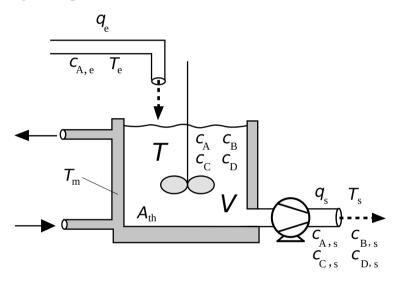
Test

1. **Modélisation (30 points)** On considère un réacteur à cuve agitée en continu (CSTR), dessine ci-dessous, dans lequel une espèce chimique Aa la temperature T_e et concentratione $C_{A,e}$ est pompée avec un débit volumique q_e . Deux réactions exothermiques ont lieu dans le réacteur : la première réversible r_1 : $2A \leftrightarrow B+C$, et la seconde irreversible r_2 : $A+C \to D$. Les concentrations respectives de A, B, C, et D sont notees C_A , C_B , C_C , et C_D . On pose constants la capacité thermique spécifique c_p ainsi que la densité ρ du mélange.

Le réacteur est équipé d'une gaine réfrigérante a la température T_m , possédant une surface d'échange A_{th} et un coefficient de transfert thermique surfacique U.

On considère les réactions comme suivant la loi d'action des masses, avec une constante de réaction dépendante de la température selon la loi d'Arrhenius : $k_i = k_{0i} e^{-E_i/RT(t)}$, i = 1,2, ou E_i est l'énergie d'activation de chacune des réactions, et R la constante des gaz parfaits. Les enthalpies de réaction sont respectivement ΔH_1 et ΔH_2



- a) Écrire le modèle dynamique de ce réacteur
- b) Quelles sont les variables dépendantes de ce système ? Quelles sont les variables indépendantes ?
- c) Quel est l'ordre de ce système ? Ce système est-il linéaire ? Non linéaire? Est-il stationnaire ou non ?
- 2. **Linéarisation (20 points)** Un volume d'eau V et sa température T, évoluent dans une cuve chauffée selon les équations :

$$\frac{\frac{dV(t)}{dt} = \frac{\left(w_e(t) - w_s(t)\right)}{\rho}}{\frac{dT(t)}{dt} = \frac{w_e(t)\left(T_e(t) - T(t)\right)}{V(t)\rho} + \frac{P(t)}{V(t)\rho c_p}$$

où la chaleur spécifique de l'eau est c_p = $\overset{.}{.}4185.5~J/kgK$, le débit massique sortant $w_s(t)$ =1~kg/s, la puissance du chauffe-eau P(t)=10000~W, la densité de l'eau ρ = $1000~kg/m^3$, la section de la cuve S_n = $2~m^2$ et la température extérieure $T_e(t)$ =298~K. Dans le cas où le débit massique d'entrée suit la loi suivante :

$$w_e(t) = K_{wt} T(t) / V(t)$$

- où $K_{wt} = 0.075 \, kg \, m^3 / sK$:
 - a) Calculer les quantités \acute{V} et \acute{T} a l'état stationnaire.

Student name:

b) Linéariser le système autour de cet état stationnaire.

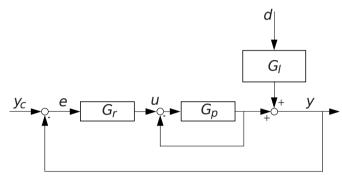
Student name: Sciper no:

3. **Transformée et transformée inverse de Laplace (20 points)** On considère le système dynamique suivant :

$$\dot{y}(t)+3\dot{y}(t)+6.25y(t)=u(t-0.5), y(0)=1, \dot{y}(0)=1$$

Avec y(t) la sortie et u(t) l'entrée du système.

- a) Calculer la fonction de transfert du système. Quels sont le gain statique, la fréquence naturelle, et l'amortissement du système ?
- b) Calculer et dessiner la réponse temporelle du système pour y(0)=0, $\dot{y}(0)=0$.
- 4. **Contrôle et réponse temporelle (30 points)** On considère le système de contrôle ci-dessous. On pose les fonctions de transfert $G_p(s) = \frac{1}{s^2 + s 1}$ et $G_l(s) = \frac{1}{s(s+2)}$



- a) Proposer le contrôleur le plus simple qui permet d'éliminer l'erreur statique en contrôle entre le signal de référence $y_c(t)$ et la sortie y(t). Déterminer les paramètres de votre contrôleur afin que les pôles de votre système en boucle fermée aient la réponse apériodique la plus rapide.
- b) Est-ce que le contrôleur développé en a) élimine l'influence de la perturbation d(t) at $t \to \infty$? Si non, comment modifier le contrôleur pour éliminer le statisme en régulation ?