
ODE	helper
Monday,	14		October2019

Pr
oc

es
s c

on
tr

ol
 h

el
pe

r

1

• Typically, the additional condition to uniquely determine the

solution is the initial value of the function at t=t0

• For a nth-order ODE (that can be converted to the system of n

1st-order ODEs) we need n initial conditions (at one point, i.e.

for x, dx/dt, d2x/dt2,… at t0)

• IVP problem: find x(t) such that

Pr
oc

es
s c

on
tr

ol
 h

el
pe

r

2

Initial Value	Problems

 t

 x initial value

dx
dt

= f (x(t),t), t > 0

x(0) = x0

• In the expression for the ODE:

• At the time tk approximate dx/dt with the forward difference:

dx
dt

= f (x(t),t), x(0) = x0

Pr
oc

es
s c

on
tr

ol
 h

el
pe

r

3

Euler	forward method

 x(t0)

 t0 t1 t2 t3 !
 t

 x(t1)

 x(t2)
 x(t3)

dx
dt

=
x(tk+1)− x(tk)

h
+O(h), h = tk+1 − tk

therefore, we approximate values of x(tk)

x(tk+1) = x(tk)+ hf (x(tk),tk)

↓
x(t1) = x(t0)+ hf (x(t0),t0)
x(t2) = x(t1)+ hf (x(t1),t1)
!

• This method is single-step and explicit, i.e. uses information at tk

to compute the solution at tk+1

• The slope at tk is estimated using forward difference

i.e. at each step we

introduce the so-called local error Pr
oc

es
s c

on
tr

ol
 h

el
pe

r

4

Euler	forward method

 x(t0)

 t0 t1 t2 t3 !
 t

 x(t1)

 x(t2)
 x(t3)

true value of x(t1)

estimated
value of x(t1)

• Example:

• We use the Euler forward method:

dx
dt

= 2x − 3t, x(0) = 1

Pr
oc

es
s c

on
tr

ol
 h

el
pe

r

5

Euler	forward method

 x(tk+1) = x(tk)+ hf (x(tk),tk)

true value of x(t)

computed value of
x(t) for h=0.05

computed value of
x(t) for h=0.25

• Use the Taylor series to expand around x(t)

• Local error is of O(h2) – if we halve h then the local error will

reduce by factor of four

• However, if we halve h then we need twice more steps to cover

the desired interval -> we introduce twice as more local errors

• At the end of the interval, global error halves as we halve h

• Therefore, these methods are first-order methods (proportional

to h)

Pr
oc

es
s c

on
tr

ol
 h

el
pe

r

6

Error	analysis	in	Euler	methods

x(tk+1) = x(tk)+ hf (x(tk),tk)+ h2

2
′f (x(tk),tk)+…

Euler forward method local error

• For the ODE:

• Taylor expansion:

• Have to estimate f’(x(tk),tk), f’’(x(tk),tk),… i.e. as the order

increases, it becomes complicated to compute derivatives

• These methods are not frequently used

dx
dt

= f (x(t),t), x(0) = x0

Pr
oc

es
s c

on
tr

ol
 h

el
pe

r

7

Higher-order	Taylor	series methods

x(tk+1) = x(tk)+ hf (x(tk),tk)+ h2

2
′f (x(tk),tk)+…+ hn

n!
f (n−1) (x(tk),tk)+O(hn+1)

Euler forward method with O(h2)

2nd-order Taylor series method with O(h3)

• Motivation: improve the accuracy of solution without calculating

higher order derivatives

• General formulation:

• a1,…, α1,…,β1,1,… - constants derived in such a way that the approximation

matches as many terms in the Taylor expansion as possible

Pr
oc

es
s c

on
tr

ol
 h

el
pe

r

8

Runge-Kutta methods

 x(tk+1) = x(tk)+ h(a1K1 + a2K2 +!+ anKn)

K1 = f (x(tk),tk)
K2 = f (x(tk)+ hβ1,1K1,tk + hα1)

!
Kn = f (x(tk)+ hβn−1,1K1 + hβn−1,2K2 +"+ hβn−1,n−1Kn−1,tk + hα n−1)

Runge-Kutta (RK) of nth order

 x(tk)

Pr
oc

es
s c

on
tr

ol
 h

el
pe

r

9

Geometric	interpretation
of	2nd–order Runge-Kutta method

x(tk+1) = x(tk)+ h

2
(K1 + K2)

K1 = f (x(tk),tk)
K2 = f (x(tk)+ hK1,tk + h)

 x
p (tk+1) tk+1

 tk tk+1 h

Predictor

x p (tk+1) = x(tk)+ hK1

 K1 = f (x(tk),tk)

Pr
oc

es
s c

on
tr

ol
 h

el
pe

r

10

x(tk+1) = x(tk)+ h

2
(K1 + K2)

K1 = f (x(tk),tk)
K2 = f (x(tk)+ hK1,tk + h)

 x
p (tk+1) tk+1

 tk tk+1 h

 K2 = f (x p (tk+1),tk+1)

 x(tk)

 K1 = f (x(tk),tk)

Predictor

x p (tk+1) = x(tk)+ hK1

Geometric	interpretation
of	2nd–order Runge-Kutta method

Pr
oc

es
s c

on
tr

ol
 h

el
pe

r

11

x(tk+1) = x(tk)+ h

2
(K1 + K2)

K1 = f (x(tk),tk)
K2 = f (x(tk)+ hK1,tk + h)

 x
p (tk+1) tk+1

 tk tk+1 h

 K1 = f (x(tk),tk)

 K2 = f (x p (tk+1),tk+1)

 x(tk)

Predictor

x p (tk+1) = x(tk)+ hK1

Geometric	interpretation
of	2nd–order Runge-Kutta method

Pr
oc

es
s c

on
tr

ol
 h

el
pe

r

12

x(tk+1) = x(tk)+ h

2
(K1 + K2)

K1 = f (x(tk),tk)
K2 = f (x(tk)+ hK1,tk + h)

 x
p (tk+1) tk+1

 tk tk+1 h

 x(tk)

1
2

K1 + K2()

Predictor

x p (tk+1) = x(tk)+ hK1

Geometric	interpretation
of	2nd–order Runge-Kutta method

Pr
oc

es
s c

on
tr

ol
 h

el
pe

r

13

x(tk+1) = x(tk)+ h

2
(K1 + K2)

K1 = f (x(tk),tk)
K2 = f (x(tk)+ hK1,tk + h)

 x
p (tk+1) tk+1

 tk tk+1 h

 x(tk)

Corrector:
x(tk+1) = x(tk)+ h(K1 + K2) / 2

1
2

K1 + K2()

Predictor

x p (tk+1) = x(tk)+ hK1

correction

Predictor

x p (tk+1) = x(tk)+ hK1

Corrector:

x(tk+1) = x(tk)+ h
2

(K1 + f (x p (tk+1),tk+1))

Geometric	interpretation
of	2nd–order Runge-Kutta method

• 4th-order RK have the local truncation error of O(h5)

• Four function evaluations needed

• RK methods require no solutions prior to time tk
• as a consequence, it is easy to change the step size during integration

• it is a self-starting method

Pr
oc

es
s c

on
tr

ol
 h

el
pe

r

14

4th–order	Runge-Kutta method

x(tk+1) = x(tk)+ h

6
(K1 + 2K2 + 2K3 + K4)

K1 = f (x(tk),tk)

K2 = f (x(tk)+ h
2

K1,tk +
h
2

)

K3 = f (x(tk)+ h
2

K2 ,tk +
h
2

)

K4 = f (x(tk)+ hK3,tk + h)

• Stiff ODEs describe systems with very different time scales, i.e.

some components of these systems evolve relatively slowly

whereas others are changing rapidly

• The Jacobian matrix of this kind of systems has eigenvalues that

differ greatly in magnitude

• Euler forward method is very inefficient in solving stiff systems

as stability can be ensured only with very small steps (the

rapidly varying component, i.e. large λ, calls for a small h)

• Example:

Pr
oc

es
s c

on
tr

ol
 h

el
pe

r

15

Stiff	systems

• At tk approximate dx/dt with the backward finite difference:

dx
dt

= f (x(t),t), x(0) = x0 ⇒

Pr
oc

es
s c

on
tr

ol
 h

el
pe

r

16

Euler	backward method

x(tk+1)− x(tk)
h

= f (x(tk+1),tk+1)+O(h)

h = tk+1 − tk

therefore, neglecting O(h), we have
x(tk+1)− x(tk)− hf (x(tk+1),tk+1) = 0

since x(tk+1) is unknown, we have to resolve

the nonlinear system, where we take w=x(tk+1):

g(w) = w− x(tk)− hf (w,tk+1)

 x(t0)

 t0 t1! tk tk+1 !
 t

 x(t1)
 f (x(tk),tk)

 f (x(tk+1),tk+1)

For example, use Newton-Raphson

wn+1 = wn −
wn − x(tk)− hf (wn ,tk+1)

1− h
∂ f
∂w

(wn ,tk+1)
, n = 0,1,...

Initial condition:
(i) w0 = x(tk)

(ii) Euler forward difference estimate of x(tk+1)

• Example:

• In each step we have to solve:

• For h=tk+1-tk= 0.1 we have:

dx
dt

= 2x − 3t, x(0) = 1

Pr
oc

es
s c

on
tr

ol
 h

el
pe

r

17

Euler	backward method

 t0 t1 t2 t3 !

 x(t0)

 t

 x(t1)

 x(t2)
 x(t3)

x(tk+1)− x(tk)− hf (x(tk+1),tk+1) = 0
w− x(tk)− h ⋅(2 ⋅w− 3⋅ tk+1) = 0

w =
x(tk)− 3⋅h ⋅ tk+1

(1− 2h)

x(t2 = 0.1) = w = 1− 3⋅0.1⋅0.1
1− 2 ⋅0.1

= 1.2125

x(t2 = 0.2) = w = 1.2125− 0.3⋅0.2
0.8

= 1.4406

x(t3 = 0.3) = w = 1.4406− 0.3⋅0.3
0.8

= 1.6883

!

x(t10 = 1) = w = 4.5783

• Mentioned previously: Euler forward method is explicit, i.e. f is

evaluated with xk at time tk to compute the solution xk+1(tk+1)

• Another alternative: evaluate f with xk+1 before we know its

value (at time tk+1). Methods with this feature are implicit

• Implicit methods necessitate more computations as it is

required to solve algebraic equations to compute xk+1

• Implicit methods are more robust (i.e. have larger stability

region than explicit methods)

• Therefore, implicit methods are more appropriate for solving

stiff systems

Pr
oc

es
s c

on
tr

ol
 h

el
pe

r

18

Explicit	vs Implicit	methods

ODE	solvers	in	python

Pr
oc

es
s c

on
tr

ol
 h

el
pe

r

19

Pr
oc

es
s c

on
tr

ol
 h

el
pe

r

ODE	solvers	in	Matlab

Pr
oc

es
s c

on
tr

ol
 h

el
pe

r

20

Pr
oc

es
s c

on
tr

ol
 h

el
pe

r

