\mathbf{x}}) = \mathbf{L}\mathbf{C}\mathbf{x} + (\mathbf{A} - \mathbf{B}\mathbf{K} - \mathbf{L}\mathbf{C})\hat{\mathbf{x}} + \mathbf{B}\bar{N}r \\ y &= \mathbf{C}\mathbf{x} \end{split}$$

Closed-loop state-space model:

$$\begin{bmatrix} \dot{\mathbf{x}} \\ \dot{\hat{\mathbf{x}}} \end{bmatrix} = \underbrace{ \begin{bmatrix} \mathbf{A} & -\mathbf{B}\mathbf{K} \\ \mathbf{L}\mathbf{C} & \mathbf{A} - \mathbf{B}\mathbf{K} - \mathbf{L}\mathbf{C} \end{bmatrix} }_{\mathbf{A}_{cl}} \begin{bmatrix} \mathbf{x} \\ \hat{\mathbf{x}} \end{bmatrix} + \underbrace{ \begin{bmatrix} \mathbf{B}\bar{N} \\ \mathbf{B}\bar{N} \end{bmatrix} }_{\mathbf{B}_{cl}} r \quad ; \quad y = \underbrace{ \begin{bmatrix} \mathbf{C} & \mathbf{0} \end{bmatrix} }_{\mathbf{C}_{cl}} \begin{bmatrix} \mathbf{x} \\ \hat{\mathbf{x}} \end{bmatrix}$$

Transfer function between r and y: $T(s) = \mathbf{C}_{cl}(s\mathbf{I} - \mathbf{A}_{cl})^{-1}\mathbf{B}_{cl}$ Find the transfer function between r and u: The main equations remains the same, but the output equation will be $u = -\mathbf{K}\hat{\mathbf{x}} + \bar{N}r$. Therefore:

$$U(s) = [\mathbf{0} \quad -\mathbf{K}](s\mathbf{I} - \mathbf{A}_{cl})^{-1}\mathbf{B}_{cl} + \bar{N}$$

Computing feedforward gain

N can be computed by imposing the steady-state gain of the closed-loop transfer function (between r and y) equal to 1:

$$\lim_{s\to 0} T(s) = \mathbf{C}_{cl}(s\mathbf{I} - \mathbf{A}_{cl})^{-1}\mathbf{B}_{cl} = 1 \quad \Rightarrow \quad \bar{N} = -\left(\mathbf{C}_{cl}\mathbf{A}_{cl}^{-1} \begin{bmatrix} \mathbf{B} \\ \mathbf{B} \end{bmatrix}\right)^{-1}$$

Introduction of the output disturbance

Suppose that the disturbance w is added to the output (assuming r=0). Then, the closed-loop equations are :

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} - \mathbf{B}\mathbf{K}\hat{\mathbf{x}}$$

$$\dot{\hat{\mathbf{x}}} = \mathbf{A}\hat{\mathbf{x}} - \mathbf{B}\mathbf{K}\hat{\mathbf{x}} + \mathbf{L}(y - \mathbf{C}\hat{\mathbf{x}}) = \mathbf{L}\mathbf{C}\mathbf{x} + (\mathbf{A} - \mathbf{B}\mathbf{K} - \mathbf{L}\mathbf{C})\hat{\mathbf{x}} + \mathbf{L}\mathbf{w}$$
 $y = \mathbf{C}\mathbf{x} + \mathbf{w}$

The transfer function between w and y : $S(s) = \mathbf{C}_{cl}(s\mathbf{I} - \mathbf{A}_{cl})^{-1} \left[egin{array}{c} \mathbf{0} \\ \mathbf{L} \end{array}
ight] + 1$

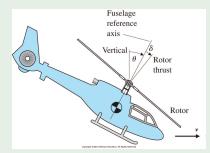
Example

The linearized longitudinal motion of a helicopter near hover can be modeled by :

$$\begin{bmatrix} \dot{q} \\ \dot{\theta} \\ \dot{v} \end{bmatrix} = \begin{bmatrix} -0.4 & 0 & -0.01 \\ 1 & 0 & 0 \\ -1.4 & 9.8 & -0.02 \end{bmatrix} \begin{bmatrix} q \\ \theta \\ v \end{bmatrix} + \begin{bmatrix} 6.3 \\ 0 \\ 9.8 \end{bmatrix} \delta$$

Suppose that we measure the horizontal velocity v as the output, that is

y = v.



Example

- Find the poles of the plant model.
 - **Answer :** Use eig(A) to obtain the poles as -0.6565 and $0.1183 \pm j0.3678$. Note that the plant has RHP poles and is unstable.
- Is the system controllable?
 - **Answer :** We compute the controllability matrix $\mathcal{C} = [\mathbf{B} \quad \mathbf{A}\mathbf{B} \quad \mathbf{A}^2\mathbf{B}]$. Then, we compute its determinant as $\det(\mathcal{C}) = 2451.3 > 0$. The system is controllable.
- Find the feedback gain that places the closed-loop poles at $s=-1\pm j$ and s=-2.

Answer : We compute the desired characteristic polynomial as : $\alpha_c(s) = (s+2)(s^2+2s+2) = s^3+4s^2+6s+4$. Then

$$\mathbf{K} = [0 \quad 0 \quad 1] \mathcal{C}^{-1} \alpha_c(\mathbf{A}) = [0.4706 \quad 1.0 \quad 0.0627]$$

We can use the command: K=acker(A,B,[-2 -1+i -1-i]);

Example

- Design an estimator and place its poles at -8 and $-4\pm4\sqrt{3}j$. **Answer**: We use the Ackermann's formula for the dual case: Lt=acker(A',C',[-8 -4+4*sqrt(3)*i -4-4*sqrt(3)*i]), which leads to $\mathbf{L} = \begin{bmatrix} 44.7097 & 18.8130 & 15.5800 \end{bmatrix}^T$
- Compute the compensator transfer function (for a negative feedback). **Answer**: Use $D_c(s) = \mathbf{K}(s\mathbf{I} - \mathbf{A} + \mathbf{B}\mathbf{K} + \mathbf{L}\mathbf{C})^{-1}\mathbf{L}$ to compute the controller. Or use the commands Dc=ss(A-B*K-L*C,L,K,0);tf(Dc):

$$D_c(s) = \frac{40.83s^2 + 60.99s + 31.88}{s^3 + 19.58s^2 - 210.4s + 814.7}$$

• Draw the Bode plot of the open-loop transfer function and indicate the gain and phase margins.

Answer: The transfer function of the plant is tf(ss(A,B,C,0))

$$G(s) = \frac{9.8s^2 - 4.9s + 61.74}{s^3 + 0.42s^2 - 0.006s + 0.098}$$

Example

