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Linear Quadratic Regulator

Goal: Move from state x to the origin. (i.e., keep x ‘small")

T = Az + Bu

Express the ‘cost’ of being in state x and applying input u with the function

Iz, u) = 2" Qx +u” Ru

The total ‘cost’ of following a particular trajectory is then

Vi(z,u) = /00 ()" Qx(t) + u(t)” Ru(t)dt

0

Assume: R > 0, Q = 0 (i.e., R is positive definite, and @ is positive semi-definite)

LQR: Find the ‘best’ trajectory

min V (z(t), u(t))
s.t. 2(t) = Az(t) + Bu(t)



Motivation for LQR

Consider the system

& = Az + Bu y="Czx
Define @ = CTC and R = pI. We are minimizing the cost
V(z,u) = /0oo ()" Qu(t) + u(t)” Ru(t)dt
— [ u0® + putey

0
We're minimizing the relative energy in the input and output signals
Large p — small input energy, output weakly controlled
Small p — large input energy, output strongly controlled

Note: Any minimal solution must be stable / take the state to the origin.
Why? Any non-zero steady-state solution will result in an infinite cost V(x, u)



Motivation for LQR

Consider the system

&= Az + Bu y=Cz
Define @ = CTC and R = pI. We are minimizing the cost
V(z,u) = /0oo ()" Qu(t) + u(t)" Ru(t)dt
— [ u0* + putey

0

We're minimizing the relative energy in the input and output signals

Real motivation

e Works well in practice
e Works seamlessly for multi-input, multi-output systems
e We can solve it (very common motivation in control!)

e Solution is simple, and easy to implement in embedded controller



LQR - Solution

Linear Quadratic Regulator

Consider a linear multivariable system #(t) = Axz(t) + Bu(t). Compute control law
u(t) = —Kxz(t) such that the following performance criterion is minimized

Irgn /000 z(t)" Qx(t) + u(t)” Ru(t)dt
s.t. (t) = Az(t) + Bu(t)

where R is positive definite, and @ is positive semi-definite.

Optimal Solution

The optimal controller is u(t) = —Kxz(t) where
K=R'B'P
and P = PT » 0 is the solution of the following Riccati Equation

AP+ PA—PBR'B"P+Q=0



Proof Sketch

We want to minimize the function

JLQr = /0°° ()" Qz(t) + u(t)” Ru(t)dt

Idea’:

We will first write it as
Tuan=Jo-+ [ (a(t) = uo(e)” Ru(t) - uo(t))ds
0

for some ug, where Jy does not depend on the control law chosen.

From this we can see that the optimal input is u(t) = uo(t).

!We're following the proof of Joao P. Hespanha to avoid variational analysis



Feedback Invariants

A quantity is called a feedback invariant if its value does not depend on the choice of
the control input u(t),¢ > 0.

Lemma: Feedback Invariant

Let P be a symmetric matrix. For every control input u(t), t € [0, 00] for which
z(t) — 0 as t — oo, we have that

/ " (AT P + PA)z 4 22" PBudt = —x(0)" Pz(0)
0

Proof:

/ " (ATP + PA)x + 22" PBudt = / (" AT 4+ u" B"YPx + 2" P(Ax 4+ Bu)dt
Jo 0

= / &7 Pz + 27 Pidt
J0
9] T
:/ d(z P.r)dt
0 dt

= lim " (t)Pxz(t) — z(0)" Pz(0)

t—o0



Square Completion

JLor = /Oo ()" Qx(t) + u(t)” Ru(t)dt

0

Add and subtract our feedback invariant

= z(0)" Pz(0) + / 2" Qe+ u" Ru+ 2" (ATP + PA)x + 22" PBudt
0

Re-write the terms involving u
uT Ru+ 22T PBu = (u— uo)TR(u —up) — 2T PBR BT Pz
where uo = —R™'BY Pz

Which gives us

JLor = x(O)TPz(O)—l—/ 2" Qe+ 2" (A"P 4+ PA)z — 2" PBR™'B” Pxdt
0

+ /Ooo(u —uo)" R(u — uo)dt



Square Completion

Jror = 2(0)" Pz(0)+ / 2" Qr+ 2" (AP 4+ PA)x — 2" PBR™'B” Pt

0
=~ T
—I—/ (u—up)” R(u— up)dt
0
We see that the optimal solution is
u=uy=—Kzx K=R'B'P
and

Q+A"P+PA—PBR'B"P=0



Compute linear controller to minimize the closed-loop performance metric
R=q'C’C R =1

for the system G(s) = s% whose state-space representation is

.{00 1
xr =

+
o

U
1 0

y=[o 1]«



Solve the ARE AP+ PA—-PBR 'BTP+Q=0

T
0 0
1 0

P P
P, P

P P
P, P

0 0
1 0

P P
P P

1
0

P P
P, Ps

T
1
0

0 0
+ =0
This results in four equations
—Pl +2P, =0
Ps—PiP,=0

Py—PP,=0
¢' =P =0

10



Solving gives

P= .
¢ V294

(Note that we've selected the real, positive definite solution)

V2q lf}

The controller is

= [\/iq qQ}

K=R7B"P=[1 0 ng j;qg]
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Closed-loop System

The closed-loop system is

Which has poles at q%(fl +1)

We see that

e As ¢ — 0, the input energy is dominant, and the closed-loop poles become the
open-loop poles

e As g becomes large, the output energy is dominant, and the system spends more
input energy to bring the input to zero faster
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Add Reference Input

Add a reference input to the system

T = |:\1/§q 752 + (1) Nr
y:[O 1]x

We want to steady-state gain between r and y to be one (i.e., y = r at steady-state)

o 2 . o]t
0= \/iq 4 T+ ! Nr—z=— \/§q a 1 Nr
1 0 0 1 0 0

o e [ 7] o

We choose N such that y = r




Step Response

Output
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Choice of Weights

Weights are usually determined through a trial-and-error process, but a good initial
setting is given by Bryson's rule.

Bryson's rule scales the variables so that the maximum acceptable value for each term
is one.

Choose diagonal @ and R with

1
Qi = . P
maximum acceptable value of z;
1
R;; =

maximum acceptable value of u?

Start with Bryson's rule, and then increase or decrease the diagonal values to increase
or decrease the convergence rates of the corresponding states.
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LQR in Matlab

@ [0 1 0 0] [= 0
Z| |0 —0.1818 2.6727 0| | 1.8182
o o 0 0 1| |0 0
6] |0 —0.4545 31.1818 0] |0 4.5455
i 0
|1 0 0 0] |z
YZlo o 1 of|e
0
-~ Objectives for a 0.2m step in cart position x are:
. e Settling time for « and 6 of less than 5 seconds
9 " e Rise time for = of less than 0.5 seconds
F e Pendulum angle 6 never more than 20 degrees
> M (0.35 radians) from the vertical

O @) e Steady-state error of less than 2% for x and 6
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Conclusion

e Define the behaviour that we want to achieve via a value function

e Choose the control law that minimizes the value function
e LQR is very effective because:

e The optimal controller is linear
e The value function is intuitive to tune
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