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Make things that change with time do what we want them to do



Make things that change with time do what we want them to do

Most engineered systems 
require controllers to 
function

Controllers can provide 
optimal performance

Analysis and understanding 
of dynamic systems

A controller is anything that senses the environment, takes decisions, and modifies

the environment in order meet some objective.
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Robot Quadrotors Perform James Bond Theme

GRASP Lab, University of Pennsylvania
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Components of a Control System

Sensor Measure the world

Actuator Effect the world

System The object we’re trying to control

Controller Takes decisions based on

• Measurements

• Knowledge of how the system works

A controller is anything that senses the environment, takes decisions, and modifies

the environment in order meet some objective.

Note: Controller doesn’t have to be a ‘computer’, or an electronic circuit
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Example: Autonomous Quadrocopter flight

• Highly agile due to fast rotational dynamics

• High thrust-to-weight ratio allows for large translational accelerations

• Motion control by altering rotation rate and/or pitch of the rotors

• High thrust motors enable high performance control
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How a Quad Works

F1 F2

F3
F4

g

w1 w2

w3 w4

L

• We can set the speed of the propellers (our inputs)

• Our goal is to control the pitch, roll and altitude
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How a Quad Works

F1 F2

F3
F4

g

w1 w2

w3 w4

L

Force is quadratic in propeller speed:

Fi(t) = kFwi(t)
2

Moment is quadratic in prop speed:

Mi(t) = kMwi(t)
2

Vertical force: F (t) = F1(t) + F2(t) + F3(t) + F4(t)

Roll moment: Mα(t) = L(F1(t)− F4(t))

Pitch moment: Mβ(t) = L(F2(t)− F3(t))

Rotation: Mγ(t) = M1(t) +M2(t) +M3(t) +M4(t)
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How a Quad Works

F1 F2

F3
F4

g

w1 w2

w3 w4

L

Force is quadratic in propeller speed:

Fi(t) = kFwi(t)
2

Moment is quadratic in prop speed:

Mi(t) = kMwi(t)
2

Vertical force:

Roll moment:

Pitch moment:

Rotation:


F (t)

Mα(t)

Mβ(t)

Mγ(t)

 =


kF kF kF kF

LkF 0 0 −LkF
0 LkF −LkF 0

kM kM kM kM



w1(t)2

w2(t)2

w3(t)2

w4(t)2



• We have four degrees of freedom and four forces / moments

• Can set the forces / moments as we like - these are our inputs
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Quad Control

F1 F2

F3
F4

g

w1 w2

w3 w4

L

Altitude: mz̈(t) = −mg︸ ︷︷ ︸
Gravity

+ F (t)︸︷︷︸
Thrust of propellers

Hold altitude at zc: F (t) = K(zc − z(t))

Resulting system: mz̈(t) = −mg +K(zc − z(t))
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Quad Control

F1 F2

F3
F4

g

w1 w2

w3 w4

L

Roll and pitch:

Iαα̈(t) = Mα(t)

Hold attitude at αc, βc:

Mα(t) = Kα(αc − α(t))

Resulting system

Iαα̈(t) = Kα(αc − α(t))
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Quad Control

F1 F2

F3
F4

g

w1 w2

w3 w4

L

Yaw:

Iγ γ̈(t) = Mγ(t)

Keep yaw at zero:

Mγ(t) = −Kγγ(t)−Dγ γ̇(t)

Resulting system

Iγ γ̈(t) = −Kγγ(t)−Dγ γ̇(t)
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Example: Autonomous Quadrocopter flight

Demo movie

Lexus & Kmel robotics
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Block Diagrams - Basic Building Blocks

x(t)

y(t)

x(t)− y(t)

Summation

+

− x(t) x(t)

x(t)

Bifurcation

u(t) System y(t)

Enforces a dynamic constraint between the output y(t) and the input u(t)

e.g. ÿ(t) + αẏ(t)− ü(t) + u(t) = 0

10



Block Diagram of Attitude Controllers

αc Kα

Attitude

Dynamics
α(t)

+ αc − α(t) Mα(t)

−

• Reference αc

• Error αc − α(t)

• Input Mα(t)

• Output α(t)

• Controller Kα

• System Iαα̈(t) = Mα(t)

Goal: Track reference αc
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Block Diagram of Altitude Controller

zc K

mg

Vertical

Dynamics
z(t)

+ zc − z(t) F (t) + −

−

• Disturbance g

Goal: Track reference zc and reject disturbance mg
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Block Diagram of Yaw Controller

Controller

Dynamics

Yaw

Dynamics
γ(t)

−γ(t) Mγ(t)

−

• Controller dynamics: Mγ(t) = −Kγγ(t)−Dγ γ̇(t)

Goal: Regulate the yaw
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Cascade Control

2
664

kF kF kF kF
LkF 0 0 �LkF
0 LkF �LkF 0

kM kM kM kM

3
775

�1
Yaw Control

Roll Control

Pitch Control

Altitude Control

+

�

�

�

�

�c(t)

�(t)

↵(t)

↵c(t)

�(t)

z(t)

zc(t)

w2(t)

F (t)

M↵(t)

M�(t)

M�(t)
w1(t)

w3(t)

w4(t)

14



Cascade Control

�c(t) �(t)

↵(t)↵c(t)

z(t)zc(t)

Attitude
Controlled 
Quadrotor

x-controller

y-controller

z-controller

Double 
Integrator

Double 
Integrator

Double 
Integrator

xc(t)

yc(t)

zc(t)

Possibly lots more loops

• Collision avoidance

• Trajectory planning

• Mission planning

• etc

Why?

• Inner loops make the system

predictable and simple

• Conceptually simpler
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Canonical Block Diagram

r(t)

Reference

Controller

w(t)

Input

Disturbance

System y(t)

Output

v(t)

Output

Disturbance

+ e(t)

Error

u(t)

Input

+

+

+

−

+

Goal: Make y(t) = r(t), no matter what w(t), or v(t) are

If r(t) is...

• zero, we’re doing regulation

• time-varying, we’re doing servoing / tracking
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Canonical Block Diagram

r(t)
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Controller

w(t)

Input

Disturbance

System y(t)

Output

v(t)

Output

Disturbance

+ e(t)

Error

u(t)

Input

+

+

+

−

+

Goal: Make y(t) = r(t), no matter what w(t), or v(t) are

If r(t) is...

• zero, we’re doing regulation

• time-varying, we’re doing servoing / tracking
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Nomenclature

The system:

U(s) G(s) Y (s)

The open-loop system or loop gain:

E(s) K(s) G(s) Y (s)
U(s)

The closed-loop system:

R(s) K(s) G(s) Y (s)
+ E(s) U(s)

−
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Quick Review of Systèmes Dynamique

More complete review on Moodle



What is a System?

A dynamic system transforms an input signal u(t) into an output signal y(t).

y = G(u)

u(t) G y(t)

We care about LTI systems

Linear G(au1 + bu2) = aG(u1) + bG(u2)

Causal u(t) = 0 for t < 0 implies y(t) = 0 for t < 0

Time-invariant y(t) = G(u(t)) implies that G(u(t+ T )) = y(t+ T )
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Why are these types of systems important?

1. We can predict their behaviour from data easily
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1. We can predict their behaviour from data easily

Impulse Response

The impulse response g(t) is defined as the output of the system in response to a dirac

delta function at time t = 0:

g(t) := G(δ(t))

Theorem : Response of an LTI System

The output of an LTI system in response to an input signal u(t) is

G(u) = g ∗ u

where y = g ∗ u if

y(t) =

∫ t

0

u(τ)g(t− τ)dτ

If G is an LTI system, then the impulse response completely characterizes it.

Key limitation: Most systems have an infinitely-long impulse response.
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Why are these types of systems important?

1. We can predict their behaviour from data easily

2. We can store and manipulate complex systems
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2. We can store and manipulate complex systems

Transfer Function

The transfer function of a system is the Laplace transform of its impulse response.

L{g(t)} = G(s)

For LTI systems G(s) is a rational polynomial function

The point: Convolution becomes multiplication

y = g ∗ u ⇔ Y (s) = G(s)U(s)
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Manipulation of Simple Block Diagrams

r(t) ü(t) + 3u(t) = ṙ(t) + 4r(t) ÿ(t) + ẏ(t) = u(t) + 2u̇(t) y(t)
u(t)

If we’re given the reference function r(t), what is y(t)?
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Manipulation of Simple Block Diagrams

r(t) ü(t) + 3u(t) = ṙ(t) + 4r(t) ÿ(t) + ẏ(t) = u(t) + 2u̇(t) y(t)
u(t)

ü(t) + 3u(t) = ṙ(t) + 4r(t) ⇒ s2U(s) + 3U(s) = sR(s) + 4R(s)

ÿ(t) + ẏ(t) = u(t) + 2u̇(t) ⇒ s2Y (s) + sY (s) = U(s) + 2sU(s)

Re-arranging gives:

U(s) =
s+ 4

s2 + 3
R(s) Y (s) =

1 + 2s

s2 + s
U(s)

... and we can compute the impact of r(t) on y(t)

Y (s) =
1 + 2s

s2 + s
· s+ 4

s2 + 3
R(s)

Series connection of blocks (convolution) becomes multiplication!

R(s)
1 + 2s

s2 + s
· s+ 4

s2 + 3
Y (s)
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ü(t) + 3u(t) = ṙ(t) + 4r(t) ⇒ s2U(s) + 3U(s) = sR(s) + 4R(s)
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Example: System Response

Compute response to a impulsive disturbance acting on the yaw system

Controller

Dynamics

Mγ(t) = −Kγγ(t)−Dγ γ̇(t) w(t)

Yaw

Dynamics

Jγ̈(t) = Mγ(t) + w(t)

γ(t)
+−γ(t) Mγ(t)

+−

Kγ + sDγ

W (s)

1

Js2
Γ(s)

+−Γ(s) Mγ(s)

+−
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Example: System Response

Kγ + sDγ

W (s)

1

Js2
Γ(s)

+−Γ(s) Mγ(s)

+−

Start at the output and work backwards against the arrows

Γ =
1

Js2
(W − (Kγ + sDγ)Γ)

(Js2 + sDγ +Kγ)Γ = W

W (s)
1

Js2 +Ds+K
Γ(s)

Where we recall that D sets the damping and K the response rate.
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Example: Complex System

R(s) G1

G2

G3

G4

G5

H2

H3

H4

G6 Y (s)

−

−

−

−
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Example: Complex System

R(s) G1

G2

G3

G4

G5

H2

H3

H4

G6 Y (s)

−

−

x x−

−
z

Add auxiliary variables for internal loops, and wherever convenient to simplify.
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Example: Complex System

Start at the output and work back against the arrows.

A block is a multiplication, a summation is addition.

Y = G6x

x = G4(G2z −H2x) +G5(G3z −H2x)

z = G1(R−H3Y −H4Y )

Solve for Y as a function of R

x = (G4G2 +G5G3)z − (G4H2 +G5H2)x

(1 +G4H2 +G5H2)x = (G4G2 +G5G3)z

x =
G4G2 +G5G3

1 +G4H2 +G5H2
z

Y = G6
G4G2 +G5G3

1 +G4H2 +G5H2
z
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Example: Complex System

Y = G6
G4G2 +G5G3

1 +G4H2 +G5H2︸ ︷︷ ︸
Q

z z = G1R− (H3 +H4)Y

Solve to get the transfer function

Y

R
=

QG1

1 +Q(H3 +H4)

If we want to do more algebra, we can eliminate Q

Y

R
=

G1G2G4G6 +G1G3G5G6

(G4 +G5)H2 +G2G4G6H3 +G2G4G6H4 +G3G5G6H3 +G3G5G6H4 + 1
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Why are these types of systems important?

1. We can predict their behaviour from data easily

2. We can store and manipulate complex systems

3. We can shape system behaviour

29



3. We can shape system behaviours

Time domain

• PID

• Model predictive control

• ...

Frequency domain

• Loopshaping controllers

• H∞ - robust optimal control

• ...

Pole/zero domain

• Pole placement

• Linear quadratic regulation

• ...

Many very well-established techniques that are proven and work well at large scales.
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Key points to review

Please review:

• Computation of Laplace transforms

• Manipulation of block diagrams

• Inverse Laplace transforms

• System response to impulse, step, ramp, etc
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Administration



Teachers

Professor

Colin Jones

Laboratoire d’Automatique

ME C2 405

colin.jones@epfl.ch

Travaux Pratique

Christophe Salzmann

Laboratoire d’Automatique

ME C2 426

christophe.salzmann@epfl.ch
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Reference Material

We will mostly follow the textbook:

• The sections of the text that we are covering will appear on Moodle

• Lecture notes and pre-recorded videos are on Moodle

You are responsible for the material in the text and in the lecture notes
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Activities

1. Lectures

• Two hours per week

• Lectures are not recorded, but high-quality pre-recordings are on Moodle

2. TPs

• Seven TPs done via a MOOC interface driving a physical device

• Can do the TPs in-person or remotely

3. Exercises

• Written / computer exercises

• 13 exercise sets

Detailed schedule on Moodle
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How to Get Help

In person During lectures, or during afternoon exercise / TP sessions

Ed Discussion Please post your questions publicly - others will benefit!

Recorded videos Lectures have been pre-recorded and are available on Moodle.
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Grading and Exams

100% Final exam

• One question from the TPs (MOOC) worth 20%

• Questions based on the lectures / exercises worth 80%

36



Examples: Other Varieties of Control



Employee Scheduling : The Challenge

Too few salespeople Too many salespeople

= =

Unhappy customers / less sales Excessive wages

What can control do?
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The Control Problem

�

OV\YZ,KH`Z
u(t)

Number
of

Customers

Understaffed / 
overstaffed

hours
Controller

(Scheduler)

Employee
Preferences

� +

�

sa
le

s 
/ e

m
pl

oy
ee

s 
on

 fl
oo

r 

time store 
opens 

store 
closes 

Employees: 
A: 
B: 
C: 
D: 
E: 
F: 
G: 
H: 

sales 
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SW- 

1 

… ACHIEVES SAVINGS BY MATCHING RESOURCES TO DEMAND 
Average number of weekday staff* 

 * For retail store with 14 staff (11.5 FTEs) 
 ** Sample optimized schedule provided by Apex Optimization GmbH 

0

2

4

6

8

10

12

11h 12h 13h 14h 15h 16h 17h 18h 19h 

Demanded 

Scheduled 

9h 10h 

• Original scheme (manually 
scheduled, unoptimized) 

• FTE hours per week 
– Excess scheduled: 65 
– Unmet demanded: 85 
– Mismatched: 150 

• Optimized schedule** 
(automatically produced) 

• FTE hours per week 
– Excess scheduled: 15 
– Unmet demanded: 39 
– Mismatched: 54 

• Estimated savings of up to 46 
overtime hours per week 
(~10% of total) needed to 
meet expected demand 

EXAMPLE 

0

2

4

6

8

10

12

9h 16h 10h 15h 18h 14h 11h 19h 13h 12h 17h 
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Example: ‘Fulfilment Centers’
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Kiva systems

Sold to Amazon in March, 2012 for $775m USD
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Inerter

The Inerter in F1 Racing

Slides from Prof. Malcom Smith
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Demand Response

Demand Response Slides
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Control Applications at all Space and Time Scales

Production planning


Nurse rostering


Buildings


Power systems


Train scheduling


Refineries


Traction control


Computer control
 ns


𝜇s


ms


Seconds


Minutes


Hours


Days


Weeks
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Summary

• Feedback control is everywhere

• It is used to:

• Stabilize unstable systems

• Make behaviors repeatable / predictable

• Maximize performance

• Understand what complex systems are doing
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