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Dynamic Systems

System :

A system is an abstraction of a physical reality that contains only the
important elements for the study. The system is an object in which
different sorts of variables interact and produce observable signals.

Inputs :

The system is usually driven by external independent input variables. The
inputs that can be manipulated by the user are called command inputs.
The inputs that are not manipulated are called disturbance inputs.

Outputs :

The useful information about the system are provided by the output
variables. These are dependent variables and cannot be directly
manipulated.
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Dynamic Systems

Example

Driving a car : The most useful informations are the position and the
speed of the car. These variables can be controlled by accelerator and
brake pedal and steering wheel. The road condition and wind are
disturbance inputs.

Disturbances

Inputs Outputs

wind
slope

wheel

accelerator

brake

position 
speed

  SYSTEM

 driving a 
      car
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Dynamic Systems

Mathematical model :

A mathematical model represents the relation between inputs and outputs
of a system by some algebraic and/or differential equations.

Dynamic systems :

If the outputs of a system are functions of the present and past inputs, the
system is called dynamic.

A dynamic system has a memory or inertia to respond to the inputs.

The mathematical model of a dynamic system is given by some
differential equations.

Time-Invariant systems :

Assume that y(t) is the output caused by u(t). The system is called
time-invariant if y(t − τ) is the response to u(t − τ).
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Linear Systems

Linear models :

Assume that the output of a system when excited by u1(t) and u2(t) is,
respectively y1(t) and y2(t). Then the system is linear if and only if it
follows the superposition principles : It has additivity and homogeneity
properties.

Additivity : The excitation u1(t) + u2(t) results in a response
y1(t) + y2(t).

Homogeneity : The output of the system to αu1(t) is equal to αy1(t).

Question

Are these systems A) linear or B) nonlinear ?

1. ẏ(t) + 2y(t) = 3u(t − 1)

2. ẏ(t) + 2y2(t) = 3u(t − 1)

3. y(t) = mu(t) + y0
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Modeling of dynamic systems

Mechanical Systems

Newton’s second law : r(t) = Ma(t) + bv(t) + ky(t)

Using v(t) = dy(t)
dt

and a(t) = dv(t)
dt

we obtain a second order ODE :

r(t) = M
d2y(t)

dt2
+ b

dy(t)

dt
+ ky(t)
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Modeling of dynamic systems

Example (Cruise Control Model)

Newton’s second law :

u = mẍ + bẋ or u = mv̇ + bv
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Modeling of dynamic systems

Electrical Systems

Kirchhoff’s current law :

r(t) =
v(t)

R
+ C

dv(t)

dt
+

1

L

∫ t

0
v(t)dt

If we use v(t) = L
diL(t)
dt

we obtain a second order ODE :

r(t) =
L

R

diL(t)

dt
+ LC

d2iL(t)

dt2
+ iL(t)
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Modeling of dynamic systems

Electrical Systems

Kirchhoff’s voltage law :

v(t) = Ri(t) +
1

C

∫ t

0
i(t)dt + L

di(t)

dt

If we use i(t) = dqC (t)
dt

we obtain a second order ODE :

v(t) = R
dqC (t)

dt
+

qC (t)

C
+ L

d2qC (t)

dt2
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Transfer Functions

Transfer Function

The transfer function of a linear time-invariant (LTI) system is the ratio
of the Laplace transform of the output variable to that of the input
variable, with all initial conditions assumed to be zero.

Example

What is the transfer function between the force (input variable) and
the position (output variable) in the mass-spring-damper system ?

Ms2Y (s) + bsY (s) + kY (s) = R(s) ⇒ Y (s)

R(s)
=

1

Ms2 + bs + k

Find the transfer function between the current source and the voltage
of the capacitor in a parallel RLC network.

V (s)

R
+ CsV (s) +

1

Ls
V (s) = I (s) ⇒ V (s)

I (s)
=

RLs

RLCs2 + Ls + R
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Modeling of dynamic systems

Electrical Systems (Operational Amplifier)

Operational Amplifier : is a very high gain (A) amplifier with very large
input impedance (R1) and very small output impedance (R0).
Ideal Op-Amp : In an ideal Op-Amp we have A = ∞, R0 = 0 and
R1 = ∞. When only one input is shown, it means that the other is
connected to ground.
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Modeling of dynamic systems

Example (Operational Amplifier : Summer)

Find the mathematical model of the following electrical circuit :

Solution : For the ideal Op-Amp we have v− = 0 and thus

i1 =
v1

R1
; i2 =

v2

R2
; i1 + i2 + iout = 0

Therefore :

vout = −
[

Rf

R1
v1 +

Rf

R2
v2

]
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Modeling of dynamic systems

Example (Operational Amplifier : Integrator)

Find the mathematical model of the following electrical circuit :

Solution : For the ideal Op-Amp, we have v− = 0 and thus

iin + iout = 0 ⇒ vin

Rin

+ C
dvout

dt
= 0

Therefore, with T = RinC :

Vin(s) + TsVout(s) = 0 ⇒ Vout(s)

Vin(s)
= − 1

Ts
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Transfer Function

Rotational Systems

Inertia :
T (t) = J

d2θ(t)

dt2

Torsional spring :

T (t) = Kθ(t)

Friction :

T (t) = B
dθ(t)

dt

Gear train :

Gear ratio = n = N1/N2 θL(t) = nθm(t)
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Transfer Functions

Example (Rotational System)

N 2

N 1

T1(t)− nT2(t) = J1
d2θ1(t)

dt2
+ B1

dθ1(t)

dt
+ K1θ1(t)

T2(t) = J2
d2θ2(t)

dt2
+ B2

dθ2(t)

dt
+ K2θ2(t)

θ2(t)

θ1(t)
=

N1

N2
= n

If we take T1(t) as input and θ1(t) as output we have :

T1(t) = (J1 + n2J2)
d2θ1(t)

dt2
+ (B1 + n2B2)

dθ1(t)

dt
+ (K1 + n2K2)θ1(t)
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Transfer Functions

Example (Rotational System)

If we take T1(t) as input and θ1(t) as output we have :

T1(t) = (J1 + n2J2)
d2θ1(t)

dt2
+ (B1 + n2B2)

dθ1(t)

dt
+ (K1 + n2K2)θ1(t)

Taking the Laplace transform :

T1(s) = (J1 + n2J2)s
2θ1(s) + (B1 + n2B2)sθ1(s) + (K1 + n2K2)θ1(s)

The transfer function between T1 and θ1 reads :

θ1(s)

T1(s)
=

1

(J1 + n2J2)s2 + (B1 + n2B2)s + (K1 + n2K2)
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How a DC motor works

A wire carrying a current placed in a magnetic field experiences the
Lorentz force.

An armature with current ia in a magnetic field generates a torque T

which is proportional to the current : T ∝ ia

A commutator changes the current direction on the right time to have
a continuous rotation.
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How a DC motor works

When an armature rotates, the armature conductors move through a
magnetic field and hence electromotive force is induced in them as in
a generator.

The EMF voltage is proportional to the constant magnetic flux Φ
generated by the magnetic field and the armature speed ωm and acts
in opposite direction to the applied voltage (Lenz’s law). So it is
called the Back EMF voltage : e(t) ∝ ωm(t)

e = Ke θ̇m

T = Kt ia
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Transfer Functions

Example (Transfer Function of a DC Motor)

DC motor Equations : Electromechanical equations are

va = Raia + La
dia

dt
+ Ke θ̇m

Kt ia = Jmθ̈m + bθ̇m
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Transfer Functions

Example (Transfer Function of a DC Motor)

The relative effect of the inductance La is negligible compared with the
mechanical motion. We compute ia from the first equation and replace it
in the second equation :

ia =
va − Ke θ̇m

Ra

⇒ Jmθ̈m +

(

b +
KtKe

Ra

)

θ̇m =
Kt

Ra

va

Taking the Laplace transform, we compute the transfer function :

(

Jms
2 + bs +

KtKe

Ra

s

)

Θm(s) =
Kt

Ra

Va(s) ⇒ Θm(s)

Va(s)
=

K

s(τs + 1)

where : K =
Kt

bRa + KtKe

; τ =
RaJm

bRa + KtKe
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Linear Approximation

Linear approximation : If a system is nonlinear, it can be approximated
by a linear model assuming small-signal conditions.
Taylor series : A nonlinear function y = f (x) can be linearly approximated
with a first order Taylor series around an operating point x0 as :

y ≈ f (x0) + (x − x0)
df

dx

∣

∣

∣

∣

x=x0

Then the variables ∆y = y − f (x0) and ∆x = x − x0 have a linear relation.

Example
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Linear Approximation

Example

Find a linearized model for ẏ(t) + 2y2(t) = 3u(t − 1) with y(0) = y0 :
Step 1 : Use Taylor series to approximate y2(t) :

y2(t) ≈ y20 + 2y0[y(t)− y0]

Step 2 : Define ∆y = y(t)− y0 and ∆u(t) = u(t)− u0. Therefore,

∆̇y(t) + 2y20 + 4y0∆y(t) = 3∆u(t − 1) + 3u0

Step 3 : Simplify the equation noting that 2y20 = 3u0 (why ?) :

∆̇y(t) + 4y0∆y(t) = 3∆u(t − 1)

Step 4 : Take the Laplace transform L[∆y(t)] = Y (s) :

sY (s) + 4y0Y (s) = 3e−sU(s) ⇒ Y (s)

U(s)
=

3e−s

s + 4y0
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Dynamic model of a water tank

Objective : Determine a model describing the height of the water in a
tank with win the mass flow rate into the tank and wout the mass flow rate
out of the tank.

Mass conservation :

ṁ = win − wout

m = Aρh

A = area of the tank

ρ = density of water

m = mass of water in the tank

Suppose that wout = K
√
h, where K depends on the output valve. Then

the nonlinear model of the system is :

Aρḣ = win − K
√
h
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Dynamic model of a water tank

Example (Linearization of the water tank model)

Linearize the water tank model around the operating height h0.

Use Taylor series to approximate
√
h :

√
h ≈

√

h0 +
1

2
√
h0

(h − h0)

Define ∆h = h − h0 and ∆win = win − w◦

in. Thus,

Aρ∆ḣ = ∆win + w◦

in − K
√

h0 −
K

2
√
h0

∆h

Simplify the equation noting that w◦

in = K
√
h0 and take the Laplace

transform L[∆h] = H(s),L[∆win] = Win(s) :

AρsH(s) +
K

2
√
h0

H(s) = Win(s) ⇒ H(s)

Win(s)
=

2
√
h0

2
√
h0Aρs + K
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Linear Approximation

Example (Linearization of a pendulum)

The torque on the mass in a pendulum is : T = MgL sin θ
Find a linear model around the equilibrium point θ0 = 0.

T ≈ T0 +MgL(θ − θ0)
d sin θ

dθ

∣

∣

∣

∣

θ=θ0

= T0 +MgL(θ − θ0) cos 0

Since T0 = 0 we obtain : T = MgLθ
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Linear Approximation

Linearization of a nonlinear model
Compute a linear transfer function model around u0 = 4 and y0 = 2 for the
nonlinear model given by :

ÿ(t) + 4ẏ(t) + y2(t) = 2
√

u(t)

(A) G (s) =
2

s2 + 4s + 4
(B) G (s) =

1

s2 + 4s + 4

(C) G (s) =
0.5

s2 + 4s + 4
(D) G (s) =

0.25

s2 + 4s + 4
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Summary for modeling of dynamic systems

A mathematical model gives the relation between output y(t) and
input u(t) of a dynamic system : y(t) = F(u(τ)) τ ≤ t

This relation is usually given by some differential equations.

Transfer function of linear time-invariant systems with input signal
u(t) and output signal y(t) is defined as :

G (s) =
Y (s)

U(s)

where all initial conditions are taken equal to zero.

The nonlinear systems can be linearized around the operating point.
The linear model is valid only for small variations around the
operating point.
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