
ODE	helper
Monday,	14		October2019
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• Typically, the additional condition to uniquely determine the 

solution is the initial value of the function at t=t0    

• For a nth-order ODE (that can be converted to the system of n

1st-order ODEs) we need n initial conditions (at one point, i.e. 

for x, dx/dt, d2x/dt2,… at t0)

• IVP problem: find x(t) such that
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Initial Value	Problems

 t

 x initial value

  

dx
dt

= f (x(t),t), t > 0

x(0) = x0



• In the expression for the ODE:

• At the time tk approximate dx/dt with the forward difference:
  

dx
dt

= f (x(t),t), x(0) = x0
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Euler	forward method

  x(t0 )

  t0   t1   t2    t3 !
 t

  x(t1)

  x(t2 )
  x(t3)

  

dx
dt

=
x(tk+1)− x(tk )

h
+O(h), h = tk+1 − tk

  

therefore, we approximate values of  x(tk )

x(tk+1) = x(tk )+ hf (x(tk ),tk )

   

↓
x(t1) = x(t0 )+ hf (x(t0 ),t0 )
x(t2 ) = x(t1)+ hf (x(t1),t1)
!



• This method is single-step and explicit, i.e. uses information at tk

to compute the solution at  tk+1

• The slope at tk is estimated using forward difference

i.e. at each step we 

introduce the so-called local error Pr
oc
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Euler	forward method

  x(t0 )

  t0   t1   t2    t3 !
 t

  x(t1)

  x(t2 )
  x(t3)

true value of x(t1)

estimated
value of x(t1)



• Example:

• We use the Euler forward method:
  

dx
dt

= 2x − 3t, x(0) = 1
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Euler	forward method

  x(tk+1) = x(tk )+ hf (x(tk ),tk )

true value of x(t)

computed value of 
x(t) for h=0.05

computed value of 
x(t) for h=0.25



• Use the Taylor series to expand around x(t)

• Local error is of  O(h2) – if we halve h then the local error will 

reduce by factor of four

• However, if we halve h then we need twice more steps to cover 

the desired interval -> we introduce twice as more local errors

• At the end of the interval, global error halves as we halve h

• Therefore, these methods are first-order methods (proportional 

to h)
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Error	analysis	in	Euler	methods

   
x(tk+1) = x(tk )+ hf (x(tk ),tk )+ h2

2
′f (x(tk ),tk )+…

Euler forward method local error 



• For the ODE:

• Taylor expansion: 

• Have to estimate f’(x(tk),tk), f’’(x(tk),tk),…  i.e. as the order 

increases, it becomes complicated to compute derivatives

• These methods are not frequently used

  

dx
dt

= f (x(t),t), x(0) = x0
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Higher-order	Taylor	series methods

   
x(tk+1) = x(tk )+ hf (x(tk ),tk )+ h2

2
′f (x(tk ),tk )+…+ hn

n!
f (n−1) (x(tk ),tk )+O(hn+1)

Euler forward method with O(h2)

2nd-order Taylor series method with O(h3)



• Motivation: improve the accuracy of solution without calculating 

higher order derivatives

• General formulation:  

• a1,…, α1,…,β1,1,… - constants derived in such a way that the approximation 

matches as many terms in the Taylor expansion as possible 
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Runge-Kutta methods

   x(tk+1) = x(tk )+ h(a1K1 + a2K2 +!+ anKn )

   

K1 = f (x(tk ),tk )
K2 = f (x(tk )+ hβ1,1K1,tk + hα1 )

!
Kn = f (x(tk )+ hβn−1,1K1 + hβn−1,2K2 +"+ hβn−1,n−1Kn−1,tk + hα n−1 )

Runge-Kutta (RK) of nth order



  x(tk )
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Geometric	interpretation
of	2nd–order Runge-Kutta method

  
x(tk+1) = x(tk )+ h

2
(K1 + K2 )

  

K1 = f (x(tk ),tk )
K2 = f (x(tk )+ hK1,tk + h)

  x
p (tk+1)   tk+1

 tk   tk+1 h

  

Predictor

x p (tk+1) = x(tk )+ hK1

  K1 = f (x(tk ),tk )
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x(tk+1) = x(tk )+ h

2
(K1 + K2 )

  

K1 = f (x(tk ),tk )
K2 = f (x(tk )+ hK1,tk + h)

  x
p (tk+1)   tk+1

 tk   tk+1 h

  K2 = f (x p (tk+1),tk+1)

  x(tk )

  K1 = f (x(tk ),tk )

  

Predictor

x p (tk+1) = x(tk )+ hK1

Geometric	interpretation
of	2nd–order Runge-Kutta method
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x(tk+1) = x(tk )+ h

2
(K1 + K2 )

  

K1 = f (x(tk ),tk )
K2 = f (x(tk )+ hK1,tk + h)

  x
p (tk+1)   tk+1

 tk   tk+1 h

  K1 = f (x(tk ),tk )

  K2 = f (x p (tk+1),tk+1)

  x(tk )

  

Predictor

x p (tk+1) = x(tk )+ hK1

Geometric	interpretation
of	2nd–order Runge-Kutta method
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x(tk+1) = x(tk )+ h

2
(K1 + K2 )

  

K1 = f (x(tk ),tk )
K2 = f (x(tk )+ hK1,tk + h)

  x
p (tk+1)   tk+1

 tk   tk+1 h

  x(tk )

  
1
2

K1 + K2( )
  

Predictor

x p (tk+1) = x(tk )+ hK1

Geometric	interpretation
of	2nd–order Runge-Kutta method
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x(tk+1) = x(tk )+ h

2
(K1 + K2 )

  

K1 = f (x(tk ),tk )
K2 = f (x(tk )+ hK1,tk + h)

  x
p (tk+1)   tk+1

 tk   tk+1 h

  x(tk )

  

Corrector:
x(tk+1) = x(tk )+ h(K1 + K2 ) / 2

  
1
2

K1 + K2( )
  

Predictor

x p (tk+1) = x(tk )+ hK1

correction

  

Predictor

x p (tk+1) = x(tk )+ hK1

  

Corrector:

x(tk+1) = x(tk )+ h
2

(K1 + f (x p (tk+1),tk+1))

Geometric	interpretation
of	2nd–order Runge-Kutta method



• 4th-order RK have the local truncation error of O(h5)

• Four function evaluations needed

• RK methods require no solutions prior to time tk
• as a consequence, it is easy to change the step size during integration

• it is a self-starting method
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4th–order	Runge-Kutta method

  
x(tk+1) = x(tk )+ h

6
(K1 + 2K2 + 2K3 + K4 )

  

K1 = f (x(tk ),tk )

K2 = f (x(tk )+ h
2

K1,tk +
h
2

)

K3 = f (x(tk )+ h
2

K2 ,tk +
h
2

)

K4 = f (x(tk )+ hK3,tk + h)



• Stiff ODEs describe systems with very different time scales, i.e. 

some components of these systems evolve relatively slowly 

whereas others are changing rapidly

• The Jacobian matrix of this kind of systems has eigenvalues that 

differ greatly in magnitude

• Euler forward method is very inefficient in solving stiff systems 

as stability can be ensured only with very small steps (the 

rapidly varying component, i.e. large λ, calls for a small h)

• Example: 
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Stiff	systems



• At tk approximate dx/dt with the backward finite difference:

  

dx
dt

= f (x(t),t), x(0) = x0 ⇒

Pr
oc

es
s c

on
tr

ol
 h

el
pe

r

16

Euler	backward method

  

x(tk+1)− x(tk )
h

= f (x(tk+1),tk+1)+O(h)

h = tk+1 − tk

  

therefore, neglecting O(h), we have
x(tk+1)− x(tk )− hf (x(tk+1),tk+1) = 0

  

since x(tk+1) is unknown, we have to resolve 

the nonlinear system, where we take w=x(tk+1):

g(w) = w− x(tk )− hf (w,tk+1)

  x(t0 )

  t0    t1!  tk    tk+1 !
 t

  x(t1)
  f (x(tk ),tk )

  f (x(tk+1),tk+1)

  

For example, use Newton-Raphson 

wn+1 = wn −
wn − x(tk )− hf (wn ,tk+1)

1− h
∂ f
∂w

(wn ,tk+1)
, n = 0,1,...

Initial condition:
(i) w0 = x(tk )

(ii) Euler forward difference estimate of x(tk+1)



• Example:

• In each step we have to solve:

• For h=tk+1-tk= 0.1 we have:

  

dx
dt

= 2x − 3t, x(0) = 1
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Euler	backward method

  t0   t1   t2    t3 !

  x(t0 )

 t

  x(t1)

  x(t2 )
  x(t3)

  

x(tk+1)− x(tk )− hf (x(tk+1),tk+1) = 0
w− x(tk )− h ⋅(2 ⋅w− 3⋅ tk+1) = 0

w =
x(tk )− 3⋅h ⋅ tk+1

(1− 2h)

   

x(t2 = 0.1) = w = 1− 3⋅0.1⋅0.1
1− 2 ⋅0.1

= 1.2125

x(t2 = 0.2) = w = 1.2125− 0.3⋅0.2
0.8

= 1.4406

x(t3 = 0.3) = w = 1.4406− 0.3⋅0.3
0.8

= 1.6883

!

x(t10 = 1) = w = 4.5783



• Mentioned previously: Euler forward method is explicit, i.e. f is 

evaluated with xk at time tk to compute the solution xk+1(tk+1)

• Another alternative: evaluate f with xk+1 before we know its 

value (at time tk+1 ). Methods with this feature are implicit

• Implicit methods necessitate more computations as it is 

required to solve algebraic equations to compute xk+1

• Implicit methods are more robust (i.e. have larger stability 

region than explicit methods)

• Therefore, implicit methods are more appropriate for solving 

stiff systems
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Explicit	vs Implicit	methods



ODE	solvers	in	python
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ODE	solvers	in	Matlab
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