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System Definition

A dynamic system transforms an input signal u(t) into an output signal y(t).

y = G(u)

u(t) G y(t)

Important system properties that we will assume throughout the course:

• Linear
• Causal
• Time invariant

A system with these properties is referred to as an LTI system.
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System Property: Linearity

Linear System

The system G is called linear if for any two signals u1, u2 and for all numbers a ∈ R

G (u1 + u2) = G(u1) + G(u2)

G (au1) = aG(u1)

Also called superposition.

A simple idea:

• If yi(t) is the output from the input signal ui(t)

• then y(t) =
∑n

i=0 aiyi(t) is the output from the signal ∑n
i=0 aiui(t)

This is the basis of Harmonic analysis of dynamic systems.
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Superposition

u1(t)

y1(t)

u2(t)

y2(t)

u1(t) + u2(t)

y1(t) + y2(t)
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Causality

Causal System

A system G is causal if the output y(t0) at time t0 is only a function of {u(t) | t ≤ t0 }.

In words: The output of a system cannot depend on the future inputs
All physical systems are causal

4



Time Invariance

Time Invariant System

A system G is time invariant if for any input signal u(t) and its corresponding output
signal y(t), then the output in response to the input signal u(t+ T ) will be y(t+ T ).

Same response from the system given the same input, no matter when that input is
applied.
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Impulse Response



Representing the System Response

Dirac Delta Function
Let δ(t) be the Dirac, or impulse function:

∫ ∞

−∞
δ(t)dt = 1 δ(t) = 0 for all t ̸= 0

Impulse Response

The impulse response g(t) is defined as the output of the system in response to a dirac
delta function at time t = 0:

g(t) := G(δ(t))

If G is an LTI system, then the impulse response completely characterizes it.

Note that causality implies that g(t) = 0 for t < 0, because δ(t) = 0 for t < 0
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System Response

Theorem : Response of an LTI System

The output of an LTI system in response to an input signal u(t) is

G(u) = g ∗ u

where y = g ∗ u if

y(t) =

∫ t

0

u(τ)g(t− τ)dτ
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Response of and LTI System - Proof

Demonstrate that the output of an LTI system is

y(t) =

∫ t

0

u(τ)g(t− τ)dτ

The input at time t can be written as: (Assume u(t) = 0, t < 0)

u(t) =

∫ ∞

τ=0

u(τ)δ(t− τ)dτ

The output due to the function δ(t− τ) is g(t− τ) (Time invariance)
Superposition then gives us:

y(t) =

∫ ∞

τ=0

u(τ)g(t− τ)dτ

and causality gives

y(t) =

∫ t

τ=0

u(τ)g(t− τ)dτ
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System Characterization: Impulse Response

Impulse response is enough to compute the output for any input signal

• The impulse response completely characterizes the system G by describing how it
will operate on an input signal u

• This is an “input-output”, or “behavioural” characterization of the system

Key limitation: Most systems have an infinitely-long impulse response

Need a more compact representation.
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Transfer Functions



Laplace Transforms

Laplace Transform

If f(t) is a piecewise continuous function, then the Laplace transform of f(t) is denoted
L (f(t)) and is defined as

L (f(t)) = F (s) =

∫ ∞

0

e−stf(t)dt

where s ∈ C is complex

Transfer Function
The transfer function of a system is the Laplace transform of its impulse response.

L{g(t)} = G(s)

For LTI systems G(s) is a rational polynomial function
The point: Convolution becomes multiplication

y = g ∗ u ⇔ Y (s) = G(s)U(s)
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Key Property of Laplace Transforms: Convolution = Multiplication

Show: L
(∫ t

0

f1(τ)f2(t− τ)dτ

)
= F1(s)F2(s)

L
{∫ t

0

f1(τ)f2(t− τ) dτ

}
=

∫ ∞

0

e−st

(∫ t

0

f1(τ)f2(t− τ) dτ

)
dt

Change the order of integration:

=

∫ ∞

0

(
f1(τ)

∫ ∞

τ

e−stf2(t− τ) dt

)
dτ

Substitute z = t− τ :
∫ ∞

τ

e−stf2(t− τ) dt =

∫ ∞

0

e−(z+τ)sf2(z) dz = e−τs
∫ ∞

0

e−szf2(z) dz = e−τsF2(s)

and therefore

L
{∫ t

0

f1(τ)f2(t− τ) dτ

}
=

∫ ∞

0

f1(τ)e
−τsF2(s) dτ = F2(s)

∫ ∞

0

f1(τ)e
−τs dτ

= F1(s)F2(s)
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Manipulation of Simple Block Diagrams

r(t) Controller System y(t)
u(t)

Suppose that the controller is:

ü(t) + 3u(t) = ṙ(t) + 4r(t)

and the system is

ÿ(t) + ẏ(t) = u(t) + 2u̇(t)

If we’re given the reference function r(t), what is y(t)?
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Manipulation of Simple Block Diagrams

r(t) Controller System y(t)
u(t)

ü(t) + 3u(t) = ṙ(t) + 4r(t) ⇒ s2U(s) + 3U(s) = sR(s) + 4R(s)

ÿ(t) + ẏ(t) = u(t) + 2u̇(t) ⇒ s2Y (s) + sY (s) = U(s) + 2sU(s)

Re-arranging gives:

U(s) =
s+ 4
s2 + 3

R(s) Y (s) =
1 + 2s
s2 + s

U(s)

... and we can compute the impact of r(t) on y(t)

Y (s) =
1 + 2s
s2 + s

· s+ 4
s2 + 3

R(s)

Series connection of blocks (convolution) becomes multiplication!

R(s)
1 + 2s
s2 + s

· s+ 4
s2 + 3

Y (s)
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Closed-Loop Transfer Functions



Example: System Response

Compute response to a impulsive disturbance acting on the yaw system

Controller
Dynamics

Mγ(t) = −Kγγ(t)−Dγ γ̇(t) w(t)

Yaw
Dynamics

J γ̈(t) = Mγ(t) + w(t)

γ(t)
+−γ(t) Mγ(t)

+−

Kγ + sDγ

W (s)

1
Js2

Γ(s)
+−Γ(s) Mγ(s)

+−
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Example: System Response

Kγ + sDγ

W (s)

1
Js2

Γ(s)
+−Γ(s) Mγ(s)

+−

Start at the output and work backwards against the arrows

Γ =
1

Js2
(W − (Kγ + sDγ)Γ)

(Js2 + sDγ +Kγ)Γ = W

W (s)
1

Js2 +Ds+K
Γ(s)

Where we recall that D sets the damping and K the response rate.
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Example: Complex System

R(s) G1

G2

G3

G4

G5

H2

H3

H4

G6 Y (s)

−

−

−

−
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Example: Complex System

R(s) G1

G2

G3

G4

G5

H2

H3

H4

G6 Y (s)

−

−

x x−

−
z

Add auxiliary variables for internal loops, and wherever convenient to simplify.
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Example: Complex System

Start at the output and work back against the arrows.
A block is a multiplication, a summation is addition.

Y = G6x

x = G4(G2z −H2x) +G5(G3z −H2x)

z = G1(R−H3Y −H4Y )

Solve for Y as a function of R

x = (G4G2 +G5G3)z − (G4H2 +G5H2)x

(1 +G4H2 +G5H2)x = (G4G2 +G5G3)z

x =
G4G2 +G5G3

1 +G4H2 +G5H2
z

Y = G6
G4G2 +G5G3

1 +G4H2 +G5H2
z
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Example: Complex System

Y = G6
G4G2 +G5G3

1 +G4H2 +G5H2︸ ︷︷ ︸
Q

z z = G1R− (H3 +H4)Y

Solve to get the transfer function
Y
R

=
QG1

1 +Q(H3 +H4)

If we want to do more algebra, we can eliminate Q

Y
R

=
G1G2G4G6 +G1G3G5G6

(G4 +G5)H2 +G2G4G6H3 +G2G4G6H4 +G3G5G6H3 +G3G5G6H4 + 1
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System Response



System Response

We can now reduce our system to something of the form

U(s) G(s) Y (s)

Given any input u(t), what is the value of y(t)?

1. Compute Laplace transform of the input U(s) = L [u(t)]

2. Laplace transform of output is Y (s) = G(s)U(s)

3. Compute the inverse Laplace transform to get the output y(t) = L−1 [Y (s)]
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Inverse Laplace Transforms

What is the inverse Laplace transform of Y (s) = G(s)U(s)?
We can always write a rational polynomial Y (s) as:

Y (s) =

∏n
i=0(s− zi)∏m
i=0(s− pi)

where {zi} are the zeros of the system, and {pi} are the poles.
A partial fraction expansion gives:

Y (s) =
m∑

i=0

ci
s− pi

from which we can compute the inverse Laplace transform

y(t) =
m∑

i=0

cie
pit

we can see that the signal y(t) is bounded if and only if all poles are in the left half
plane.
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Time Domain Response

What is the yaw in response to an impulsive disturbance for K = 24, D = 10, J = 1

Γ
W

=
1

Js2 +Ds+K
=

1
s2 + 10s+ 24

Impulsive input W (s) = L [δ(t)] = 1

Partial fraction expansion

Γ =
1

s2 + 10s+ 24
W (s) =

1
s2 + 10s+ 24

=
1

(s+ 4)(s+ 6)

=
1
2

1
s+ 4

− 1
2

1
s+ 6

Inverse Laplace transform

γ(t) =
1
2
e−4t − 1

2
e−6t

We note that as the poles have a negative real part, the impulse response tends to zero.

20



Time Domain Response

What is the yaw in response to an impulsive disturbance for K = 24, D = 10, J = 1

Γ
W

=
1

Js2 +Ds+K
=

1
s2 + 10s+ 24

Impulsive input W (s) = L [δ(t)] = 1

Partial fraction expansion

Γ =
1

s2 + 10s+ 24
W (s) =

1
s2 + 10s+ 24

=
1

(s+ 4)(s+ 6)

=
1
2

1
s+ 4

− 1
2

1
s+ 6

Inverse Laplace transform

γ(t) =
1
2
e−4t − 1

2
e−6t

We note that as the poles have a negative real part, the impulse response tends to zero.
20



Time Domain Response to Impulse Disturbance

0 0.5 1 1.5 2 2.5 3
0

2

4

6

8
·10−2

Time (s)

γ
(t
)
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