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System Definition

A dynamic system transforms an input signal u(t) into an output signal y(¢).

y=G(u)

wt)— G — )

Important system properties that we will assume throughout the course:

= Linear
= Causal

= Time invariant

A system with these properties is referred to as an LTI system.



System Property: Linearity

The system G is called linear if for any two signals w1, uz and for all numbers a € R

G (u1 + u2) = G(u1) + G(u2)
G (au1) = aG(u1)

Also called superposition.

A simple idea:

= If y;(¢) is the output from the input signal w;(t)

n

= then y(t) = Y1, aiyi(t) is the output from the signal 3 7 a;ui(t)

This is the basis of Harmonic analysis of dynamic systems.
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Causality

Causal System

A system G is causal if the output y(%o) at time to is only a function of {u(¢) |t < to }.

In words: The output of a system cannot depend on the future inputs

All physical systems are causal



Time Invariance

Time Invariant System

A system G is time invariant if for any input signal u(¢) and its corresponding output

signal y(), then the output in response to the input signal u(t + T") will be y(t + T).

Same response from the system given the same input, no matter when that input is
applied.



Impulse Response



Representing the System Response

Dirac Delta Function

Let §(¢) be the Dirac, or impulse function:

/oo o(t)ydt =1 0(t)=0forallt#0

Impulse Response

The impulse response g(t) is defined as the output of the system in response to a dirac

delta function at time ¢t = 0:

If G is an LTI system, then the impulse response completely characterizes it.

Note that causality implies that g(t) = 0 for ¢ < 0, because 6(¢) = 0 for t < 0



System Response

Theorem : Response of an LTI System

The output of an LTI system in response to an input signal u(t) is

Gu)=g=xu

where y = g x u if

y(t) = /Ot u(r)g(t — 7)dr



Response of and LTI System - Proof

Demonstrate that the output of an LTI system is

u(t) = / w(r)g(t — 7)dr



Response of and LTI System - Proof

Demonstrate that the output of an LTI system is

u(t) = / w(r)g(t — 7)dr

The input at time ¢ can be written as: (Assume u(t) =0, t < 0)



Response of and LTI System - Proof

Demonstrate that the output of an LTI system is

u(t) = / w(r)g(t — 7)dr

The input at time ¢ can be written as: (Assume u(t) =0, t < 0)
u(t) = / u(T)o(t — 7)dr

The output due to the function (¢t — 7) is g(t — 7) (Time invariance)



Response of and LTI System - Proof

Demonstrate that the output of an LTI system is

mw=éuﬁmu—ﬂm

The input at time ¢ can be written as: (Assume u(t) =0, t < 0)
u(t) = / u(T)o(t — 7)dr

The output due to the function (¢t — 7) is g(t — 7) (Time invariance)

Superposition then gives us:

mw:/muumu—ﬂw

=0



Response of and LTI System - Proof

Demonstrate that the output of an LTI system is
13
u(®) = [ u(rig(e - r)dr
0

The input at time ¢ can be written as: (Assume u(t) =0, t < 0)
u(t) = / u(T)o(t — 7)dr

The output due to the function (¢t — 7) is g(t — 7) (Time invariance)

Superposition then gives us:

mw:/muumu—ﬂw

=0

and causality gives

vy = [ utrlgte=myir



System Characterization: Impulse Response

Impulse response is enough to compute the output for any input signal

= The impulse response completely characterizes the system G by describing how it
will operate on an input signal u

= This is an “input-output”, or “behavioural” characterization of the system

Key limitation: Most systems have an infinitely-long impulse response

Need a more compact representation.



Transfer Functions



Laplace Transforms

Laplace Transform

If f(t) is a piecewise continuous function, then the Laplace transform of f(¢) is denoted
L (f(t)) and is defined as

where s € C is complex



Laplace Transforms

Laplace Transform

If f(t) is a piecewise continuous function, then the Laplace transform of f(¢) is denoted
L (f(t)) and is defined as

where s € C is complex

Transfer Function

The transfer function of a system is the Laplace transform of its impulse response.
L{g()} = G(s)

For LTI systems G/(s) is a rational polynomial function

The point: Convolution becomes multiplication

y=g*u & Y(s) = G(s)U(s)



Key Property of Laplace Transforms: Convolution = Multiplication

show: £ | R alt ir) = F(s) ()
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Key Property of Laplace Transforms: Convolution = Multiplication

show: £ | R alt ir) = F(s) ()

z:{/ot Ji(T) f2(t —7) dT} = /Ooo et (/Ot fl(T)fQ(th)dT) dt

Change the order of integration:

_ gle o} ) oo —at _ d d
/0 (f (7’)/7— e ot —7) t> T
Substitute 2 =t — 7

/ efsth(t o 7_) dt = / e*(z+7’)3f2(z) dz = e*TS/ efszfg(z) dz = 67T8F2(5:
T 0 0

and therefore

{/ fi(m) fa(t — 1) dT} / fi(r)e TP Fy(s / fi(r)e T dr

= I (s)F2(s)
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Manipulation of Simple Block Diagrams

7(t) —> Controller »  System — y(t)

Suppose that the controller is:
a(t) + 3u(t) = 7(t) + 4r(t)
and the system is

§(t) +9(t) = u(t) + 2a(t)

If we're given the reference function 7(t), what is y(¢)?

12



Manipulation of Simple Block Diagrams

7(t) —>| Controller »  System — y(t)

i(t) + 3u(t) = 7(t) + 4r(t) = s°U(s) 4+ 3U(s) = sR(s) + 4R(s)
(1) + 9(t) = u(t) + 2u(t) = s°Y (s) + sY (s) = U(s) + 2sU(s)
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Manipulation of Simple Block Diagrams

7(t) —>| Controller »  System — y(t)

i(t) + 3u(t) = 7(t) + 4r(t) = s*U(s) + 3U(s) = sR(s) + 4R(s)
() + 9(t) = u(t) + 2u(t) = s°Y (s) + sY (s) = U(s) + 2sU(s)
Re-arranging gives:

UGs) = 5L RE) Y(s) =
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Manipulation of Simple Block Diagrams

7(t) —>| Controller »  System — y(t)

i(t) + 3u(t) = 7(t) + 4r(t) = s°U(s) +3U(s) = sR(s) + 4R(s)
(1) + 9(t) = u(t) + 2u(t) = s°Y (s) + sY (s) = U(s) + 2sU(s)

Re-arranging gives:

s+4 1+ 2s
= Y =
Uls) = G R) () = G U(s)
.. and we can compute the impact of 7(t) on y(t)
1+2s s+4
Y(s) = .
()= 5, sr3hl®)

Series connection of blocks (convolution) becomes multiplication!

1+2s s+4

R(s) —| =25
(s) s2+s s2+4+3

— Y(s)
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Closed-Loop Transfer Functions



Example: System Response

Compute response to a impulsive disturbance acting on the yaw system

M, (t) = _Kw'Y(t) - Dv'.Y(t)

: ()

Controller
Dynamics

Fi(t) =

g

Yaw
Dynamics

= M, (t) + w(t)
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Example: System Response

Compute response to a impulsive disturbance acting on the yaw system

M, (t) = _Kw'Y(t) - Dv'.Y(t)

= M, (t) + w(t)

w(t) JA(t)
~ —(t) | Controller | M(t) rL* Yaw
I - Dynamics + Dynamics
W (s)
]\/[’Y ('5) l+ 1
) _
Ko sy O 5

I'(s)
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Example: System Response

O——— K, +sD, — > I'(s)
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Example: System Response

O—— Ky +sDy

=5 = T'(s)

Start at the output and work backwards against the arrows
1
s

(Js* 4+ sD, + K,)I =W

(W — (K + sDy)T)

14



Example: System Response

O——— Ky +sDy — > I'(s)

Start at the output and work backwards against the arrows
1
s

(Js* 4+ sD, + K,)I =W

(W — (K + sDy)T)

1

W(s) Js?2+ Ds+ K

— I'(s)

Where we recall that D sets the damping and K the response rate.
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Example: Complex System

H3‘

G2 4’07—> Gy T
]
v

15



Example: Complex System

H3 <«
G2 4’07—> G4
|
y — T } o
R(s) 4’(?7—’ G1 z Hy <O+ Gs
: J
G3 ()~ G5
H4 <

Add auxiliary variables for internal loops, and wherever convenient to simplify.
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Example: Complex System

Start at the output and work back against the arrows.
A block is a multiplication, a summation is addition.

€T = G4(G2Z — Hgl‘) + G5(G3Z — Hzx')
z = Gl(R — HgY — H4Y)

Solve for Y as a function of R

T = (G4G2 + G5G3)Z — (G4H2 =+ G{,Hz)l'
(1 +G4Hy + G5H2)£L‘ = (G4G2 + G5G3)Z

.= GiG2 + G5Gs .
14+ GuHo 4+ G5 H>
T G4G2 + G5G3

1+ GuHs + G5H2Z
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Example: Complex System

G4G2 + G5G3 .
®1+ GuH, + G5 Hs
Q

Y =G

z=G1R— (H3 + H4)Y

Solve to get the transfer function

Y QG

R~ 1+ Q(Hs+ Hy)

If we want to do more algebra, we can eliminate @

Y G1G2G4Ge + G1G3G5G6

R~ (Gi+ Gs)Ha + G2G4GoHs + G2G1GeHy + G3G5GeHs + G3G5GeHy + 1

17



System Response




System Response

We can now reduce our system to something of the form

U(s) — G(s) — Y (s)

Given any input u(t), what is the value of y(¢)?

1. Compute Laplace transform of the input U(s) = £ [u(t)]
2. Laplace transform of output is Y (s) = G(s)U(s)
3. Compute the inverse Laplace transform to get the output y(t) = £ [Y(s)]

18



Inverse Laplace Transforms

What is the inverse Laplace transform of Y (s) = G(s)U(s)?
We can always write a rational polynomial Y'(s) as:

IT%0(s = pi)
where {z;} are the zeros of the system, and {p;} are the poles.

A partial fraction expansion gives:

m

Y(s) = Z o

from which we can compute the inverse Laplace transform

y(t) = Z ciel!
i=0

we can see that the signal y(¢) is bounded if and only if all poles are in the left half
plane.
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Time Domain Response

What is the yaw in response to an impulsive disturbance for K =24, D =10, J =1
r 1 1

W~ Js2+Ds+ K  s2+10s+24
Impulsive input W (s) = L[6(t)] =1

20



Time Domain Response

What is the yaw in response to an impulsive disturbance for K =24, D =10, J =1
r 1 1

W~ Js2+Ds+ K  s2+10s+24
Impulsive input W (s) = L[6(t)] =1

Partial fraction expansion

1 1
I= 10 72dW ) = o105 104
1
(s+4)(s+6)

Inverse Laplace transform

We note that as the poles have a negative real part, the impulse response tends to zero.

20



Time Domain Response to Impulse Disturbance

1072
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