Mathematical modeling




Model

A less complex representation of the system to be studied

Why making a model?

* Simulation and analysis

e gain an understanding of the behavior of the system

e estimate a quantity or measure an objective

e Control
Evaluate alternative strategies

* Optimization

There is a trade-off between model accuracy and complexity
and the cost/effort required to develop the model.
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Classes of models
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Known physical laws
Limited complexity

l

Analytically derived
KNOWLEDGE-BASED models

Molar balance




Classes of models

\ 4

Known physical laws
Limited complexity

l

A4

Observed behavior
(dominant or specific)

l

Analytically derived
KNOWLEDGE-BASED models

Experimentally derived
REPRESENTATION models

Molar balance

Observation

c Ca(t)
AO[L Ca(t)= Caoe ™™
t
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Input/output
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Physical input Physical process Physical output ;
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e (input row) (chemical reactor, heat exchanger...) (output f|OW)




Input/output

e

Physical input
q —
¢ (input flow)

Input variables

s

Qe =

(independent)

Physical process
(chemical reactor, heat exchanger...)

Physical output
—
(output flow)

System
(mathematical model)

Output variables

[r——
(dependent)

ds
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Stirred tank with constant volume

T

€

Assumptions

e Vis constant We L\ mixer | |7
* No heat loss to the outside ' m =
* Well-mixed tank T;, = T (%) V = const - c
T ]r O
Global mass balance \ SO 2
(&)
w(t) & wy(t) = we(t) [ . =

P

Global energy balance

(rate of energy) . ( rate of ) _ ( rate of )

accumulation/  \input energy output energy

%[ PCp (T(t)_Tref)] - [W(t)cp (Te ()= Tref)+ P(t)}_ W(I)CP (T(t)_ Tref)

Vpc, —tT(t) =w(t)e, [ T.(r)-T(z)]+P(z)




Stirred tank with variable volume

1,
Assumptions IJ
We .
* Vis not constant = L MIXET
* No heat loss to the outside v =
*  Well-mixed tank T = T'(t) zl;e const =
\ T S
N n
Global mass balance OO 3
(@)
a
wy(£) # we () =
S

( rate of mass ) _ (input maSS) _ (output maSS)
accumulation flow rate flow rate




Stirred tank with variable volume (cont'd)

Global energy balance

(rate of energy) _ ( rate of ) B ( rate of )
accumulation input energy output energy
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%[V(I)Pcp (T(6) = Trer) J= [ we (1) (T (1)=Toeg )+ P(1) | =, (1) (T (1) = T




Stirred tank with variable volume (cont'd)

¥
ﬂzconst \* |J
OO
= T
S ,:@:0-;;;»
Ly (1) =we(1)-w, (1)
pdt - Ve S




Stirred tank with variable volume (cont'd)

Specific cases

a) If Vis constant: b) If T is constant:

d Mass balance

—V(t)=0 d _

dr LoV (D)]=pac (1) - pas (1) S

w(t):= we (1) = w, (1) ou
d

Vpe, ST(0)=w(t)e, [T ()-T(]+P(:) S h(1)=4.(1)=,(0) §

qe

c) If Vand T are constant (steady state):

: dr t
\j
A giving
h W=W, = W
q — _
S \/ ( -§-> P_WCP(T_TC)




Continuously stirred reactor

Exothermic chemical reaction Assumptions
A— B * First-order reaction
()= k()ca (1)
|_| =‘LJ with S
Cael | Te _ _Ea A
: k(t)—ko exP(RT(t)) g
\ o 4 T a
«— \’c: B---» (Arrhénius law)
r Ch “as B,
Tm
O *  Well-mixed reactor:
Aq \%
—> = T,(t)=T(t)
cas(t)=calt)
I I
Global mass balance Cp.s (t) = cq (t)
di(pv) = pq. (;) — g (t) =0 « Homogeneous cooling jacket
5

Heat loss negligible

that is: q(1):=q.(1)=qs(t)



Continuously stirred reactor (cont'd)

Partial molar balance for component A
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Continuously stirred reactor (cont'd)

Partial molar balance for component A

of moles of A
per unit of time

of moles of A in the

input molar ) _ (output molar
reactor per unit of time

consumed number
flow rate of A flow rate of A/ < )

(Variation in the number)
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[Vea()]=alr)ene(1)-a(t)en ()= vr(1)

E,

icA<t>=@[cA,e<> A 0]k s ea (0

Partial molar balance for component B




Continuously stirred reactor (cont'd)

Global energy balance
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Continuously stirred reactor (cont'd)

Global energy balance

difference between
(Accumulated) _ (Power exchanged) N ( input and output ) + (

Power generated )

power with the jacket ower by chemical reaction Tg
i
Vpc, iT( )=UAw| T (1) =T (¢) |+ pa(t)c,| To (1) T (¢) |+ (~AH ) Vi (2 §
d .y _ UAg (—AH) ~E,
T, T k t
dt Vpc [ :|+ [ :I Jofes 0%%P RT (1) ealr)

Characteristic variables

e Constant parameters: V,p,cp, U, A, ko, R, E,, (-AH)

e Independent variables: [¢@}[ca®) , NG
ICAU] IHUI

e Dependent variables (states):




Bioreactions

* Involve micro-organisms and enzyme catalysts.

* The basis for production of a wide variety of pharmaceuticals

and healthcare and food products.

* Important industrial processes that involve bioreactions

include fermentation and wastewater treatment.




Bioreactions

* Involve micro-organisms and enzyme catalysts.

* The basis for production of a wide variety of pharmaceuticals

and healthcare and food products.

* Important industrial processes that involve bioreactions

include fermentation and wastewater treatment.

Biomass
X P{"f =\
Substrates (T o/
S \ //9;;:;;”“\\ \\ ‘“g/\f/\@? \
() I & = 4+ Products
\ X/A: f/ S = % ) z
//“‘f’% \3%// ;@7\\ U/;/ & \\“1 \ﬁz;v;;“f/ P
@)\ \= ) ) =
‘ \‘ ™. N
N2 x5 = )
\T e/




Basic growth kinetics in a batch
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Growth Kinetics

Monod Equation Specific Growth Rate

S
Tg = uX W= Hmax g




Growth Kinetics

Monod Equation Specific Growth Rate
S
g = pX H = Hmax m
First order Complete Monod Zero order
S S
“=:umaxfs ,u=.umax5+KS K= Hmax

specific growth rate u

concentration S



Mass yield coefficients

The biomass yield on substrate

T,
g
Y —_— —
X/S e




Mass yield coefficients

The biomass yield on substrate

Ty mass of new cells formed
Yy ==  Yxis=
X/S
Ts

mass of substrate consumed




Mass yield coefficients

The biomass yield on substrate

Ty mass of new cells formed

Yyys=-—=  Tas=

r mass of substrate consumed
S

The product yield on substrate

mass of product formed

p _
YP/S - - YP/S —

g mass of substrate consumed




Mass yield coefficients

The biomass yield on substrate

13 mass of new cells formed

Yx/s = Yx/s =

r mass of substrate consumed
S

The product yield on substrate

T mass of product formed

_ P Yo /o =
YP/S Ty PIS ™ mass of substrate consumed

S

The yield product-biomass

mass of product formed

Yp /v = T_p Yp/x =
P/X T, mass of new cells formed




Fed-batch bioreactors

* Biological reactions typically performed in a batch or fed-batch
reactor.

e Fed-batch reactors are widely used in the pharmaceutical
and other process industries.

Substrate feed
F,S¢

Volume, V Product, P
Substrate, S Cells, X

=\
() \

g ‘;
e/ S P—
g ‘M ) . O -
1 - = ( 7\ J
X . (= V- - 1"
e 2. )




Fed-batch bioreactors

Modeling assumptions

1. The exponential cell growth stage

subsrte fee | s 2. Perfectly mixed broth (cells + liquid),
»Of
homogeneous
Volume, V Product, P .
mibetrste; 8, | Sl 3. Isothermal reactor operation
<. <> .| 4. Theliquid density is constant

5. The cell growth rate r, given by the
Monod equation




Fed-batch bioreactors

Modeling assumptions

1. The exponential cell growth stage

subsrte fee | s 2. Perfectly mixed broth (cells + liquid),
’9f
homogeneous
Volume, V Product, P .
Sitstrie 8 | sk 3. Isothermal reactor operation
©. &«>x=>= <1 4. The liquid density is constant

5. The cell growth rate r, given by the
Monod equation

6. The rate of product formation per unit
volume r, can be expressed as

T = Yp/xTy

mass of product formed

Yo v =
PIX ™ mass of new cells formed




Fed-batch bioreactors

Individual Component Balances N Sy

g l’lmaxS + K,
Cells: d(xv) /

77 Vrg




Fed-batch bioreactors

Individual Component Balances N Sy
g llmaxS_l_KS
Cells: d(XV) /
T =Vry,
Product:
d(PV) — v
i P
Substrate:
d(SV) = FS 1 Ly
dt " Yy g

Note: in some books Yield coefficients are defined as

Substrate feed ]
F,S; | — mass of new cells formed

Y =
*/S ™ mass o f substrate consumed to form cells
mass of product formed

Volume, V Product, P
Substrate, S Cells, X

Y'p /s =
PIS ™ mass o f substrate consumed to form product

D = FSp——— Vi — —

dt Y*x/s Y*p/s




Fed-batch bioreactors

Individual Component Balances N Sy
g llmaxS_l_KS
Cells: d(XV) /
i T
Product:
apv)
de P
Substrate:
d(SV) FS 1 v
dt " Yys g

Overall Mass Balance

Mass: dV




Fed-batch bioreactor simulation™

a (solid): F =0.05 L/h; b (dashed): F = 0.02 L/h).

6 i i Tisf)
0.75
o 4 -
& B 0.50
> 2 Q
0.25
0 0
10 30 T |
75
i}
5.0
w
25
0
Time (h) Time (h)
Model Parameters Simulation Conditions
Rise 020 h™! Sf 10.0 g/L
K 10 gl X(0) 0.05 g/L
Yore 0.5 glg S(0) 10.0 g/L
Yo 02 g/g P(0) 0.0 ¢g/L

* from Process Dynamic and
V(0) L0 L control by Seborg et al.
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Control of the absorption column
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State-space representation of systems
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State-space representation of systems

y(1)
Ll(f) S
2(1)
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Behavior of y(t) and z(t) for t = 0 depends on u(t = 0) but also on y(0) and z(0)!




State-space representation of systems

y(1)
Ll(t) S
2(1)

(1) ==3y(t)+2u(r)z(z) y(0)
z(r)=2y(r)-z() z(0)
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Behavior of y(t) and z(t) for t = 0 depends on u(t = 0) but also on y(0) and z(0)!

The minimal required information to unambiguously determine future
behavior of a dynamic deterministic system for t > ¢ is:
* the state of systemat t = ¢,

* the knowledge of the future inputs, i.e., u(t = t;)




State-space models

xl(t)—fl[xl(t) e X (), g (2)5 o0,y (2) t]
xz(t)=f2[x1(t) e X (2) g (1), oy (2) t]
xn(t):fn[xl(t) ooy Xy (1), 1y (2) ...,up(t) t]
yl(t):gl[xl(t) o X (2) g (1), oy (2) t]
)’2(f):82[x1(f) o Xy (1), 1y (1) ---’“p(’) ’]
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State-space models

x; (1 uy (1) i (2 —
X, (1 U, (1 t 2
O A BT A e :
: : ; 2
xn(t) up(t) yq(t) g
Vector of states Vector of inputs Vector of outputs
State equation Output equation

()= 1Tx(0) u(0). 1] x(tp)=1q (0)=[x(0) u(t), ]




Linear, stationary, state-space models

()= Ax(1)+ Bu(1) x(0)=x,

y(t) = Cx(t)+ Du(t)

>
X0 x(7) +
u(t) L> B :ﬁi f ———— C (0
+
A <):

Multivariable
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X(t x(1) lJr
u(t) b :DT?D j —> T _tO_> 0
A K

Monovariable




Mixing tank example
_ Iql(t) &:) 612(t)I -

cl A Acz

R 2
V(1) §
h(f) @ C(t) ﬁ
o
v () D-

] q

c(1)
q [k
pSah(t)=qu(t)+pCI2(t)_pQ(t) ?g}

pS%[C(t)h(t):l = peiq (1)+ peagy (1) — pe(t) g (1) _—}




Mixing tank state-space model

x()=h@)| |w(t)=a()| [n(@)=h)
w(0)=c()| |a@=a0| [no=""

states inputs outputs
(1) = 5[0 (0415 (1) = 5, 1)




Once having a nonlinear model - what to do?

Simulation: Determine the state x(t) and the output y(t) for t > t, starting from x(t;)
and using the knowledge of u(t) for t > t;,
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Once having a nonlinear model - what to do?

Simulation: Determine the state x(t) and the output y(t) for t > t, starting from x(t;)
and using the knowledge of u(t) for t > t;,
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N x(kh+h)—x(kh) (1)
h
x(kh+h)=x(kh)+hf | x(kh), u(kh)]

XO _____

=.
=
=
N—
I
L




Once having a nonlinear model - what to do?

Simulation: Determine the state x(t) and the output y(t) for t > t, starting from x(t;)
and using the knowledge of u(t) for t > t;,
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_ X(kh+h)—X(kh) x(?)

=.
=
=
N—
I
L

¥(kh)

h x(kh + h) — x(kh)
x(kh+h)=x(kh)+hf | x(kh), u(kh)] h
T h
—
_ll§

koh kh  kh+h



Exact (feedback) linearization
(1) = [ (0)+ () -k (1
o
Ah(t) = u(t) - kJh(t)

Nonlinear model

Ie
S
o+
C
(@)
(©)
(%]
(%]
(]
O
(@)
| .
o




Exact (feedback) linearization
Nonlinear model
Ah(t) = u(t) — krJh(t)

If we could measure h(t), then we could define a new input that satisfies

u(t)—kJh(t) = Av(t)
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Exact (feedback) linearization

Nonlinear model
Ah(t) = u(t) — kJh(t)

If we could measure h(t), then we could define a new input that satisfies

u(t)—kJh(t) = Av(t)
And our system becomes linear:

h(t)=v(t)

v u Nonlinear K
system '

Linear system
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Approximate linearization

Nonlinear

f(x)

fR+8x) [ |
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FE ,

X X+ 0x




Approximate linearization

Nonlinear

£
(% + 6x)
f(®) + of

i Linearized
/ around x

f(E +6%) = f(@) HE @) 8x =|f (%) Hof
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f(x)

X X+ 0x




Approximate linearization

£(x) Nonlinear
f(X+6x) [~ " Linearized
f(f) _|_ 6f ________________________ I around ’f 4—g
 fE+6x) = f(®) HE @ 8x =|f(R) H5f| B
e | -
: > X
X X+ 6x

Depending on the control problem (tracking or regulation), we can perform linearization

around:
Nominal trajectories Stationary point

x=fx(t), ul(t), 1] x(0) = x, 0=f[x, u]

y(t)=g[x(z), u(t), ] y=g[x,ul




Linearization procedure
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Linearization procedure

Ie
S
o+
C
(@)
(©)
(%]
(%]
(]
O
(@)
| .
o

S L of _\  Higher-order
i=fx u]+8—xﬁ,i(x_x)+a—uﬁ i(u—u)+ o erore
y:g[f, l/_t]_|_a_g (x_x)_l_a_g (l/l—l/_l)—|— :lelfrl:]ir-order

axﬁ,i duly x




Linearization procedure (cont'd)

. 4.0 \ 0 _
x:f[x,u]+—f (x—x)+—f (u—1)
oxl; ¢ duly %
4.0 \ 0 _
y=g[x, u]+28| (x-%)+=2| (u—u)
oxlg ¢ duly
| )
|
y(x)ﬂ
g(x + ox*)fp-----mmmmmopr
__________ Variables in the linearized
system are deviations
/from X and y
y [ . 5:x* > 5x
; . x
X

X+ Ox*
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Linearization procedure (cont'd)

. 4 0 0 _
x:f[x,u]+—f (x—x)+—f (u—1)
ox i X ou X
., 0 . 0 B g
y=g[x,u]+—g (x—x)+—g (u—u) S
0x % duly « 7
l V J E
y(x)
g(x + ox*)fp-----mmmmmopr —
Linearization
— erroratx + 0x*
__________ _ Variables in the linearized
system are deviations
/ from xand y
Yy [ : Py > Ox
AN .

- S
Region with a x X + 0x
valid linearization




Linearization procedure (cont'd)

Deviations
5x(t):= x(t —x | i=flx, ﬁ]+§_£u,x(x_)_6)+§_£u’X(u_ﬁ)+tos
Ou(t):=ult)=u - - y=g[*, L_‘]J’g_i (x—f)+§_§ (u—1it)+tos g
Sy(1):= y(1)-y | 5
S




Linearization procedure (cont'd)

Deviations
- x=f[x,u o x—X L
6X(l‘)t= x(t)_)_c . ulr oxlg, x( )+auu,x
_ / —
Su(t)=u(t)-u - v=glx. a]+g_g (x_g)+§_§ g
oy(t):=y(1)-y | ’ | S
Linear approximation %
.0 0
5x=a—£_’ Ox +8£ i5u 6x(0)=x,—
dag g
0y = ox+—= 0
Y dxlg % § duly % g

8i=Ad0x+Bou 06x(0)=x,—X

0y=Cox+ Dou



Toy example: method 1

)'c=—2x+0,5(x+1)u x(O):l

Equlibrium point
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Toy example: method 1
)'c=—2x+0,5(x+1)u x(O):l
Equlibrium point
0=-2x+0,5(x+1)u
For u =2 ,weobtain x=1

Linear approximation of the nonlinearity
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Toy example: method 1
)'c:—2x+0,5(x+1)u x(O):l
Equlibrium point
0=-2x+0,5(x+1)u

For u =2 ,weobtain x =1
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Linear approximation of the nonlinearity

xu=xu+u(x—x)+x(u—u)

Deviations —  xu=xu+ udx + xdu

Oox:=x—x Ou:=u—u

—_—

Linear approximation of the overall system
X = [—Zx +0,5 ()_cﬁ +udx+ )_CEu) + O,Su]




Toy example: method 1

x=-2x+0,5(x+1)u

Equlibrium point
0=-2x+0,5(x+1)u
For u =2 ,weobtain x =1
Linear approximation of the nonlinearity
xu=xu+u(x—x)+x(u—u)

Deviations

Ox:=x—x Ou:=u—u

Linear approximation of the overall system

i=|-2x+0,5(xu +udx+x8u)+0,5u |- [-2x +0,5%u +0,5u |

=-26x+0,5(ubx+x6u)+0,56u
Ox =X

Ox=—-0x+0u 5x(0):O

x(0)=1
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Reminder: state-space matrices

Linear approximation

ou 6x(0)=xy—Xx
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8i=Adx+Bdu 6x(0)=xy—Xx
0y=Cox+ Ddu

State-space representation of linear system

x()=Ax(t)+Bu(t) x(0)=x,

y(¢)=Cx(t)+ Du(t)




State-space matrices

- - [ Jf; 0
%W % o
dx; 0x, ox, i
d df I of o U 5
—loxq oy, | oax, | Bi=oo =0 dn £
oxl; : S Ulg, x : : S
of, o O dn I 8
(nxn) | dx;  Ox, ox, lix (nxp) | dup duy
i agl agl o agl i I agl agl
ox; 0x, ox,, duy  duy
dg, 98 N g, dg, 98
=% fam Ay =% oo du
u, X ; ; : Ulg, x : :
984 98 98 dgq  9gq
(gxn) | dx; dxy ox,, Jax (g p) | duy  duy




Toy example: method 2
x=-2x+0,5(x+1)u  x(0)=1

Monovariable system: n=p =1
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Toy example: method 2

x=-2x+0,5(x+1)u  x(0)=1

Monovariable system: n=p =1 S
S
x=f(x,u) - f(x,u) = —2x + 0.5xu + 0.5u >
of (x,u d0(—2x + 0.5xu + 0.5u
A= foou) = ( ) =—-24+05u=-1
ox |__ d0x __
X, u xX,Uu
daf (x,u
B = ACD =05x+05=1
Ju |__
xX,u

0x = Adx + Béu = —déx + du

6x(0)=x(0)—x=0




Mixing tank

IS
A :
V(1) >
h(1) X c(r) §
M P q(1)
c(1)
:%(Gl— )+%(C2—C) C(O):CO
y=h
C
Y2 =

C Multivariable system n=p=¢g=2




Mixing tank (cont'd)

Operating point Af () Afy(0w)]
G, Gy, h, ¢ _ofw) | 0n 0x

(@22, 1, €) A= "0 sa = |0Kew 96w _
q1,q2 — U, Uy L 0x ox; llzz [BE
— (@)
— —_ . (©)
he oL = ot M)/S - i
Multivariable system n=p=¢g=2 E

¢ = (Cl—C)+ (CZ—C) f2




Mixing tank (cont'd)

Operating point 0fi(xu)  Af ()T
_ ’ — ’ }_l, — _ af(x,u) _ axl axz
(ql 1 C) 4= ox lgg [0f2(xw) Ofa(xw)
@3 > W - e e
h,c - X1,%; h= (q1+q2 —~ k\/i_z)/S - fi
Multivariable system n=p=¢g=2 , ( ) + ( ) > f
C = 1 —C € —C 2
5f1 k afl
A1 = =— = - A1z = =0
Ohl,n  25VR acl,,,
9 P _ A
a1 = a_];lz Shz (C1 —C)— -5 (Cz —C) = Sh2 [C(Ch +qz) — 191 — €2 q3]
eq.p.
)7 N
227 9c Sh Sh
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Mixing tank (cont'd)

fi(xw)  Afi(ouy h = (q1+q, — kVh)/S > fi
B — af (x,u) _ duq du,
T ou gz |0fa(x a1 (x, : q

ou lgu fggtxlu) fgixzu) - ¢== (C1 —C) + (Cz =)~ fa

0 1 9, 1

bll — i _ — b12 = i = —

Miloqp. S M2lpqp. S

. _0fy ci1—C _0fy _p—C
217 93¢, T " Sh 27 0qy| Sh
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Mixing tank (cont'd)

Ofi(cu)  Ofi ()T h = (q1+q, — kVh)/S - fi
B = of (x,u) _ ou, du, 5
ou gy dfz(xu) 0fz2(xu) ¢ = CI1 (Cl — ) _|_ (Cz —c)—- [y *g
6u1 auz X )
O
o
117 54, o S 127 34, . S
b, — % _ C1 j C b — % _ Co j C
2 0g eq.p Sh g eq.p Sh
¢ =1 2 =0
1
C21 =0 C22 -




Mixing tank (cont'd)

Residence time

At the operating point: h = (q;+q, — k\/l_l) /S=0

o Sh _ sk 8
d1 1+ 49> k

Linear(ized) model

LI 1
Sho|_| 26 Sho|,| S S g,
o¢ 1 oc c;—C ¢ —c¢C 0q,

_ Lo _
[ 5Y1 }_ 1
=l o L
5)’2 ¢
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1. (30 points) A reversible reaction 24 & B + C takes place in a membrane reactor shown below. The

E Xam reactor consists of a well-mixed reaction chamber and a separation chamber separated by a membrane.
The membrane is permeable to compound B, whereas compounds A and C cannot pass through.

Compound B diffuses out of the reaction chamber through the membrane and is removed from the

problem separation chamber by a stream of inert substance. The diffusion rate of B through the membrane is

kmol g . : .
kmAnmCg [—:{%], where A,, is the effective area of the membrane. Compound A is pumped into the reactor
with the flow rate q and the concentration C,;. C4, Cg, and C; denote the concentrations of A, B, and C in

exal I lple the reactor. Despite the diffusion of B through the membrane, the exit and feed flow rates are assumed
equal because B is a small molecule, i.e., it is assumed that the reactor volume is constant. The temperature

in the reactor is also constant. The reaction follows the mass action kinetics with the rate constants k; =

m3 ’ . : m3 : . .
0.5 ———— (in the forward direction) and k, = 2.5 ———— (in the reverse direction).
kmol-min kmol-min
q,Cai
H m ©Ca: G, Cc

reaction ~  fgeeeees >
chamber

inert inert

substance separation chamber substance

For the parameter values: reactor volume V = 3 m3, feed flow rate ¢ = 0.25 m3/min, mass transfer
coefficient k,, = 1.5 m/min, and input feed concentration C,; = 10 kmol/m?3:

a) Write the mass balances for compounds A and B.

b) Knowing that the effective membrane area at the steady-state is A3 = 4 m?, and that the steady-
state concentration of compound A4 is five times the one of B, i.e., C;° = 5C3°, determine the steady-
state concentrations of A, B, and C in the reaction chamber.

¢) The membrane degrades gradually and its effective area, A4,,, changes in time. Derive the dynamic
equations for deviations of concentrations C, and Cy by linearizing the system of equations from a)
around the steady-state derived in b).

d) Having the matrices in the states-space form, discuss how would you express in the Laplace domain
the dependency of C4 and Cz on A,,. No explicit calculation is needed.
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