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Summary for modeling of dynamic systems

@ A mathematical model gives the relation between output y(t) and
input u(t) of a dynamic system : y(t) = F(u(r)) 7<t
@ This relation is usually given by differential equations.

@ Transfer function of linear time-invariant systems with input signal
u(t) and output signal y(t) is defined as :

o 38

where all initial conditions are taken equal to zero.

@ The nonlinear systems can be linearized around the operating point.
The linear model is valid only for small variations around the
operating point.
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Analysis of Dynamic Systems

Objective :

Characterise the output (the response) of a linear time-invariant system to
a given input signal.

There are several types of solution :
@ Convolution technique, impulse response
@ Laplace and inverse Laplace transform

@ Solving numerically the differential equations (Matlab simulation)
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e Convolution
e Laplace Transform

o Definition and properties

o Transfer function

o Inverse Laplace transform
o Final value theorem, steady-state gain
e Solving differential equations

o Effects of Pole and Zero Locations

e Time-domain Performance (rise time, overshoot, settling time)

e Block Diagram of Dynamic Systems
e Stability of LTI Systems
e Routh’s Stability Criterion
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Convolution

Main Idea : This method is based on the superposition principle. The
input signal is expressed as a sum of signals, then the response of the
system will be the sum of the individual responses to the respective signals.

u(r)

Example (Convolution)

0 A2A3A 5A

u(t)

o0

~ > Au(kA)p(t — kD) = y(t

k=0

1 (sec)

The response will be exact if A goes to zero!

) ~

i Au(kA)h(t — kA)
k=0
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Convolution

Impulse signal

The limit of p(t) when A goes to zero is the impulse signal.
o(t)=li t
(t) = Jim p(t)

Note that §(t) = 0 when t # 0 and : / o(t)dt =1

Impulse response : is the response of a system to an impulse signal and
is shown by g(t).

|

Sifting property
If u(t) is continuous at t = 7, then it has the sifting property :

u(t) = /_Oo u(r)o(t — 7)dr

\
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Convolution

Convolution integral

For an LTI system, the response of the system to d(t — 7) is g(t — 7) so
the response to u(7)d(t — 7) will be u(7)g(t — 7). Thus, the output of the
system for a general input u(t) (using sifting property) is :

(0.9} (o9}
y()= [ umet=ndr = [ gr)ule~ r)dr = u(0) (0
—0o0 —0o0 y
The output of a physical system at t does not depend the future values of
the input signal. As a result, the upper bound of the integral can be
limited to t. On the other hand, in most cases we take t = 0 as the time
when the input starts, so the convolution integral can be written as :

y(t) = /0 Cu(r)e(t — )dr
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Convolution

If we know the impulse response g(t) of an LTI system, we can find
the response of the system to any input signal u(t) using the

convolution integral :

y(t) = /0 u(r)g(t — )dr = u(z) * g(2)

Example (Convolution)

The impulse response of a system is g(t) = e~ * for t > 0. Compute, the
response of the system to a unit step signal defined as :

u(t):l(t):{(lj i;g

Using the convolution integral, we have :

T

t
y(t) = / u(t)e T dr = et
0

Z;m) — (1- e D1(t)

T
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Convolution

The impulse response of a system is g(t) = 6e~3t for t > 0. Compute the
response of the system to u(t) defined as :

(t) = 0 t<0,t>4
BU=012 o<t<4

(A) y(t) = [—4e3t + 4e=3(=91(¢)

(B) y(t) = [4(1 — e *)]1(t)

(C) y(t) =4(1 — e 3)1(t) — 4(1 — e 3E=)1(t — 4)
(D) y(t) = [2(1 — e73) —2(1 — e 3E=)]1(1)

(E) 1 do not know
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Laplace Transform

Motivation : The Laplace transform converts a differential equation to an
algebraic one.

Laplace Transform

The Laplace transformation for a function of time, f(t), is

F(s) = / T f(t)etdt = L{F(1)}

Existence : The Laplace transform exists if the integral converges.
Fortunately, signals that are physically realizable always have a Laplace
transform.

Inverse Laplace Transform

The inverse Laplace transform is written as :

1 o+joo
£(t) / F(s)e™ds

- % —joo
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Laplace Transform

Example (Laplace Transform of the Unit-Impulse Function)

F(s) = /OOO S(t)e *dt = 00+ 5(t)dt =1

Example (Laplace Transform of the Unit-Step Function)

(e.9]

F(s) = 1(t)e "tdt =

_ st |00
st 1

—€

S| 0 S|

T

~—
.

Example (Laplace Transform of the Unit-Ramp Function

o] —te_St e—st o0 1
F(s) = te Stdt = — -
(s) / € [ s 52 ]0 s2

where the technique of integration by part is used :

/udv:uv—/vdu
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Laplace Transform

Example (Laplace Transform of the Exponential Function)
Let's take f(t) = e ?'1(t), then

> —at ,—st —e(sta)t
F(s)= | e e tde— S

oo

_ 1
_s—i—a
0

_ s+ a

Example (Laplace Transform of the Sinusoid Function)

Let's take f(t) = e #“t1(t) = (coswt — jsinwt)1(t), then

F(s) = 1 s—jw s W
s+ jw  s24w? s2402 T2
Therefore :
S . w
[,[COSLUt] = m ) E[sm wt] = m
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Laplace Transform

Table of Laplace Transforms

Number F(s) f(),t>0
1 1 8(t)
2 1/s 1(t)
3 1/s2 t
4 21/s3 t2
5 3154 t3
6 mi/sm+1 i
7 1 e—ut
s+a
1
8 s te—at
(s +a)?
9 ; ltze—at
(s +a)3 2
10 ; 1 tm—le—at
(s+a)ym (m—1!
1 - 1—e
S(S +a)
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Laplace Transform

Table of Laplace Transforms

Number F(s) ft),t=0
a 1
12 5 (ot =1
s¢(s+a) a
13 i e—0t _ o—bt
(s+a)s+b)
X —at
14 3 (1—at)e™@
(s+a)
at
15 —_— 1—e %1 4at)
s(s+a)?
b—
16 s be—bt — ge—at
(s+a)s+b)
a
17 e sinat
s2+at
s
18 - cos at
52 +02
s+a
19 — e % cos bt
(s 4 a)2 + b2
b
20 — e~ % sin bt
(s+a)?+ b2
&ypd
a“+b a .
21 —_—— 1—e 9 (cos bt + — sin bt
sl(s + a)? + b2] ( 3 )
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Laplace Transform Properties

The Laplace transform is a linear transformation so the superposition
applies :

Llafi(t) + ph(t)] = aFi(s) + BFa(s)

| \

Time Delay
Suppose that 7(t) =0 for t < 0 and A > 0 is constant. Then, the Laplace

transform of f(t — \) is :
LIF(t = )] = / F(t — \)e~tdt
0

— /OO f'(tl)efs(tti»)\) dtl
-

= e_SA/ f(t’)e_Stldt’ = e_S)‘F(s)
0
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Laplace Transform Properties

Differentiation

The Laplace transform of the derivative of a signal is related to its Laplace
transform and its initial condition :

c {Z’;} — /OO (3’;) et = (1) + s/oo F(t)e tdt
Since e"*'f(t) — 0 as t — oo, we obtain :
L{f} =sF(s)— f(07)
For the second derivative, we have :
L{f} = s?F(s) — sf(07) — £(07)
In the same way, the Laplace transform of the m-th derivative of f reads :

L{F™()} = s™F(s) — s™1F(07) = s™2F(07) — --- — FIMD(07)
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Laplace Transform Properties

Shift in Frequency

The Laplace transform of the multiplication of a signal f(t) by an
exponential expression is

L{e ?f(t)} = F(s+a)

Integration

The Laplace transform of the integral of a signal f(t) is

c {/Ot f(T)dT} = 2F(s)

v
Convolution

Convolution in the time domain corresponds to multiplication in the

frequency domain. Assume that £{fi(t)} = Fi(s) and L{f(t)} = Fa(s),

then :
L{A(t) * (1)} = Fi(s)F(s)
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17 /57



Laplace Transform

Transfer Function

The transfer function of a system is the Laplace transform of its
unit-impulse response, because :

YO =gt)rut) = Y(s)=G()U(s) = G(s)zzg

where G(s) = L{g(t)}.

Example

The impulse response of a system is given as : g(t) = (2e~t + 3e72%)1(t).
Find the transfer function of the system.

Solution : The Laplace transform of 1(t) is 1/s and therefore,
L{e1(t)} =1/(s+ 1) :

2 3 55 +7
+ =
s+1 s+2 (s+1)(s+2)

G(s) = L{g(t)} =
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Laplace Transform

Laplace Transform

The impulse response of a system is given as : g(t) = (3e7*)1(t — 2). Find
the transfer function of the system.
3 3e 2
(A) G(s) = ] (B) G(s) = s+ 1
3e~2st 0.406e~2°
= D =
(©6()="2F  (B)6ls) =1 ‘
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Inverse Laplace Transform

Objective : Given F(s), find f(t) such that L{f(t)} = F(s).

Partial-Fraction Expansion : If F(s) is rational, it can be expanded as a
sum of simpler terms that can be found in the tables.

Step 1:

Step 2 :

Step 3 :

Factorize the numerator and the denominator of F(s)
F(S) _ bys™ + b25m_1 <o+ bmy1 _ H,"l1(5 — Z,')
s"+a;s" 4.+ a, [17=1(s = pi)
where z; and p; are referred to zeros and poles of F(s).
For the simplest case of distinct poles, we have :
C C G
F(s)= —2 4+ —2 4.4 "
S—p1 S—p2 S = Pn
where G = (s — p,-)F(s)‘s:pi.
Note that £L~1{1/(s — p;)} = ePit1(t), thus :

n

F(t) = LTHF(s)} =) GeP'1(t)
i=1
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Inverse Laplace Transform

Example (Partial-Fraction Expansion)

Compute y(t) if Y(s) is given by :

(s+2)(s+4)

Y(s) = s(s+1)(s+3)

Solution : We write Y(s) in terms of its partial-fraction expansion.

a, G | G

Y(s
(5) 5 * s+1 - s+3
where Gy — (s+2)(s+4) _8 G- (s+2)(s+4)
(s+1)(s+3)|._, 3 s(s+3) o=t
and G3 = —1/6. Then, using the Laplace transform tables we obtain :

y(t) = gl(t) - ge_tl(t) - %e—“l(t)
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Laplace Transform

Theorem (Final Value Theorem)

If sY(s) has no pole in the right half-plane and on the imaginary axis, then

lim y(t) = SITQ sY(s)

t—o0

Proof :

Using the derivative relationship, we have :

dy | _ o) = [ et
£{dt}—sY(s) y(0)_/0 e Y gt

Now we find the limit when s — 0 :

| o
\

s—0 s—0 dt

lim [sY(s) — y(0)] = lim ( /0 N e—sfdydt> = lim [y(t) — y(0)]

which leads to tll)rgoy(t) = slm) sY(s).
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Laplace Transform

Example

In a mass-spring-damper system, what is the final position of the mass if a
constant force Fy is applied to the mass.

Solution : The Laplace transform of the differential equation of the
system reads :

1

Ms?Y (s) + bsY (s) + kY (s) = R(s) = Y(s)= mR(s)

The constant force is equivalent to a step function of magnitude Fy as
r(t) = Fol(t). As a result R(s) = Fp/s and

1

Fo . :
Y(S) = M? = lim y(t) = lim SY(S) =

t—o0 s—0 k
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Final Value Theorem

Exercise

2(s+1)
(s+5)(s+6)

A) y(o0) =1/15 B) y(oc) = —1/15

Find the final value of y(t) if Y(s) =

C) y(o0) =0 D) y(oc) =1/5

V.
Exercise

Find the final value of y(t) if Y(s) = —
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Final Value Theorem

Steady-State Gain

The steady-state gain or DC gain is the ratio of the output of a system to
its input (presumed constant) after all transients have decayed. If we
assume that the input signal is a unit step, then U(s) = 1/s and we can
find the DC gain (which will be the final value of y(t)) of a system G(s)
as follows :

DC gain = y(c0) = slln sG(s)g = Sll_rpo G(s)

o
[y
A\,

Example
Find the DC gain of the following system

3(s +2)

Gl = s2 4+ 25410

Solution : The DC gain is G(0) = 0.6.
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Laplace Transform

Properties of Laplace Transforms

Number Laplace Transform Time Function Comment
— F(s) f(t) Transform pair
1 afy(s) + BF2(s) af1(t) + Bf2(t) Superposition
2 F(s)e—* Fit=23 Time delay (& > 0)
1 s : .
3 HF (E) fat) Time scaling
4 F(s+ a) e 9f(t) Shift in frequency
5 sTF(s) — s™=1f(0)
" (0) —---—fM™Do)  fM(p) Differentiation
t
6 %F(s) / fo)de Integration
0
7 F1(s)F2(s) f1(t) % f2(t) Convolution
8 lim sF(s) fot) Initial Value Theorem
5—>00
9 lim sF(s) lim f(t) Final Value Theorem
5—0 t—o0
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Laplace Transform

Solving a differential equation

@ Take the Laplace transform of the differential equation.
@ Find the Laplace transform of the output.
@ Find the time response using the inverse Laplace transform of the output.

Find the solution of j(t) + 5y(t) + 4y(t) = 31(t), where y(0) =1 and y(0) = 2.

@ Taking the Laplace transform :

s°Y(s) —s —2+5[sY(s) — 1] +4Y(s) =3/s

. s(s+7)+3 0.75 1 —0.75
@ Solving for Y(s):Y(s):s(5+1)(s+4): . 5+1+5+4

@ Taking the inverse Laplace transform of Y(s) :

y(t) = L7HY(s)} = (0.75 + e~ * — 0.75¢*)1(t)
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Analysis of a Dynamic System

Example (Transfer Function of a DC Motor)

R,

e / DC motor Equations :
| = | / f (Ignoring L)

e e=K, ) _
<‘> \ \ ‘ Va = Rala + Kebm
——————— bl 5/
(b)

Keiy = JmOm + b

Onls) ___K where : K = __ K i = __RaJm
Va(s)  s(rs+1) ' bR+ KiKe T bR, + KiK.
What is the transfer function between the angular speed Q,(s) and V,(s)?
Qm(s K
We have Qm(s) = sOp(s), then V,:((s)) =
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Analysis of a Dynamic System

Example (Time-domain analysis)

o Find the angular speed of the motor if a constant voltage 5 V is
applied to the motor from t > 0.

Q(s) Tsi Vis) Va(s)—g

5 Q(s)= N M, oK
M s(rs+1) s s+1/7

wm(t) = L7HQm(s)} = (5K — 5Ke t/7)1(t)

=
o Find the final value of the angular speed.

tILn;owm(t) = sll_% sQm(s) =5K
: : _ K
@ Find the steady-state gain of the system. DC gain = ———

Ts+1 s=0_

Control Systems (Chapter 3)

Analysis of Dynamic Systems

Fall 2024




Effects of Pole and Zero Locations

Consider a first order system :

ForK=1land 7 =1

K
H(s) = p—— one pole at —1/7 10
Impulse response : o2 e
-1 K —t/T ‘ N
h(t) = L7H{H(s)} = —e 7T1(t)
T
Step response : e

y(8) = L7HA(s) ) = K(1 - e /M1(e) ‘

(D), (1)

Time constant : 7 > 0 is the time
constant of the system. At t = 7 the step ;
response attains 63% of the final value.
Smaller 7 gives faster response. For 7 < 0 U e !
the response becomes unbounded. . P
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Effects of Pole and Zero Locations

Consider a second order system :

K
H) = s Dims 7 1)

with two real polesat —1/77 and —1/7m

1
Step response : y(t) = L7H{H(s)=} =[G + Cle /™ + Ge t/]1(t)
s
Fast and slow poles : if 71 < 7, then the pole at —1/77 is much faster
than the pole at —1/7 (e~*/™ decays much faster than e~t/7).
Dominant poles : The slow poles represents dominant dynamics of a

system. The fast poles have less effects and can be ignored.
ForK=1land 7y =0.land 7, =1

Step Response
T T

—G2=1/(s+1)
—G1=1/(0.1s+1)
G=1/[(0.1s+1)(s+1)]

1 1 1 1 1 1
0 1 2 3 4 5 6 7
Time (seconds)
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Effects of Pole and Zero Locations

Consider a second order system :

(s) w w;

s) = -
s?2 + 2Cwps + w2 (5 + Cwn)? +w2(1—¢?)

where wp, is the natural frequency and { > 0 is
the damping ratio.

Im(s)
0:sin_'{\

Poles : | —Cwp = jwn/1 — (2 = —0 + jwy

where 0 = Cw,, and wy = wp/1 — C2. b

Damping ratio : i i I Re(s)
(>1 Two real poles (damped ) o
(=1 Repeated real poles (critical damping) | l
0<(¢<1 Complex conjugate poles (underdamped) k==
(=0 Two imaginary poles (undamped) T
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Impulse response :

h(t) =

Wn

Vi—@

7t sin(wgt)1(t)

Step response :

efat
Vi-a

where 6 = sin"! (.

y(t) =[1 - cos(wqt — O)]1(t)

Control Systems (Chapter 3)

Analysis of Dynamic Systems

Effects of Pole and Zero Locations

1
0.8
0.6
0.4
0.2

h(r)

0
=02

- 04
-0.6
- 08

20

1.8
1.6
1.4

1o

w10
0.8

0.6

w,l
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Effects of Pole and Zero Locations

Impulse responses associated to the poles

ATm(s)

Stable Unstable

e
LHP RHP

N ix

Re(:)
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Effects of Pole and Zero Locations

Effects of zeros : Consider the following systems

2 2 2 —t —2t
H(s):(s+1)(s+2):s+1_s+2 = |h(t)=2e"—2e7?
o 2s+a)  2a—-1) 2a-—2)
Hols) = e i Ds+2) = s+1  s+2

= ha(t) = 2(Oé — l)e*t — 2(@ — 2)e*2t

@ The system has two exponential modes e~* and e~ related only to
the poles of the system.

@ The response of the system is the weighted sum of the modes.
@ The zero of the system affects only the weights.

@ For « =1 or a = 2, one of the modes can be canceled.

@ For « close to 1, the effect of the mode et will be reduced.
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Effects of Pole and Locations

Example (Effect of zeros)

Consider the step response of a second order system with one zero :

as+1
Ho(s) = 55— for a=0,1,2,3,-1
s*+s+1
Step Response : Pole-Zero Map
® ——Ho
—H1
~ H2
'g 0.5 ::i‘
8
g &
E‘ é 0 o o 1]
< o
£
E’-o.s
*®
0.5 -1
2 4 6 8 10 12 14 -1 -0.5 0 0.5 1

Time (seconds) Real Axis (seconds")

Remark : For RHP zero, the step response goes to the opposite direction.
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Time-Domain Specifications

A good controlled system should
@ have zero steady-state error;
@ and attain the steady state as fast as possible (good transient
response : small rise-time, settling time and overshoot).

t]’ Mp
‘ l +1%
| TN 7:2‘5;}:::::%::
09 F———— / ~N—T f

0.1

Copyright ©2015 Pearson Education, All Rights Reserved
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Time-Domain Specifications

Rise Time : is the time it takes the output to reach the vicinity of its
final value (usually from 10% to 90%).
Overshoot : is the maximum of the output minus its final value divided
by the final value.
Settling Time : is the time it takes the system transient to decay.

Example (First order system)

Compute, rise time, overshoot and settling time for a first order system :

Step response :  y(t) = L7} [H(s)i] = (1 — e ¥/")1(¢)
@ The rise time from 0.1 to 0.9 is t, = (In0.9 — In0.1)7 = 2.27.
@ There is no overshoot, so M, = 0.

@ The 2% settling time is ts = —7In0.02 = 3.97 and the 1% settling
timeis ts = —7In0.01 = 4.67
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Time-Domain Specifications

Example (Second order oscillatory system)
Compute, rise time, overshoot and settling time for a second order system

w;

H —
(s) 52 + 2Cwps + w2

Step response :  y(t) =L 1 [H(s)l] =[1- \;% cos(wqgt — 0)]1(t)
1.8

@ The rise time for 0.3 < ¢ < 0.8 can be approximated as : t, & —
Wn

@ The pick time t, and the overshoot M, can be computed as
¢

s T =
i My,=e Vi€

ty = — = —————— ;
P wg wpy/1—¢?
39 46

@ The 2% and 1% settling time are respectively : t; = C—
Whn

Analysis of Dynamic Systems Fall 2024
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|dentification of Simple Models by Step Response

Step response :
@ System should be in a stationary state.
@ Noise level should be measured.
@ System should be excited with a step with amplitude a.
@ How « should be selected ?
@ Sampling period should be chosen as small as possible.
First order model :

¥(1)
First order model :

~
G —
(s) 7s+1

K4

/o
063K~~~/

0 T 5] 4+
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|dentification of Simple Models

First order model with delay : Higher order models with damped modes
can be approximated by a first-order model with delay.

Os

G(s) ~ e v=K/a

s +1
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|dentification of Simple Models

Identify a second-order model from step response :

2
Y%h
G(s) =
s2 + 2Cwps + w? -
Identification procedure : : ] Kevi-¢ K
e Measure K, t, and y(tp).
e Compute v = K/a.
o Compute the overshoot
’ — s
. Y(t) =K | Ea
K CU ° ‘U ‘ST\m (SEC)HD ® ® *
@ Compute the damping factor ¢ from :
2
M, = etVI@ oo [ (InMp)
P 72 + (In M,)?
@ Compute the natural frequency wp = T

tp/1—(?
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|dentification of Simple Models

The unit step response of a system is given by :

Step Response

/\

Q M, =(0.65—05)/05=0.3

N _ (InMp)>
EM 0c= 2+ (InM,)2 889
. QO wy= — ——— =305
% o5 1 15 2 25 3 a5 4 45 s ! tp \/ 1 — Cz .
Time (seconds)
@ Compute the overshoot M,.
(A) 0.65 (B)0.325 (C)03 (D)13
@ Compute the damping factor zeta.
(A) 036 (B) 0.64 (C)0.7 (D) 0.25
© Compute the natural frequency w,,.
(A)35 (B)3.05 (C)25 (D)1.1
Fall 2024 43 /57
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How to simplify a block diagram

First method : Write the equation for the output of each block as a
function of the outputs of the other blocks and external inputs. Then
eliminate all internal variables.

Example (Find y(s))
We have y = G(d+u) ; u=K(r—v) ; v=F(y+n)

/Ld

r r\_ K u +u G y

T v F [+n
N

= y=G(d+K(r—F(y+n)) = y=Gd+ GKr— GKFy— GKFn

_ G . GK  GKF
Y T 1FGKF® "1+ GKF' ~ 1+ GKF
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Exercise

Exercise
Déterminer la fonction de transfert Y'(s)/U(s) du systéme de la figure
+
U(s) — > G1(5) > Y(s)
+ o+
> Ga(s) —vf G3(s) =
G G
A S S B BT
1+ G+ Gi1G3 G + G3
C G D None of the above
— n v
Gi+ G+ G3 )

Fall 2024
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Block Diagram Reduction

Second method : Use some simple rules :

@ Combining blocks in cascades

X X5 X3 X X3
—l GI(S) G2(S) = == GIGZ —>>

v

A

@ Moving a summing point behind a block

X, + X3 X + X3
G —» —_— G

X X
G |e—

@ Moving a pickoff point ahead of a block

X Xy X X
—_— £ » G >

XZ X2
) «— G |«

- M
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Block Diagram Reduction

@ Moving a pickoff point behind of a block

X . X, X J o X
X

— -
G

@ Moving a summing point ahead of a block

v

X + X3 X+ X3

— G 5 5 G —»
+ *
l <X_2
X, G
o Eliminating a feedback loop
X [ G X,
LizcH "

v
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Block Diagram Reduction

Find the transfer function between Y(s) and R(s).

Y(s)

—> 1(s)

]
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Block Diagram Reduction

Step 2 :
H .
G,
Step 3 :
fr= S | 1= GyG.H, + GoGoH, '|"Y(’)
Step 4 :
R(s) G,G,G,G, ¥(s)
— >

Control Systems (Chapter 3)

1 - GsG4H1 + G2G3H2+ G1G2G3G4H3
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Written Exercise

Exercise
Déterminer la fonction de transfert Y'(s)/U(s) du systéme de la figure
+
U(s) — > G1(5) > Y(s)
+ o+
> Ga(s) —vf G3(s) =
G G
A S S B BT
1+ G+ Gi1G3 G + G3
C G D None of the above
— n v
Gi+ G+ G3 )

Fall 2024
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Stability of Dynamic Systems

Bounded signals :

A continuous-time signal w(t) is bounded if there exists a finite number C
such that |w(t)| < C for all ¢.

BIBO stability :

A system is BIBO stable if for any bounded input signal, the output is
bounded.

| \

An LTI system is BIBO stable if and only if there exists a finite number C
such that its impulse response g(t) satisfies :

| st < c
0

Gripen Accident !
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Stability of Dynamic Systems

Theorem (Continuous-time)

A continuous-time LTI system represented by a proper rational transfer
function G(s) is BIBO stable iff all its poles have negative real parts.

Proof sketch : G(s) can be written as (z; and p; may be complex

numbers) :

o= KB~

then for ¢; =1

g(t) = LH{H(s

Stable

(s — Pi)g"

LHP

N

WULL V/\V/\

N

VvV

Im(s)
Unstable

| —

RHP

n
)= et
i=1

N

— L

Therefore, g(t) will be bounded if all poles are in the left-hand s-plane.
What happens for the multiple poles? The terms t“~1ePit converge to

zero when t — oo.
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Stability of Dynamic Systems

Routh Stability Criterion : Check the stability, without computing the
roots. Given A(s) = s" 4+ a;s" ! +--- + a,_15 + a,, we can construct the
Routh array :

n 1 a a4
n—1|a a3 a --- 1 a 1 a
1 3 5 det 2 det 4
n—2 b1 b2 b3 b a1 as b dl as
n—3|ca o ¢ - 1T a L a
: dy as dy as
det det
i * B [ b1 b | B | b1 b3 |
* 1 = by Cy = by
0

Routh Criterion :

If all elements of the first column, 1, a1, b1, c1, ... are positive, then all the
roots of the polynomial are in the LHP. The number of sign changes in the
column shows the number of poles in the RHP.
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Routh Criterion

Determine whether any of the roots of the following polynomial are in the
RHP :

A(s) = s° +2s* + 35+ 452 + 115 + 10

Solution :

b = —46 _1 b, = —10=22 _ ¢

511 3 11 ' 2 ? 2

412 4 10 _ 2by—4b; __ __ 0-10b; __
cl = — = -8 o=—""+2=10

3| b by 0O ! by 2 Z

2|la o di — _bie—ba _ 10448 _ 58

1ld 0 1= a ~— 8 78

0|e

1 e = —;211(:2 =10

The first column [1; 2; 1; —8; 58/8; 10] has two sign changes, so the
polynomial A(s) has two roots in the RHP.
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Routh Criterion

Exercise

Determine whether any of the roots of the following polynomial are in the
RHP :

A(s) = s* +7s? + 255 + 35
(A) One RHP root (B) No RHP root

(C) Two RHP roots (D) Three RHP roots
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Routh Criterion

Example

Determine the range of K over which this closed-loop system is stable.

+ s 1 ]
o ? . | 56 - s+ 6) oy

Solution : First we compute the transfer function between r and y :

K(s+1
Y(s) m _ K(s+1)

o K(s+1 T3 2 —
R(s) 1+5(5_(1—M 345524+ (K—6)s+ K

g é K};ﬁ = ¥%30>0 and K>0
1| _K=5K130 0 The closed- Ioop system is stable if
0 K5 K>175
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Routh Criterion

Exercise

Determine the range of (K, K;) over which this closed-loop system is

stable.
+ X i
Re (%) K+5 1 Grde+2) oY

(A) K>iK/ —2 and K/ >0
(B) K>iK/ —3 and K; >0
(C) K>%K/—1 and K;>1
(D)
(E)

None of the above

| do not know
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