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Frequency Response

Frequency Response

The frequency response of a system is the steady state response to a
sinusoidal input signal. For LTI stable systems, the steady-state response is
sinusoidal with the same frequency as the input signal. It differs from the
input wave form only in amplitude and phase angle.
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Frequency Response

Find the frequency response of G (s) to a sinusoidal signal u(t) = sinωt.
Solution : We find first the response to u(t) = e jωt .

u(t) = e jωt = j sinωt + cosωt ⇒ U(s) =
1

s − jω

⇒ Y (s) = G (s)U(s) =
c1

s − p1
+ · · ·+ cn

s − pn
+

c

s − jω

where pi are the distinct poles of G (s). Taking the inverse Laplace transform :

y(t) = c1e
p1t + · · ·+ cne

pnt + L−1

{

c

s − jω

}

If the system is stable then all pi have negative real parts and

lim
t→∞

y(t) = lim
t→∞

L−1

{

c

s − jω

}

= c e jωt

where

c = lim
s→jω

(s − jω)Y (s) = G (jω) ⇒ lim
t→∞

y(t) = G (jω)e jωt
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Frequency Response

Therefore, the steady state response to u(t) = sinωt is :

ys(t) = Im[G (jω)e jωt ] = |G (jω)| sin(ωt + φ) ; φ = ∠G (jω)

G (jω) can be obtained from a set of experiments with sinusoidal
inputs of different frequencies.
G (jω) can be obtained using Fourier analysis if the system is excited
with a white noise, a Pseudo Random Binary Sequence or a multi
sinusoidal signal.
G (jω) gives very useful information about the system and can be
used for controller design (loop shaping method).
G (jω) can be obtained by replacing s = jω in G (s). It is called the
frequency response function and is defined even for unstable systems.
In this case, it is not the steady-state response to a sinusoidal input.
G (jω) = G (−jω), so |G (jω)| = |G (−jω)| is an even function and
∠G (jω) = −∠G (−jω) an odd function. They are usually computed
for ω ∈ [0 , ∞[.
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Identification of the Frequency Response

Frequency analysis :

Processus

RA(ω)
ϕ(ω)

-5 0 5 10 15 20

Asin(ωt) A'sin(ωt+ϕ)

RA(ω) =
A′

A
= |G (jω)|

ϕ(ω) = arg[G (jω)] ω
[rad/s]

-90°

-180°

0 °

ϕ

[ °]

ω
[rad/s]

1

RA

[-]

Remarks : Frequency range should cover at least 2 or 3 decades with
more than 10 frequency points per decade. The measurements should be
done in steady state.
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Identification of the Frequency Response

Fourier transform analysis :

G(jω)

u(t)

t
0

y(t)

t
0

U(ω) =

∫ ∞

−∞
u(t)e−jωtdt

Y (ω) =

∫ ∞

−∞
y(t)e−jωtdt

⇒ G (jω) =
Y (ω)

U(ω)
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Frequency Response Plots

Bode Plots : The amplitude and phase of G (jω) are plotted in two figures
with a logarithmic scale for frequency ω usually in rad/s (sometimes in
Hz). The amplitude is in dB, i.e . 20 log10 |G (jω)|. Use bode in Matlab.
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Frequency Response Plots

Sketching Bode Plots : The transfer function G (s) can be written as :

G (s) = K

m
∏

i=1

(τi s + 1)

m+n
∏

i=m+1

1

τi s + 1

then

20 log |G (jω)| = 20 log |K |+
m
∑

i=1

20 log |jτiω + 1|+
m+n
∑

i=m+1

20 log

∣

∣

∣

∣

1

jτiω + 1

∣

∣

∣

∣

argG (jω) = argK +
m
∑

i=1

arg(jτiω + 1) +
m+n
∑

i=m+1

arg

(

1

jτiω + 1

)

Remark : If we know how to plot the Bode diagram of a zero and a pole,
then the sum of the magnitudes of all zeros and poles plus the gain K will
give the total magnitude. The sum of the phases will give the phase
diagram.
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Sketching Bode Plots

Let’s compute the magnitude of

G (jω) =
1

jτω + 1
τ ∈ R > 0

ω ≪ 1/τ ⇒ |G (jω)| = 1 ⇒ 20 log |G (jω)| = 0

ω = 1/τ ⇒ |G (jω)| = 1/
√
2 ⇒ 20 log |G (jω)| = −3dB

ω ≫ 1/τ ⇒ |G (jω)| = 1

τω
⇒ 20 log |G (jω)| = −20 logω − 20 log τ
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Sketching Bode Plots

Let’s compute the phase of

G (jω) =
1

jτω + 1
τ ∈ R > 0 ⇒ argG (jω) = − arctan τω

ω ≪ 1/τ ⇒ argG (jω) = 0

ω = 1/τ ⇒ argG (jω) = − arctan 1 = −π/4

ω ≫ 1/τ ⇒ argG (jω) =
−π
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Sketching Bode Plots

Let’s compute the magnitude of

G (jω) = jτω + 1 τ ∈ R > 0

ω ≪ 1/τ ⇒ |G (jω)| = 1 ⇒ 20 log |G (jω)| = 0

ω = 1/τ ⇒ |G (jω)| =
√
2 ⇒ 20 log |G (jω)| = 3dB

ω ≫ 1/τ ⇒ |G (jω)| = τω ⇒ 20 log |G (jω)| = 20 logω + 20 log τ
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Sketching Bode Plots

Let’s compute the phase of

G (jω) = jτω + 1 τ ∈ R > 0 ⇒ argG (jω) = arctan τω

ω ≪ 1/τ ⇒ argG (jω) = 0

ω = 1/τ ⇒ argG (jω) = arctan 1 = π/4

ω ≫ 1/τ ⇒ argG (jω) =
π
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Sketching Bode Plots

Let’s consider the Bode diagram of an unstable pole :

G (jω) =
1

jτω − 1
τ ∈ R > 0 ⇒

∣

∣

∣

∣

1

jτω − 1

∣

∣

∣

∣

=
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∣

∣

∣

1

jτω + 1

∣

∣

∣

∣

ω ≪ 1/τ ⇒ G (jω) ≈ −1 → argG (jω) = −π

ω = 1/τ ⇒ G (jω) = 1
j−1 = j+1

−2 → argG (jω) = −3π/4

ω ≫ 1/τ ⇒ G (jω) ≈ 1

jτω
→ argG (jω) = −π

2

10
-2

10
-1

10
0

10
1

10
2

-180

-135

-90

P
h

a
s
e

 (
d

e
g

)

Frequency  (rad/s)

1/10τ

1/τ

10/τ

Control Systems (Chapter 6) Frequency Response Methods Fall 2024 14 / 75



Sketching Bode Plots

Let’s consider the Bode diagram of a RHP zero :

G (jω) = jτω − 1 τ ∈ R > 0 ⇒ |jτω − 1| = |jτω + 1|

ω ≪ 1/τ ⇒ G (jω) ≈ −1 → argG (jω) = π

ω = 1/τ ⇒ G (jω) = j − 1 → argG (jω) = 3π/4

ω ≫ 1/τ ⇒ G (jω) ≈ jτω → argG (jω) =
π
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Sketching Bode Plots

Let’s compute the Bode magnitude diagram of

G (s) =
ω2
n

s2 + 2ζωns + ω2
n

⇒ G (jω) =
ω2
n

−ω2 + j2ζωnω + ω2
n

ω ≪ ωn ⇒ G (jω) ≈ 1 ⇒ 20 log |G (jω)| = 0.

ω = ωn ⇒ G (jωn) =
1

j2ζ

⇒ 20 log |G (jωn)| = 20 log
1

2ζ

ω ≫ ωn ⇒ G (jω) ≈ −ω2
n

ω2

⇒ 20 log |G (jω)| = −40 logω

+ 40 logωn
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Sketching Bode Plots

Let’s compute the Bode phase diagram of

G (s) =
ω2
n

s2 + 2ζωns + ω2
n

⇒ G (jω) =
ω2
n

−ω2 + j2ζωnω + ω2
n

ω ≪ ωn ⇒ G (jω) ≈ 1 ⇒ argG (jω) = 0.

ω = ωn ⇒ G (jωn) =
1

j2ζ

⇒ argG (jωn) = −π

2

ω ≫ ωn ⇒ G (jω) ≈ −ω2
n

ω2

⇒ argG (jω) = −π
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Sketching Bode Plots

For magnitude Bode plot :

Each pole decreases the slope by 20 dB/dec at the pole location.

Each zero increases the slope by 20 dB/dec at the zero location.

An integrator (a pole at zero) has a constant slope of -20dB/dec. It
crosses the zero dB axis at 1 rad/s.

Complex poles give resonance peak (larger for smaller ζ) and a
change of slope of -40 dB/dec at ωn.

jτω− 1 and jτω+ 1 have the same magnitude (no difference between
stable and unstable poles).

Time delay does not change the magnitude, i.e.
|e−jTωG (jω)| = |G (jω)|.
KG (jω) will shift up (if K > 1) or shift down (if 0 < K < 1) the
magnitude of G (jω) for 20 logK .

The physical systems have a negative slope at high frequencies. The
slope at high frequency is −20(n−m) dB, where n−m is the relative
degree of G (s).

Control Systems (Chapter 6) Frequency Response Methods Fall 2024 18 / 75



Sketching Bode Plots

For phase Bode plot :

Each real negative pole/zero decreases/increases the phase by 90◦.

Each real positive pole/zero increases/decreases the phase by 90◦.

An integrator (a pole at zero) has a constant phase of -90◦.

Real negative/positive complex poles decrease/increase the phase by
180◦ (90◦ at ωn). Smaller ζ gives sharper change.

A time delay adds a linear phase lag to the system, i.e.

arg[e−jTωG (jω)] = argG (jω)− Tω

KG (jω), with K > 0, will not change the phase of G (jω).

The physical systems have a negative phase at high frequencies. The
phase at high frequency is −90(n −m) degree, where n −m is the
relative degree of G (s).
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Some Information in the Bode Plots
The bandwidth is the frequency at which the frequency response has
declined 3dB from its low frequency value (the steady-state gain).

A resonance mode in low frequency shows an oscillatory response (a pair of
complex poles) ; higher the peak value larger overshoot can be expected.

The relative degree of a continuous-time transfer function is equal to the
slope of the magnitude Bode diagram in high frequencies divided by -20 or
its phase divided by -90◦.

Linear decrease in the phase diagram, shows the existence of pure time delay.

Systems with real positive zeros (non-minimum phase systems) have larger
phase than systems with the same magnitude but with real negative zeros.
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Some Information in the Bode Plots

Exercise
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Question : How many poles ? How many zeros ?
A) 2 poles, no zero
B) 3 poles, one zero
C) 3 poles, no zero
D) 4 poles, one zero
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Some Information in the Bode Plots

Exercise
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Question : Frequency of poles ?
A) 2 real poles around 10 rad/s and one pole around 5 rad/s
B) 2 complex poles around 10 rad/s and one pole around 20 rad/s
C) 2 complex poles around 10 rad/s and one pole around 100 rad/s
D) 2 complex poles around 10 rad/s and one pole around 50 rad/s

Control Systems (Chapter 6) Frequency Response Methods Fall 2024 22 / 75



Some Information in the Bode Plots

Exercise (zoom on the magnitude plot)
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Question 1 : What is the value of the steady-state gain ?

(A) 1 (B) 2 (C) 6 (D) -20

Question 2 : What is the bandwidth (rad/s) ?

(A) 10 (B) 15 (C) 20 (D) 5

Question 3 : What is the damping factor ?

(A) ζ = 0.1 (B) ζ = 0.3 (C) ζ = 0.7 (D) ζ = 0.05
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Some Information in the Bode Plots

Exercise
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Transfer function of the system ?
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Nyquist Plot

Nyquist plot : The real and imaginary part of G (jω) are plotted in a
complex plane for ω ∈]−∞ , ∞[. It is very useful for stability and
robustness analysis. Use nyquist in Matlab to plot it.
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Nyquist Plot

Sketching Nyquist plot : The frequency function of simple systems can
be sketched by finding some points on the plot.

Example

Plot the Nyquist diagram of G (s) =
4

s + 2
. We have G (jω) =

4

jω + 2
.

For ω ≪ 2, we get Re [G (jω)] ≈ 2, and Im[G (jω)] ≈ 0.

For ω ≫ 2, we get G (jω) ≈ 4
jω . Then Re [G (jω)] ≈ 0, and

Im[G (jω)] ≈ 0 and ∠G (jω) ≈ −π/2.

Note that :

G (jω) = 1 +
2− jω

2 + jω

which represents a semicircle for ω > 0.
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Nyquist Plot

Example

For G (s) =
1

(s + 1)2
, we have G (jω) =

1

(jω + 1)2
.

(A) For ω ≪ 1, we get
Re [G (jω)] ≈ 1, and
Im[G (jω)] ≈ 0.

(C) For ω = 1, we get
G (jω) = −0.5j , then
Re [G (jω)] = 0, and
Im[G (jω)] = −0.5.

(E) For ω ≫ 1, we get
G (jω) ≈ 1

−ω2 . Then
Re [G (jω)] ≈ 0, and
Im[G (jω)] ≈ 0 and
∠G (jω) ≈ −π.
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Nyquist Stability Criterion

Remark : The Nyquist stability criterion is based on the Cauchy’s
Argument Principle for complex functions. Note that G (s) is a complex
function from C to C and follows this principle.

Principle of the Argument

If a contour Γs in the s-plane encircles Z zeros and P poles of F (s) and
does not pass through any poles or zeros of F (s) and the traversal is in the
clockwise direction along the contour, the corresponding contour ΓF in the
F (s)-plane encircles the origin of the F (s)-plane, N = Z − P times in the
clockwise direction.

Control Systems (Chapter 6) Frequency Response Methods Fall 2024 28 / 75



Principle of the Argument
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Principle of the Argument

Why ? Let’s compute the argument of F (s) = K
(s − z1)(s − z2)

(s − p1)(s − p2)
:

arg(F (s)) = arg(s − z1) + arg(s − z2)− arg(s − p1)− arg(s − p2)

= φz1 + φz2 − φp1 − φp2

When s traverses Γs in a clockwise direction, for a full rotation, the net
angle change of φz2 , φp1 and φp2 is zero. However, it is 360◦ for φz1 .
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Nyquist Stability Criterion

Objective : Knowing G (s) and Dc(s) we want to investigate the stability
of the unit feedback system (the number of RHP zeros of 1 + G (s)Dc(s)).

Basic Principle :

The number of clockwise encirclements of the origin by the image of
Γs under the mapping F (s) is equal to N = Z − P, where Z and P
are respectively the number of zeros and poles of F (s) inside Γs .

Choose Γs as a contour that covers the RHP of the complex plane.

Choose F (s) = 1 + L(s) where L(s) = G (s)Dc(s) is the open-loop
transfer function.

As a result Z is the number of zeros of 1 + L(s) on the RHP. These
zeros are the unstable poles of the closed-loop system. We wish
Z = 0 to have closed-loop stability.

P is the number of RHP poles of F (s) = 1+ L(s). Note that the poles
of 1 + L(s) are the poles of G (s)Dc(s) and therefore P is known.
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Nyquist Stability Criterion

Procedure
1 Compute P the number of RHP poles of L(s) = G (s)Dc(s) (usually

P = 0 for stable plant models).

2 Plot the image of Γs under the mapping 1 + L(s) and count the
number of clockwise encirclements of the origin N.

3 Compute Z = N + P the number of unstable poles of the closed-loop.

4 Usually we plot the image of Γs under the mapping L(s) and count
the number of clockwise encirclements of the critical point (-1,0).
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Nyquist Stability Criterion

Theorem

The zeros of 1 + L(s) have all negative real
parts (i.e. the closed-loop system is stable), iff
the image of Γs by the mapping s 7→ L(s)
encircles counterclockwise the critical point
(-1,0), P times, where P is the number of
RHP poles of L(s).

The Nyquist contour Γs should not pass through the poles of
L(s) = G (s)Dc(s) on the imaginary axis.

Since L(s) is strictly proper (degree of den > deg of num), L(∞) = 0.
So the image of semicircle with infinity radius will be the origin.
Therefore, ΓL is usually plotted just for the imaginary axis.

If P = 0 and ΓL does not encircle -1, the closed loop system is stable.
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Nyquist Stability Criterion

Exercise

Le diagram Nyquist de

G (s) =
0.0026(s − 22)(s − 2)(s + 0.1053)

(s − 0.0952)(s2 + 0.2266s + 0.0793)

est donnée dans cette figure. Utiliser le
Théorème de Nyquist pour étudier la stabilité
de ce systéme en boucle fermée avec un
régulateur proportionnel pour les valeurs
suivantes :
(a) kP = 1, (b) kP = 2 and (c) kP = 0.5.
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Nyquist Plot

Example (Sketching Nyquist plot)

Plot the Nyquist diagram of G (s) =
1

s(τs + 1)
.

The Nyquist contour Γs should not pass
through the poles of G (s). So it should be
modified to have a small detour around zero.

(A) For ω = 0−, G (jω) ≈ 1/(jω) = j∞.

(C) For ω = 0+, G (jω) ≈ 1/(jω) = −j∞.

(B) When s makes a detour on Γs , we have
s = ǫe jθ with θ going from −π/2 to π/2.
The image of G (s) makes a semicircle with
an ∞ radius. For θ = 0, the image pass
through the real axis in point B.
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Nyquist Plot

Sketching Nyquist plot

Find the corresponding transfer function for each Nyquist plot :

(1)
(2)

(3) (4)

(A) L1(s) =
K (τ3s + 1)

s(τ1s + 1)(τ2s + 1)
(B) L2(s) =

K

(τ1s + 1)(τ2s + 1)

(C) L3(s) =
K

s(τ1s + 1)(τ2s + 1)
(D) L4(s) =

K

s2(τ1s + 1)

(E) L5(s) =
K

(τ1s + 1)(τ2s + 1)(τ3s + 1)
K > 0, τ1 > 0, τ2 > 0, τ3 > 0
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Robust Stability Margins

We can check the stability of a closed-loop system given the
controller Dc and the plant model G using the Routh criterion or
using the Nyquist stability criterion.

Using the Nyquist stability criterion we can define the concept of
relative stability by a measure of the closeness of the Nyquist plot to
the critical point.

Example

Consider

L(s) =
K

s(τ1s + 1)(τ2s + 1)

with different value of K . It is clear that by
increasing K the system becomes less
stable and even unstable.
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Robust Stability Margins

Gain Margin

The gain margin GM is equal to the inverse of the distance between the origin
and the crossing point of L(jω) and the negative real axis.

For closed-loop stable systems, the gain
margin shows the amount that gain can
increase to make the system marginally
stable (with poles on the imaginary axis).

Usually expressed in dB. A value between
4dB and 12dB is considered safe.

The frequency at the crossing point, ωcr ,
is called the critical frequency.

If there are multiple intersections with the
negative real axis the smallest value will
be chosen (closest to -1).

Re

Im

1/GM

L(jω)

∠L(jωcr ) = −π , GM = |L(jωcr )|−1
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Robust Stability Margins

Phase Margin

The phase margin PM is the angle of L(jωc) with the negative real axis, where ωc

is the frequency of L(jω) when crossing the unit circle.

For a closed-loop stable system, the phase
margin shows the amount that phase can
decrease to make the system marginally
stable (with poles on the imaginary axis).

Typically, a phase margin between 30◦

and 60◦ is considered safe.

The frequency at the crossing point, ωc , is
called the crossover frequency.

If there are multiple intersections with the
unit circle the smallest phase will be
chosen (closest to -1).

Re

Im

PM

L(jω)

|L(jωc)| = 1 , PM = 180+∠L(jωc)
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Robust Stability Margins

Gain and Phase margin in the Bode diagram of L(jω) :

Gain margin : On the phase plot find ωcr at which the phase is
-180◦. The gain margin is −20 log |L(jωcr )|.
Phase margin : On the magnitude plot find ωc at which the
amplitude is 0dB. The phase margin is 180 + ∠L(jωc).

Control Systems (Chapter 6) Frequency Response Methods Fall 2024 40 / 75



Robust Stability Margins

Modulus Margin or Vector Margin

For a closed-loop stable system, the modulus margin is the radius of the
smallest circle centred at the critical point and tangent to L(jω) :

m = inf
ω
|1 + L(jω)|

A typical value for the modulus margin
is m = 0.5 (-6dB).

A modulus margin of m, guarantees a

gain margin greater than
1

1−m
and a

phase margin of at least 2 arcsin m
2 .

A modulus margin of 0.5 guarantees a
gain margin of at least 6dB and a
phase margin of at least 29◦.

m

Re

Im

1/GM

PM

L(jω)
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Robust Stability Margins

Modulus margin from the Bode diagram of the sensitivity function :
The modulus margin is the inverse of the maximum value of the
magnitude Bode plot of S(jω), because :

S(jω) = 1

1 + L(jω)
⇒ |1 + L(jω)| = 1

|S(jω)|

⇒ m = inf
ω
|1 + L(jω)| = inf

ω

1

|S(jω)| =
1

supω |S(jω)|
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Stability Margins

Exercise
The frequency response of the open-loop transfer function is given by :
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Find the following information from the diagram :

(A) (B) (C) (D)
ωcr 1.8 7 1 104

ωc 1.8 10 7 45
GM 20dB -20dB 20 0.1
PM 60◦ 90◦ 135◦ 45◦
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Stability margins

Question : Exam 2015

Le diagramme de Bode de G (s) =
s + 100

s(s + 2)(s + 30)
est donné. Avec un

régulateur proportionnel Dc(s) = 10, calculer la marge de gain et la marge de
phase approximative (0.2 point).

(A) GM ≈ 30dB, PM ≈ 55◦

(B) GM ≈ 20dB, PM ≈ 30◦

(C) GM ≈ 10dB, PM ≈ 15◦

(D) GM ≈ 30dB, PM ≈ 30◦
M
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g
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d
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Loop Shaping Method

Typical shapes of closed-loop transfer functions

Transfer function between reference and output : is typically a low-pass filter.

T (s) =
G (s)Dc(s)

1 + G (s)Dc(s)

E(s)

It should be close to one in low frequencies to have a good tracking property
(y(t) ≈ r(t)).

It should be small in high frequencies to reject the measurement noise.

The closed-loop bandwidth ωBW is the frequency where the amplitude is 3
dB less than the steady-state value.

A peak in the magnitude of T gives an overshoot in the step response.

It is strictly proper, i.e. T (j∞) = 0, because G (s) is strictly proper.
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Loop Shaping Method

Typical shapes of closed-loop transfer functions

Transfer function between reference and error : is typically a high-pass filter.

S(s) = 1

1 + G (s)Dc(s)

E(s)

It should be very small in low frequencies to have a good tracking property
(y(t) ≈ r(t)).

It will be close to one in high frequencies because G (j∞) = 0.

The peak value of |S(jω)| is a measure of closed-loop robustness (smaller
peak means more robust).

The attenuation band or disturbance rejection band ωDRB is the frequency
where the amplitude is -3 dB.
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Loop Shaping Method

Example

For a typical second-order open-loop system,

L(s) = G (s)Dc(s) =
ω2
n

s(s + 2ζωn)
, we have the following curves :

ωBW = ωn

√

1− 2ζ2 +
√

2− 4ζ2 + 4ζ4

ωc = ωn

√

√

4ζ4 + 1− 2ζ2

ωDRB = ωn

√

−1− 2ζ2 +
√

2 + 4ζ2 + 4ζ4

In general, we have : ωc ≤ ωBW ≤ 2ωc

and
PM ≈ 100ζ
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Remark : For a first order open-loop system L(s) = K/s, we have

ωBW = ωc = ωDRB = K
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Robustness-Performance Trade-Off

Tracking performance for sinusoidal signals : Consider r(t) = sin(ωt).
If the closed-loop system is stable, the tracking error at steady state will
be given by :

lim
t→∞

e(t) =

∣

∣

∣

∣

1

1 + Dc(jω)G (jω)

∣

∣

∣

∣

sin(ωt + φ) = |S(jω)| sin(ωt + φ)

If |S(jω)| ≪ 1 for ω ∈ [0 , ω0], we will have good tracking
performance for sinusoidal signals with frequencies < ω0.
So larger ω0 gives better tracking performance (larger bandwidth).
Can we make ω0 as large as we wish ?

Theorem (Bode Sensitivity Integral)

The sensitivity function of a closed-loop stable system with a strictly
proper L(s) that has P RHP poles satisfies the following equality :

∫ ∞

0
ln |S(jω)|dω = π

P
∑

i=1

Re{pi}
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Robustness-Performance Trade-Off

The integral of ln |S(e jω)| is constant. So small tracking errors in low
frequencies will be paid by large errors (signal amplification) at high
frequencies.

Improving the tracking performance can increase the maximum of
|S(ω)| and reduce the modulus margin m = (supω |S(ω)|)−1.
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Controller Design

Controller synthesis : Given a plant model, design a controller to satisfy
a set of performance and robustness specifications :

Steady-state performance :

Zero steady-state error for step, ramp or parabolic signals ;
Desired steady state gain (position, velocity or acceleration) ;
Error bounds for tracking or rejection of sinusoidal signals in a given
frequency range.

Transient performance :

Desired rise-time in step response (tracking) ;
Desired settling-time in step response (tracking and regulation) ;
Maximum overshoot ;
Desired bandwidth ;
Desired reference model.

Robustness specifications :

Gain margin, phase margin, modulus margin ;
Sensitivity to measurement noise ;
Sensitivity to unmodelled dynamics in high frequencies.
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Loop-Shaping method

Loop-Shaping method : For a given stable plant G , the controller Dc(s)
is designed such that the magnitude of open loop transfer function
L(jω) = G (jω)Dc(jω) has a desired shape.

The steady-state performance can be translated to some lower bounds
on the magnitude frequency response of the open-loop transfer
function.

The transient performance is closely related to the closed-loop
bandwidth which is close to the crossover frequency ωc .

A desired reference model can be used to compute a desired
open-loop transfer function.

The gain and phase margin can be easily tuned in the Bode diagram.

The sensitivity to measurement noise and unmodelled dynamics can
be represented by some upper bound on the magnitude frequency
response of the open-loop transfer function.
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Loop-Shaping method

The Frequency Response of the Desired Open-Loop Transfer Function

Large at low frequencies ;

Small at high frequencies ;

Slope of -20 dB/dec when
crossing the 0dB axis.

|G(jω)Dc (jω)|

arg[G(jω)Dc (jω)]

ωc
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Loop-Shaping method

Why“large at low frequencies”? For good steady-state performance.

Integrators in open-loop transfer function increase the gain at low
frequencies :

∣

∣

∣

∣

1

(jω)ℓ

∣

∣

∣

∣

≫ 1 for ω ≪ 1

Small steady-state error for step, ramp, etc. requires large
steady-state gain :

Kp = lim
s→0

Dc(s)G (s) ; Kv = lim
s→0

sDc(s)G (s) ; Ka = lim
s→0

s2Dc(s)G (s)

Large gain at ω = 0 leads to large gain at low frequencies.

Small steady-state error for tracking low frequency sinusoidal signals :

|S(jω)| =
∣

∣

∣

∣

1

1 + Dc(jω)G (jω)

∣

∣

∣

∣

< ǫ for 0 < ω < ωl

⇒ |1 + Dc(jω)G (jω)| > ǫ−1 ⇒ |Dc(jω)G (jω)| > ǫ−1
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Loop-Shaping method

Why“small at high frequencies”?

Reducing the effect of measurement noise :

E(s)

Noise is a high frequency signal, so |T (jω)| should be small at high
frequencies.

∣

∣

∣

∣

Dc(jω)G (jω)

1 + Dc(jω)G (jω)

∣

∣

∣

∣

≈ |Dc(jω)G (jω)| < ǫ

Improving the robustness : Fast high frequency modes are usually
not modelled. Neglected time delay e−Tω leads to a phase lag of Tω
which is large at high frequencies. So modelling error is large at high
frequencies. Therefore, to be far from the critical point at high
frequencies, we should have : |Dc(jω)G (jω)| ≪ 1

Control Systems (Chapter 6) Frequency Response Methods Fall 2024 54 / 75



Loop-Shaping method

Why“slope of -20 dB/dec when crossing the 0dB axis”?

It corresponds locally, around ωc , to an integrator :

Dc(jω)G (jω) ≈ ωc

jω
⇒ arg (Dc(jωc)G (jωc)) ≈ −90

So it leads to a good phase margin of around 90◦.

Moreover, with this -20 dB/dec slope, the closed-loop bandwidth
ωBW will be very close to the crossover frequency ωc . We have :

∣

∣

∣

∣

Dc(jωBW )G (jωBW )

1 + Dc(jωBW )G (jωBW )

∣

∣

∣

∣

= −3dB

∣

∣

∣

∣

Dc(jωc)G (jωc)

1 + Dc(jωc)G (jωc)

∣

∣

∣

∣

=
1

|1 + Dc(jωc)G (jωc)|
≈ 1√

2
= −3dB

A slope of -40 dB/dec corresponds locally to a double integrator and
leads to a very small phase margin and is not acceptable.
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Loop Shaping Method

Exercise

Given G (s) =
(s + 100)

s(s + 2)
; Find a proportional controller kP such that
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The phase margin is equal to 45◦ :

A) kP = 25 or kP = −37 B) kP = −25 or kP = 37
C) kP = 0.056 or kP = 70 D) kP = 17.8 or kP = 70
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Loop Shaping Method

Exercise

Given G (s) =
(s + 100)

s(s + 2)
; Find a proportional controller kP such that
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The crossover frequency is equal to 30 rad/s :

A) kP = 20 B) kP = 10
C) kP = 0.1 D) kP = −20
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Loop Shaping Method

Exercise

Given G (s) =
(s + 100)

s(s + 2)
; Find a proportional controller Kp such that
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The steady-state error for tracking a ramp signal is 0.01 :

A) kP = 2 B) kP = 10
C) kP = 20 D) kP = 100
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Lead-Lag Compensator

Lead compensator :

is a first order transfer function that has some positive phase (α > 1).

C (s) =
1 + ατs

1 + τs

It has one pole at −1/τ and one zero at −1/(ατ). So its zero has
smaller frequency than its pole.
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The maximum positive phase appears at ωm = 1
τ
√
α
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Lead-Lag Compensator

Lag compensator :

is a first order transfer function that has some negative phase (0 < α < 1).

C (s) =
1 + ατs

1 + τs

It has one pole at −1/τ and one zero at −1/(ατ). So its pole has
smaller frequency than its zero.
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The maximum negative phase appears at ωm = 1
τ
√
α
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Lead-Lag Compensator

Loop-Shaping controller structure : This controller consists of a
proportional gain, one or more integrators and some lead-lag compensators.

Dc(s) = K
1

sℓ

m
∏

i=1

1 + αiτi s

1 + τi s

Controller design steps :

1 Select ℓ according to the steady-state performance specifications and
number of integrators in the plant model.

2 Compute K according to the desired steady-state error for a given
type of reference or disturbance signal.

3 Design one or more lead-lag compensators to achieve the desired
crossover frequency, desired phase margin or noise attenuation at high
frequencies.
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Lead-Lag Compensator

Example

Consider G (s) =
(s + 100)

s(s + 2)
. How much gain and phase to have a phase margin of

60◦ and a crossover frequency of 30 rad/s ?
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We need a lead compensator to give a contribution of 20dB in the magnitude and
40◦ in the phase at ωc = 30 rad/s :

|G (jωc)| ≈ −20dB arg(G (jωc)) ≈ −160◦
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Lead-Lag Compensator

Magnitude contribution
√
c at a given frequency ωl :

c =

∣

∣

∣

∣

1 + jατωl

1 + jτωl

∣

∣

∣

∣

2

=
1 + (ατωl)

2

1 + (τωl)2

Phase contribution φ at a given frequency ωl :

φ = arg

(

1 + jατωl

1 + jτωl

)

= arg

(

(1 + jατωl)(1− jτωl)

1 + (τωl)2

)

= arg(1 + α(τωl)
2 + j(ατωl − τωl)) ⇒ p = tanφ =

ατωl − τωl

1 + α(τωl)2

Lead-Lag compensator design : Given ωl , c and p, find α and τ .
Eliminating τωl from the above equations, we can obtain α by solving :

(p2 − c + 1)α2 + 2p2cα+ p2c2 + c2 − c = 0

For a lead compensator α > 1 and for a lag compensator 0 < α < 1 is

acceptable. Then τ can be obtained from : τ =
1

ωl

√

1− c

c − α2
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Lead-Lag Compensator

Example

Compute a lead compensator for the previous example to add a phase of 40◦ and
amplitude of 20dB at ωl = ωc = 30 rad/s.

√
c = 20dB = 10 ⇒ c = 100 ; p = tan 40◦ = 0.84

We should solve :

(p2 − c + 1)α2 + 2p2cα+ p2c2 + c2 − c = 0 ⇒ α = 13.86

Therefore :

τ =
1

ωc

√

1− c

c − α2
= 0.0345

and

Dc(s) =
1 + ατs

1 + τs
=

1 + 0.4788s

1 + 0.0345s
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Lead-Lag Compensator

Example

We can check the final result by drawing the Bode Plots of G (jω)Dc(jω) :
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The phase margin is equal to 60◦ and the crossover frequency is 30 rad/s.
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Loop-Shaping Method

Example

Given

G (s) = 0.51× 10−5 (s + 9760)(80− s)

s(s + 2.05)

Compute a controller to have :

Zero steady-state error for tracking a step signal.

A steady-state error of 0.05 for tracking a ramp signal.

A crossover frequency of ωc = 14.3.

A phase margin of at least 60◦.
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Loop-Shaping Method

Example

Step-by-Step procedure :

First specification requires a type 1 open-loop transfer function. Since
the plant model has an integrator, it is no need to add an integrator

in Dc(s). Therefore, ℓ = 0 and : Dc(s) = K
1 + ατs

1 + τs
The steady-state error for a ramp signal is 1/Kv that can be
computed as :

Kv =
1

0.05
= lim

s→0
sDc(s)G (s) = K

0.51× 10−5 × 9760× 80

2.05

⇒ K = 10.29
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Loop-Shaping Method

Example

Step-by-Step procedure :

Draw the Bode Plots of KG (jω)

Bode Diagram of KG

Frequency  (rad/s)
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A crossover frequency of 14.3 and a phase margin of 60◦ require a
magnitude contribution of 14dB and a phase contribution of 62◦ at
ωc = 14.3.

√
c = 14dB = 5 ⇒ c = 25 and p = tan(62◦) = 1.88
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Loop-Shaping Method

Example

Step-by-Step procedure :

First compute α by solving :

(p2 − c + 1)α2 + 2p2cα+ p2c2 + c2 − c = 0 ⇒ α = 16.81

Then compute τ from

τ =
1

ωc

√

1− c

c − α2
= 0.0213

The final controllers, which is a PD controller, reads :

Dc(s) = K
1 + ατs

1 + τs
= K

(

1 +
(α− 1)τs

1 + τs

)

= 10.3

(

1 +
0.3375s

1 + 0.02135s

)

This controller leads to a phase margin of 60◦ and a gain margin of
14.6dB.
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Loop-Shaping Method

A lead compensator has a stabilizing effect and can be used to
improve the phase margin.

The desired phase and magnitude contribution may not be achievable
with one lead compensator. In this case, the second order equation
will not have an admissible solution for α. A remedy is to implement
two lead compensators such that each compensator gives half of the
required contributions.

A lead compensator increases the open-loop gain at high frequencies,
so it reduce the performance for noise rejection.

A lag compensator can be used at very high frequencies to reduce the
open loop gain (with the same procedure, however the contribution in
magnitude and phase are negative).

A lead compensator can be used to increase the bandwidth but it
leads to higher control signal that may not be implementable
(because of saturation).

A lag compensator can be used to reduce the bandwidth and avoid
the saturation of the control signal.
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Loop-Shaping Method

PID controller design :

Only magnitude Bode Plots is used.

A good phase margin is obtained by ensuring a slope of -20 dB/dec
for the open-loop transfer function.

PD controller design by Loop-Shaping :

Dc(s) = Kp(1 + Tds)

Kp is chosen to satisfy the steady-state performance.

Td is computed to obtain the desired crossover frequency.

PI controller design by Loop-Shaping :

Dc(s) = Kp(1 +
1

Ti s
) =

Kp

s
(s +

1

Ti

)

Ti is chosen such that the dominant pole of the plant model is
canceled. This will not change the slope of L = GDc around the
crossover frequency.

Kp is chosen to obtain the desired crossover frequency.
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Loop-Shaping Method

Example (PI controller design)

Given G (s) = 0.05
80− s

s + 2.05
, compute a PI controller to have :

Zero steady-state error for tracking a step signal.

A crossover frequency of ωc = 14.3.

A slope of -20 dB/dec around the crossover frequency.

Solution :

Ti = 1/2.05 to cancel the plant model pole and have a slope of -20
dB/dec.

Kp is chosen to have ωc = 14.3 : |Dc(jωc)G (jωc)| = 1

⇒
∣

∣

∣

∣

0.05
Kp

jωc

(80− jωc)

∣

∣

∣

∣

= 1 ⇒ Kp = 3.52
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Loop-Shaping Method

Exercise

The magnitude Bode diagram of G (s) is given :

Specifications :

Crossover frequency of ωc = 30
rad/s.

Zero steady-state error (for a step
reference).

Which type of controller is adequate ?
(A) P (B) PD (C) PI (D) PID

1 What are reasonable values of Ti and Td ?
(A) Ti = Td = 1 (B) Ti = 1;Td = 30
(C) Ti = Td = 100 (D) Ti = Td = 30

2 What is the value of Kp (series structure) ?
(A) Kp = 30 (B) Kp = 0.33 (C) Kp = 1 (D) Kp = 3
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Loop-Shaping Method

The loop shaping method can be applied only to stable plant models.
Second order compensators can be used to cancel the resonance modes in
the plant model :

C (s) =
s2 + 2ζ1ω1s + ω2

1

s2 + 2ζ2ω2s + ω2
2

For low-damped resonance modes this compensator is a Notch Filter.
If G (s) is stable and minimum phase, then the loop shaping controller can
be computed as :

Dc(s) = Ld(s)G
−1(s)

where Ld(s) is the desired open-loop transfer function. Note that Dc(s) will
be proper if the relative degree of Ld(s) is greater than or equal to that of
the plant model.
A very simple choice for Ld(s), with relative degree 1, is :

Ld(s) =
ωc

s
⇒ Ld(jω) =

ωc

jω

The magnitude of Ld(jω) is large at low frequencies, small at high
frequencies and has a slope of -20 dB/dec when crossing the zero dB at the
desired band width ωBW ≈ ωc .
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Loop-Shaping Method

Exercise

The Bode diagram of G (s) =
s + 100

s(s + 2)(s + 30)
is given :

M
a
g
 [
d
B

]

-80

-70

-60

-50

-40

-30

-20

-10

0

10

20

30

Frequency (rad/s)
10

-1
10

0
10

1
10

2

P
h
a
s
e
 (

d
e
g
)

-220

-200

-180

-160

-140

-120

-100

Design a PID controller with the Loop-Shaping method to follow a ramp
with no steady-state error, obtain a crossover frequency of 15 rad/s and a
phase margin of around 60 degrees.
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