S
(]
o
(]
<
©
| -
o+
C
@]
(&)
(%]
(%]
(]
O
(@)
| .
o

ODE helper

Monday, 14 October 2019

Initial Value Problems

* Typically, the additional condition to uniquely determine the

solution is the initial value of the function at t=t,

* For a nth-order ODE (that can be converted to the system of n

1st-order ODEs) we need n initial conditions (at one point, i.e.

for x, dx/dt, d’x/dt?,... at t,)

S
(]
L
(]
<
©
| -
o+
C
@]
(&)
(%]
(%]
(]
O
(@)
| .
o

* IVP problem: find x(t) such that
X initial value

dx

—-=/(x(0).0), 1>0

x(0)=x,

Euler forward method
* In the expression for the ODE: ax _ F(e),0), x(0)=x
dl‘ b b 0

* At the time t, approximate dx/dt with the forward difference:]
dx x(tk 1)_x(tk) %

=—* +0(h), h=t_, —t, E

dt h :

x(t,) therefore, we approximate values of x(7,) %

o

x(t,,,)=x(t)+hf (x(t),t,)
\J

x(tl) = x(to) + hf(x(to)ato)
x(t) (1) = x(8)+ B (1))

x(2,) :x(t)

Euler forward method

* This method is single-step and explicit, i.e. uses information at t,

to compute the solution at t,;

* The slope at t, is estimated using forward difference

x(t,) i.e. at each step we

S
(]
L
(]
<
©
| -
o+
C
@]
(&)
(%]
(%]
(]
O
(@)
| .
o

introduce the so-called local error

true value of x(t,)

/

x(t,)

estimated P S R
value of x(t,) "T

Euler forward method

* Example: %:zx_y, x(0)=1

* We use the Euler forward method: x(z,_)= x(z)+ hf (x(¢,),t,)]
2

9

5

o Euler forward method true Value Of X(t) g
:Lr:;;:zz:):::monforh=o.os / computed value of o

4H~©—Numerical solution for h =0.25 /] / g

// x(t) for h=0.05

3 Y \computed value of

25 %/ x(t) for h=0.25
P

13'/0.2 04 06 0.8 1

IN

Error analysis in Euler methods

* Use the Taylor series to expand around x(t)

* Local error is of O(h?)— if we halve h then the local error will

o .

x(¢,,,)=x(t)+ hf (x(t,),t)+ Ef (x(£,)t,)+... %
\ J \) £
| | =

Euler forward method local error S

reduce by factor of four

* However, if we halve h then we need twice more steps to cover

the desired interval -> we introduce twice as more local errors
* At the end of the interval, global error halves as we halve h

* Therefore, these methods are first-order methods (proportional

to h)

Higher-order Taylor series methods

* For the ODE:
dx

t S (x(2),t), x(0)=x,
¢ Iaylor expansion:

x(t,)=x(t)+hf (x(z,),t,)+ %2 fr(x@),t)+...+ h—' FUP(x(e),t,)+ O(h™)
} n!

\
Y |
Euler forward method with O(h?)

2"d-order Taylor series method with O(h3)

S
(]
L
(]
<
©
| -
o+
C
@]
(&)
(%]
(%]
(]
O
(@)
| .
o

* Have to estimate f’(x(t,),t.), f”(x(t,),t),... i.e.as the order

increases, it becomes complicated to compute derivatives

* These methods are not frequently used

Runge-Kutta methods

* Motivation: improve the accuracy of solution without calculating

higher order derivatives

* General formulation:

x(¢,)=x(t)th(aK +aK +--+akK)

K, =f(x@).1)
K,=f(x()+hp, Kt +hao)

S
(]
L
(]
<
©
| -
o+
C
@]
(&)
(%]
(%]
(]
O
(@)
| .
o

K =f(x(t,)+ hf3 —11K +hp _12K +---+hf - K .t tho)

\ J
Y

Runge-Kutta (RK) of nth order

* dq,e.., al,...,Bl'l,... - constants derived in such a way that the approximation

matches as many terms in the Taylor expansion as possible

Geometric interpretation
of 2"9—order Runge-Kutta method

E‘/\/

~

K = f(x(t,).t,) b ‘ Predictor
xP(t,,,)=x(t)+hK

tk h tk+1

S
(]
o
(]
<
©
| -
o+
C
@]
(&)
(%]
(%]
(]
O
(@)
| .
o

x(¢,)=x(t)+ S(K1 +K))

K, = f(x(2,).t,)
K, =f(x(t)+hK ,t +h)

\)
¥ 4

k+1
xp (tk+1)

Geometric interpretation
of 2"9—order Runge-Kutta method

Kz = f(xp (tk+1)’tk+1)

K, = f(x(tk),tk)\‘/ |Predict0r

xP(t,,,)=x(t)+hK

S
(]
o
(]
<
©
| -
o+
C
@]
(&)
(%]
(%]
(]
O
(@)
| .
o

tk h tk+1

x(¢,)=x(t)+ S(K1 +K))

K, =f(x(¢,).t,)
K, =f(x(t)+hK ,t +h)

\)
¥ 4

k+1
xp (tk+1)

Geometric interpretation
of 2"9-order Runge-Kutta method

KZ = f(xp (tk+1)’tk+1)

N
K/

~

K = f(x(t,).t,) b ‘ Predictor
xP(t,,,)=x(t)+hK

tk h tk+1

S
(]
o
(]
<
©
| -
o+
C
@]
(&)
(%]
(%]
(]
O
(@)
| .
o

x(¢,)=x(t)+ S(K1 +K))

K, = f(x(2,).t,)
K, =f(x(t)+hK ,t +h)

\)
¥ 4

k+1
xp (tk+1)

Geometric interpretation
of 2"9—order Runge-Kutta method

Te—— o

k
1 /o

E(Kl + K 2) ‘ Predictor
xP(t,,,)=x(t)+hK

tk h tk+1

S
(]
o
(]
<
©
| -
o+
C
@]
(&)
(%]
(%]
(]
O
(@)
| .
o

x(¢,)=x(t)+ S(K1 +K))

K, =f(x(¢,).t,)
K, =f(x(t)+hK ,t +h)

\)
¥ 4

k+1
xp (tk+1)

Geometric interpretation

of 2"9—-order Runge-Kutta method
Corrector:

x(¢,)=x(t)+hK +K)/2
\
)‘;\ it

k

correction

Predictor
xP(t,,,)=x(t)+hK
Predictor

xP(t,,)=x(t,)+hK

k+1
Corrector:

S
(]
o
(]
<
©
| -
o+
C
@]
(&)
(%]
(%]
(]
O
(@)
| .
o

~

x(¢,)=x(t)+ S(K1 +K))

K, = f(x(t,).t,) ~
K,=f(x(t)+hK .t +h) h
\ v)~ 1t = () + 2 (K 4 £ (2,)08,)

4
k+1
xp (tk+1)

4th_order Runge-Kutta method

x(¢,)=x()+— (K +2K +2K,+K,)

K, =f(x(¢,).t,)
K, =f(x(tk)+ﬁK1,tk +§)

K, f(x(t)+ K t+h)

S
(]
L
(]
<
©
| -
o+
C
@]
(&)
(%]
(%]
(]
O
(@)
| .
o

K, :f(x(tk)+hK3,tk + h)
 4t-order RK have the local truncation error of O(h?)

* Four function evaluations needed

* RK methods require no solutions prior to time £,

° as a conseguence, it is easy to change the step size during integration

* itis a self-starting method

Stiff systems

Stiff ODEs describe systems with very different time scales, i.e.
some components of these systems evolve relatively slowly

whereas others are changing rapidly

The Jacobian matrix of this kind of systems has eigenvalues that

differ greatly in magnitude

Euler forward method is very inefficient in solving stiff systems
as stability can be ensured only with very small steps (the

rapidly varying component, i.e. large A, calls for a small h)
INTEGRATION OF STIFF EQUATIONS*

N By C. F. Curtiss aND [. O, HIRSCHFELDER
Example: :

Tue Navar ResparcH Laporarory, DeErarTMENT OF CHEMISTRY, TINIVERSITY OF
Wisconsin, Mapison, WISCONSIN

Communicated by Farrington Daniels, December 29, 1951

In the study of chemical kinetics, electrical circuit theory, and problems
of missile guidance a type of differential equation arises which is exceed-
ingly difficult to solve by ordinary numerical procedures. A very satis-
factory method of solution of these equations is obtained by making use of
a forward interpolation process. This scheme has the unusual property

S
(]
L
(]
<
©
S
o+
C
@]
(&)
(%]
(%]
(]
O
(@)
S
o

Euler backward method
* At t, approximate dx/dt with the backward finite difference:

x(tk+1) - x(tk) - hf(x(tk+1)’tk+1) =0

since x(Z,,) 18 unknown, we have to resolve

dx x(f, .)—x(t .
Z = f(x(t),t), X(O) =X, = (kH)h (k) — f(x(tk+1),tk+1)+0(h) %
h = tk+1 - tk %

therefore, neglecting O(4), we have §

x(2y) %

O

the nonlinear system, where we take w=x(z,,).
gw)=w—x(t,)=hf(w.t,)

S(x(z,),t,) For example, use Newton-Raphson
Wy =W, = _x(ta)f Woha) 21,
/ 1-h— . (w,t.,)
S,)t,,) Initial condition:
>+ D) w,=x(1)
B AR t, L., o (i1) Euler forward difference estimate of x(¢,)

Euler backward method

* Example: %:zx_y, x(0)=1

* In each step we have to solve: x(z_)—x(z)—hf (x(z,).t,,,)=0]
w=x(,)—h-(2-w=3-¢_)=0 %
W:x(tk)—3-h'tk+l §
(1-2h) S
2
* For h=t,,;-t,= 0.1 we have: x(tZ:O.l):w=1_3.0'1.0'1=1.2125
1-2-0.1
: —0.3-0.2
x(t2=0.2)=w=121250§30 = 1.4406
A :0.3):w:1'4406_0‘3'0'3:1.6883

: 0.8

x(t,=1)=w=4.5733

Explicit vs Implicit methods

* Mentioned previously: Euler forward method is explicit, i.e. f is

evaluated with x, at time t, to compute the solution x,,,(t,,;)

* Another alternative: evaluate f with x,,, before we know its

value (at time t,,;). Methods with this feature are implicit

S
(]
L
(]
<
©
S
o+
C
@]
(&)
(%]
(%]
(]
O
(@)
S
o

* Implicit methods necessitate more computations as it is

required to solve algebraic equations to compute x,,;

* Implicit methods are more robust (i.e. have larger stability

region than explicit methods)

* Therefore, implicit methods are more appropriate for solving

stiff systems

ODE solvers in python

The solvers are implemented as individual classes which can be used directly (low-level

usage) or through a convenience function. g
(]
L=
, Solve an initial value problem for a 5
lve fun, t , YO[, method, t)y 5 i
solve_ivp(fun, t_span, yO[, methoq, t_eval, ...]) system of ODEs. :
Explicit Runge-Kutta method of ord "
RK23(fun, t0, y0, t_bound[, max_step, rtol, ...]) XPICIE RUnge-futta method ot order 7
3(2). O
Explicit R -Kutt thod of ord o

RK45(fun, t0, y0, t_bound[, max_step, rtol, ...]) SZT) (It RUNge-_uUtia method ot order

Implicit Runge-Kutta method of Radau
Radau(fun, t0, yO, t_bound[, max_step, ...]) 1A family of order 5.
Implicit method based on backward-
differentiation formulas.
Adams/BDF method with automatic
stiffness detection and switching.

OdeSolver(fun, t0, y0, t_bound, vectorized) Base class for ODE solvers.

BDF(fun, t0, yO, t_bound[, max_step, rtol, ...])

LSODA(fun, t0, y0, t_bound|, first_step, ...])

Base class for local interpolant over
step made by an ODE solver.

OdeSolution(ts, interpolants) Continuous ODE solution.

DenseOutput(t_old, t)

ODE solvers in Matlab

Solver Problem Type Accuracy When to Use
oded5 Nonstiff Medium Most of the time. ode45 should be the first solver you try.
ode23 Low ode23 can be more efficient than ode45 at problems with crude tolerances, or in

the presence of moderate stiffness.

odell3 Low to High odel13 can be more efficient than ode45 at problems with stringent error
tolerances, or when the ODE function is expensive to evaluate.

odel5s Stiff Low to Medium Try ode15s when ode45 fails or is inefficient and you suspect that the problem is
stiff. Also use ode15s when solving differential algebraic equations (DAEs).

S
(V)
o
()
-
I
ful
o+
C
(@)
(&)
(%]
(%]
Q
O
(@)
-
o

ode23s Low ode23s can be more efficient than ode15s at problems with crude error
tolerances. It can solve some stiff problems for which ode15s is not effective.

ode23s computes the Jacobian in each step, so it is beneficial to provide the
Jacobian via odeset to maximize efficiency and accuracy.

If there is a mass matrix, it must be constant.

ode23t Low Use ode23t if the problem is only moderately stiff and you need a solution without
numerical damping.

ode23t can solve differential algebraic equations (DAEs).

ode23tb Low Like ode23s, the ode23tb solver might be more efficient than odel5s at
problems with crude error tolerances.

odel5i Fully implicit Low Use ode151i for fully implicit problems fit,y,y') = 0 and for differential algebraic
equations (DAEs) of index 1.

