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Make things that change with time do what we want them to do

Most engineered systems
require controllers to
function

Controllers can provide
optimal performance

Analysis and understanding
of dynamic systems

A controller is anything that senses the environment, takes decisions, and modifies
the environment in order meet some objective.






Components of a Control System

Sensor Measure the world
Actuator Effect the world
System The object we're trying to control
Controller Takes decisions based on

e Measurements
e Knowledge of how the system works

A controller is anything that senses the environment, takes decisions, and modifies
the environment in order meet some objective.

Note: Controller doesn’t have to be a ‘computer’, or an electronic circuit



Example: Autonomous Quadrocopter flight

e Highly agile due to fast rotational dynamics

e High thrust-to-weight ratio allows for large translational accelerations
e Motion control by altering rotation rate and/or pitch of the rotors

e High thrust motors enable high performance control




How a Quad Works

F3? > g
DT >

e We can set the speed of the propellers (our inputs)

e Our goal is to control the pitch, roll and altitude



How a Quad Works

Force is quadratic in propeller speed:
Fz(t) = kF’LUi(t)Q
Moment is quadratic in prop speed:

My(t) = karws (t)?

Vertical force: F(t) = Fi(t) + F2(t) + Fs(t) + Fu(t)
t) = L(F1(t) — Fu(t))
— F3(t))

Rotation: M, (t) = My(t) + Ma(t) + Ms(t) + Ma(t)

(

Roll moment: Mo (

Pitch moment: Mp(t
(



How a Quad Works

Force is quadratic in propeller speed:
Fz(t) = kF’LUi(t)Q
Moment is quadratic in prop speed:

My(t) = karws (t)?

Vertical force: F(t) ke kg kr kr wi (t)?
Roll moment: ]\/[a(t) B Lkr 0 0 —Lkp w2(t)2

Pitch moment: Mg (t) 0 Lkr —Lkr 0 ws (1)’
Rotation: M, (t) kv kv ke ket wa(t)®

e We have four degrees of freedom and four forces / moments

e Can set the forces / moments as we like - these are our inputs



Quad Control

Altitude: miZ(t) = —mg+ F(t)
~—~—
Gravity Thrust of propellers
Hold altitude at z.: F(t) = K(ze — 2(t))
Resulting system: mz(t) = —mg + K(zc — 2(t))



Quad Control

Roll and pitch:

Hold attitude at a., fSe:

]V[a(t) = K(x(a(: - a(t))

Resulting system

I, Ot(t) = K(x(a(: - a(t))



Quad Control

Yaw:

LA(t) = My (t)

Keep yaw at zero:
My (t) = =K () — Dy5(2)
Resulting system

LA(t) = _K'Y’Y(t) - D’Y;Y(t)



Example: Autonomous Quadrocopter flight

Demo movie

Lexus & Kmel robotics



Block Diagrams - Basic Building Blocks

Summation

x(t) H?H z(t) — y(t)
y(t)

Bifurcation

u(t) —

System

— y(t)

Enforces a dynamic constraint between the output y(¢) and the input u(t)

eg. §(t)+ay(t) —i(t)+u(t)=0
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Block Diagram of Attitude Controllers

Ma(t) | Attitude

o Qe — aft)
¢ —> @ > . > ot
¢ f— . Dynamics o(?)

Reference .

e Error a. — at)
Input M4 (t)
Output «(t)

e Controller K,

System I,a(t) = Ma(t)

Goal: Track reference a.

11



Block Diagram of Altitude Controller

mg
ze — 2(1) F(t) J . Vertical

ze —(O—— K —(—> .
I - Dynamics

e Disturbance g

Goal: Track reference z. and reject disturbance mg
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Block Diagram of Yaw Controller

—(t) | Controller | M-(t) Yaw (0
- Dynamics Dynamics 7
e Controller dynamics: M (t) = —K,~(t) — D,4(t)

Goal: Regulate the yaw
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Cascade Control

M,
ac(t)—J; Pitch Control (1)

- L, (@) } a(t)
- mao) |00 kel R B

0 Lke —Lkr 0 s
Be(t) > Roll Control }_‘F(t kv ku K P wa(t) \ 2(t)

zc(t) Altitude Control
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Cascade Control
t a(t
Xe(t) ——f Xx-controller ac(t) u In?e();rlzoils)r

Attitude
t t
ye(t) y-controller Be() Controlled El0) lDoubIe
ntegrator
Quadrotor

ze(t) z-controller Double
zc(t) Integrator
Possibly lots more loops Why?
e Collision avoidance e Inner loops make the system

e Trajectory planning predictable and simple

e Mission planning e Conceptually simpler

e etc
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Canonical Block Diagram

e(t) u(t) L

r(t) —(O——>| Controller 4'9—' System y(t)
T *lL v(t)

Goal: Make y(t) = r(t), no matter what w(¢), or v(t) are

If 7(¢) is...
e zero, we're doing regulation
e time-varying, we're doing servoing / tracking

16



Canonical Block Diagram

Input
Disturbance

Reference /E”rror Inpl‘],t %U(t) Output
r(t) JOf(t—)> Controller ﬂ:{j—» System y(t)
T o
Outpuf//

Disturbance

Goal: Make y(t) = r(t), no matter what w(¢), or v(t) are

If 7(¢) is...
e zero, we're doing regulation
e time-varying, we're doing servoing / tracking
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Nomenclature

The system:

U(s) — G(s) — Y (s)
The open-loop system or loop gain:
Ul(s)
E(s) —  K(s) G(s) — Y (s)
The closed-loop system:
,_ B(s) U(s) |
R(s) —O—  K(s) G(s) - Y(s)

17



Quick Review of Systemes Dynamique

More complete review on Moodle




What is a System?

A dynamic system transforms an input signal w(¢) into an output signal y(¢).

y=G(u)

We care about LTI systems

Linear G(au; + buz) = aG(u1) + bG(us2)
Causal u(t) =0 for t < 0 implies y(¢t) =0 for t <0
Time-invariant y(t) = G(u(t)) implies that G(u(t + 7)) = y(t + T)
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Why are these types of systems important?

1. We can predict their behaviour from data easily

19



1. We can predict their behaviour from data easily

Impulse Response

The impulse response g(t) is defined as the output of the system in response to a dirac
delta function at time ¢t = O:



1. We can predict their behaviour from data easily

Impulse Response

The impulse response g(t) is defined as the output of the system in response to a dirac

delta function at time ¢ = 0:

Theorem : Response of an LTI System

The output of an LTI system in response to an input signal u(t) is

G(u)=g=*u

where y = g * u if



1. We can predict their behaviour fi data easily

Impulse Response

The impulse response g(t) is defined as the output of the system in response to a dirac
delta function at time ¢t = O:

Theorem : Response of an LTI System

The output of an LTI system in response to an input signal u(t) is

Gu)=g=*u

where y = g * u if
i
y(t) = / w(r)glt = 7)dr
0

If G is an LTI system, then the impulse response completely characterizes it.
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1. We can predict their behaviour fi data easily

Impulse Response

The impulse response g(t) is defined as the output of the system in response to a dirac
delta function at time ¢t = O:

Theorem : Response of an LTI System

The output of an LTI system in response to an input signal u(t) is

Gu)=g=*u

where y = g * u if
i
y(t) = / w(r)glt = 7)dr
0

If G is an LTI system, then the impulse response completely characterizes it.

Key limitation: Most systems have an infinitely-long impulse response.
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Why are these types of systems important?

1. We can predict their behaviour from data easily

2. We can store and manipulate complex systems

21



2. We can store and manipulate complex systems

Transfer Function

The transfer function of a system is the Laplace transform of its impulse response.

L{g(t)} = G(s)

For LTI systems G/(s) is a rational polynomial function

The point: Convolution becomes multiplication

y=g*u = Y(s) = G(s)U(s)



Manipulation of Simple Block Diagrams

r(t) — w(t) + 3u(t) = 7(t) + 4r(t)

u(t)

§(t) + () = u(t) + 2a(t)

If we're given the reference function 7(t), what is y(¢)?
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Manipulation of Simple Block Diagrams

r(t) — w(t) + 3u(t) = 7(t) + 4r(t) > (t) + y(t) = u(t) + 2u(t) — y(t)

ii(t) + 3u(t) = 7(t) + 4r(t) = s°U(s) + 3U(s) = sR(s) + 4R(s)
J(t) +y(t) = u(t) + 2u(t) = s2Y (s) + sY (s) = U(s) + 25U (s)
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Manipulation of Simple Block Diagrams

r(t) — w(t) + 3u(t) = 7(t) + 4r(t) > (t) + y(t) = u(t) + 2u(t) — y(t)

ii(t) + 3u(t) = 7(t) + 4r(t) = s°U(s) + 3U(s) = sR(s) + 4R(s)
J(t) + y(t) = u(t) + 2u(t) = s2Y (s) + sY (s) = U(s) + 25U (s)
Re-arranging gives:

U(s) = s+ 4

s +3

R(s) Y(s) =

23



Manipulation of Simple Block Diagrams

r(t) —»

a(t) + 3u(t) = r(t) + 4r(t) = (t) + y(t) = u(t) + 2u(t)

— y(t)

ii(t) + 3u(t) = 7(t) + 4r(t) = s’U(s) +3U(s) =
() +9(t) = u(t) + 20(t) = s°Y (s) + sY (s) =

Re-arranging gives:
s+4
Uls) = 53 E(s) Y(s) =
.. and we can compute the impact of r(¢) on y(¢)
14+2s s+4
Y(s) 245 s2+3 (5)

Series connection of blocks (convolution) becomes multiplication!

1+2s s+4
R(s) s2+s s2+3

— Y (s)

sR(s) + 4R(s)
Ul(s) + 2sU(s)
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Example: System Response

Compute response to a impulsive disturbance acting on the yaw system

M, 1) = Ky () - D) wl®) TA0) = My (0) + wlt)
—(t) | Controller | M,(t) ng Dy::vn\:ics )

I* Dynamics +

24



Example: System Response

Compute response to a impulsive disturbance acting on the yaw system

M, (6) = —K2(8) - Di(0) w(t) Fi(t) = My (8) + w(t)
—V(t)k \ Controller | M(t) /L+ Yaw |
:I - Dynamics + Dynamics ()
W (s)
—I'(s) M., (s) l+ 1
O—— K, +sD, O o2 > T'(s)

24



Example: System Response

W(s)
Q—>7F(s) K, + sD, EION (i)—>+ L > T(s)

25



Example: System Response

W (s)
O0—) |k 4+ sp, %&)gj—, L - T(s)

Start at the output and work backwards against the arrows
1
o Js?

(Js* +sDy + K, )T =W

(W = (K, + sD,)T)

25



Example: System Response

W(s)
—1(s) M ), g
O—> KA, + SDry ﬁﬁ)—» ﬁ > F(S)

Start at the output and work backwards against the arrows
1
o Js?

(Js* +sDy + K, )T =W

(W = (K, + sD,)T)

1

— | I'(¢
Js2+ Ds+ K (5)

W(s) —

Where we recall that D sets the damping and K the response rate.
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Example: Complex System

Hs |«
G2 = G4
3
Y
R(s) HCP——> G1 Ho 4—(?—» Gs ‘Y(S)
Y
G3 4’0;> Gs
Hy |«

26



Example: Complex System

G2 = G4
A
Y —
R(s) —(—| G 2 , Go
Y
Gs 4’0;> Gs
Hy

Add auxiliary variables for internal loops, and wherever convenient to simplify.

26



Example: Complex System

Start at the output and work back against the arrows.
A block is a multiplication, a summation is addition.

Y = GGJL‘
xTr = G4(G22 - ng) —+ G5(G32 - HQI)
z = Gl(R — HgY — H4Y)

Solve for Y as a function of R

z = (G4G2 + G5G3)z — (GaHz + G5 Ha)x
(1 + G4Hs + G5H2).’£ = (G4G2 + G5G3)Z

I G4Ga + Gs5G3 .
" 1+ GaHs + GsHo
Y = Ge G4G2 + G5G3

1+ GuH> + G5H2Z

27



Example: Complex System

G4G2 + G5Gs
Y = Gg =G1R— (Hs + Hy)Y
G61+G4H2+G5H22 ? ! (Hs + Ha)

Q

Solve to get the transfer function

Y QG

R~ 1+ Q(Hs + Hy)

If we want to do more algebra, we can eliminate @

Y G1G2G1Ge + G1G3G5Ge

R~ (Ga+ Gs)Ha + G2GaGoHs + G2GaGoHy + G3G5GeHs + G3G5GeHy + 1

28



Why are these types of systems important?

1. We can predict their behaviour from data easily
2. We can store and manipulate complex systems

3. We can shape system behaviour

29



3. We can shape system behaviours

Time domain

e PID
e Model predictive control

30



3. We can shape system behaviours

Time domain

e PID
e Model predictive control

e ...
Frequency domain

e Loopshaping controllers
e H., - robust optimal control
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3. We can shape system behaviours

Time domain

e PID
e Model predictive control

e ...
Frequency domain

e Loopshaping controllers
e H., - robust optimal control

o ...
Pole/zero domain

e Pole placement
e Linear quadratic regulation

30



3. We can shape system behaviours

Time domain

e PID
e Model predictive control

e ...
Frequency domain

e Loopshaping controllers
e H., - robust optimal control

o ...
Pole/zero domain

e Pole placement
e Linear quadratic regulation
o ...
Many very well-established techniques that are proven and work well at large scales.

30



Key points to review

Please review:

e Computation of Laplace transforms
e Manipulation of block diagrams
e Inverse Laplace transforms

e System response to impulse, step, ramp, etc

31



Administration




Teachers

Professor

Colin Jones

Laboratoire d’ Automatique
ME C2 405
colin.jones@epfl.ch

Travaux Pratique
Christophe Salzmann
Laboratoire d’Automatique
ME C2 426
christophe.salzmann@epfl.ch
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Reference Material

We will mostly follow the textbook:

GLOBAL £
EDITION

Feedback Control of
Dynamic Systems

SEVENTH EDITION

Gene F.Franklin * ). David Powell * Abbas Emami-Naeini

PEARSON

e The sections of the text that we are covering will appear on Moodle

e Lecture notes and pre-recorded videos are on Moodle

You are responsible for the material in the text and in the lecture notes

33



1. Lectures

e Two hours per week
e Lectures are not recorded, but high-quality pre-recordings are on Moodle

2. TPs

e Seven TPs done via a MOOC interface driving a physical device
e Can do the TPs in-person or remotely

3. Exercises

e Written / computer exercises
e 13 exercise sets

Detailed schedule on Moodle

34



How to Get Help

In person During lectures, or during afternoon exercise / TP sessions
Ed Discussion Please post your questions publicly - others will benefit!

Recorded videos Lectures have been pre-recorded and are available on Moodle.
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Grading and Exams

100% Final exam

e One question from the TPs (MOOC) worth 20%
e Questions based on the lectures / exercises worth 80%

36



Examples: Other Varieties of Control




Employee Scheduling : The Challenge

Too few salespeople Too many salespeople

Unhappy customers / less sales Excessive wages

What can control do?

37



The Control Problem

Preferences

Employee

|

Number
of
Customers

Controller
(Scheduler)

> ou)

hours,days

Understaffed /
over_staffed

sales / employees on floor

s

@

1
m
b3
2
2
]
2
]

IEMMOO®W® 3

OO0

store time

closes

hours
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SW-

... ACHIEVES SAVINGS BY MATCHING RESOURCES TO DEMAND  EXAvPLE

Average number of weekday staff*

9Sh

10h  11th  12h  13h 14h 15h 16h 17h

18h

19h

9h

10h  11th  12h  13h 14h 15h 16h 17h

* For retail store with 14 staff (11.5 FTEs)
** Sample optimized schedule provided by Apex Optimization GmbH

18h

19h

— Scheduled

— = Demanded

* Original scheme (manually
scheduled, unoptimized)

*FTE hours per week
—Excess scheduled: 65
—Unmet demanded: 85
—Mismatched: 150

* Optimized schedule**
(automatically produced)

*FTE hours per week
—Excess scheduled: 15
—Unmet demanded: 39
—Mismatched: 54

* Estimated savings of up to 46

overtime hours per week
(~10% of total) needed to
meet expected demand
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Example: ‘Fulfilment Centers’
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Inerter

The Inerter in F1 Racing
Slides from Prof. Malcom Smith
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Demand Response

Demand Response Slides
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Control Applications at all Space and Time Scales

Computer control ns
4
USs Power systems
— ,
Traction control ms

Seconds Buildings

Refineries Minutes

Hours Nurse rostering

Train scheduling Days

Weeks Production planning

44



e Feedback control is everywhere

e It is used to:

Stabilize unstable systems

Make behaviors repeatable / predictable

Maximize performance
Understand what complex systems are doing
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