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Linear Quadratic Regulator

Goal: Move from state x to the origin. (i.e., keep x ‘small’)

ẋ = Ax+Bu

Express the ‘cost’ of being in state x and applying input u with the function

l(x, u) = xTQx+ uTRu

The total ‘cost’ of following a particular trajectory is then

V (x, u) =

∫ ∞

0

x(t)TQx(t) + u(t)TRu(t)dt

Assume: R ≻ 0, Q ⪰ 0 (i.e., R is positive definite, and Q is positive semi-definite)

LQR: Find the ‘best’ trajectory

min
u

V (x(t), u(t))

s.t. ẋ(t) = Ax(t) +Bu(t)
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Motivation for LQR

Consider the system

ẋ = Ax+Bu y = Cx

Define Q = CTC and R = ρI. We are minimizing the cost

V (x, u) =

∫ ∞

0

x(t)TQx(t) + u(t)TRu(t)dt

=

∫ ∞

0

y(t)2 + ρu(t)2

We’re minimizing the relative energy in the input and output signals

Large ρ → small input energy, output weakly controlled

Small ρ → large input energy, output strongly controlled

Note: Any minimal solution must be stable / take the state to the origin.

Why? Any non-zero steady-state solution will result in an infinite cost V (x, u)
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Motivation for LQR

Consider the system

ẋ = Ax+Bu y = Cx

Define Q = CTC and R = ρI. We are minimizing the cost

V (x, u) =

∫ ∞

0

x(t)TQx(t) + u(t)TRu(t)dt

=

∫ ∞

0

y(t)2 + ρu(t)2

We’re minimizing the relative energy in the input and output signals

Real motivation

• Works well in practice

• Works seamlessly for multi-input, multi-output systems

• We can solve it (very common motivation in control!)

• Solution is simple, and easy to implement in embedded controller
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LQR - Solution

Linear Quadratic Regulator

Consider a linear multivariable system ẋ(t) = Ax(t) + Bu(t). Compute control law

u(t) = −Kx(t) such that the following performance criterion is minimized

min
u

∫ ∞

0

x(t)TQx(t) + u(t)TRu(t)dt

s.t. ẋ(t) = Ax(t) +Bu(t)

where R is positive definite, and Q is positive semi-definite.

Optimal Solution

The optimal controller is u(t) = −Kx(t) where

K = R−1BTP

and P = PT ≻ 0 is the solution of the following Riccati Equation

ATP + PA− PBR−1BTP +Q = 0
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Proof Sketch

We want to minimize the function

JLQR =

∫ ∞

0

x(t)TQx(t) + u(t)TRu(t)dt

Idea1:

We will first write it as

JLQR = J0 +

∫ ∞

0

(u(t)− u0(t))
TR(u(t)− u0(t))dt

for some u0, where J0 does not depend on the control law chosen.

From this we can see that the optimal input is u(t) = u0(t).

1We’re following the proof of Joao P. Hespanha to avoid variational analysis

5



Feedback Invariants

A quantity is called a feedback invariant if its value does not depend on the choice of

the control input u(t), t ≥ 0.

Lemma: Feedback Invariant

Let P be a symmetric matrix. For every control input u(t), t ∈ [0,∞] for which

x(t) → 0 as t → ∞, we have that∫ ∞

0

xT (ATP + PA)x+ 2xTPBudt = −x(0)TPx(0)

Proof:∫ ∞

0

xT (ATP + PA)x+ 2xTPBudt =

∫ ∞

0

(xTAT + uTBT )Px+ xTP (Ax+Bu)dt

=

∫ ∞

0

ẋTPx+ xTP ẋdt

=

∫ ∞

0

d(xTPx)

dt
dt

= lim
t→∞

xT (t)Px(t)− x(0)TPx(0)
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Square Completion

JLQR =

∫ ∞

0

x(t)TQx(t) + u(t)TRu(t)dt

Add and subtract our feedback invariant

= x(0)TPx(0) +

∫ ∞

0

xTQx+ uTRu+ xT (ATP + PA)x+ 2xTPBudt

Re-write the terms involving u

uTRu+ 2xTPBu = (u− u0)
TR(u− u0)− xTPBR−1BTPx

where u0 = −R−1BTPx

Which gives us

JLQR = x(0)TPx(0)+

∫ ∞

0

xTQx+ xT (ATP + PA)x− xTPBR−1BTPxdt

+

∫ ∞

0

(u− u0)
TR(u− u0)dt
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Square Completion

JLQR = x(0)TPx(0)+

∫ ∞

0

xTQx+ xT (ATP + PA)x− xTPBR−1BTPxdt

+

∫ ∞

0

(u− u0)
TR(u− u0)dt

We see that the optimal solution is

u = u0 = −Kx K = R−1BTP

and

Q+ATP + PA− PBR−1BTP = 0
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Example

Compute linear controller to minimize the closed-loop performance metric

Q = q4CTC R = 1

for the system G(s) = 1
s2
, whose state-space representation is

ẋ =

[
0 0

1 0

]
x+

[
1

0

]
u

y =
[
0 1

]
x
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Example

Solve the ARE ATP + PA− PBR−1BTP +Q = 0[
0 0

1 0

]T [
P1 P2

P2 P3

]
+

[
P1 P2

P2 P3

][
0 0

1 0

]

−

[
P1 P2

P2 P3

][
1

0

][
1

0

]T [
P1 P2

P2 P3

]
+

[
0 0

0 q4

]
= 0

This results in four equations

−P 2
1 + 2P2 = 0

P3 − P1P2 = 0

P3 − P1P2 = 0

q4 − P 2
2 = 0
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Example

Solving gives

P =

[√
2q q2

q2
√
2q3

]

(Note that we’ve selected the real, positive definite solution)

The controller is

K = R−1BTP =
[
1 0

] [√2q q2

q2
√
2q3

]
=

[√
2q q2

]
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Closed-loop System

The closed-loop system is

ẋ = (A−BK)x =

[
−
√
2q −q2

1 0

]
x

y =
[
0 1

]
x

Which has poles at q 1√
2
(−1± i)

We see that

• As q → 0, the input energy is dominant, and the closed-loop poles become the

open-loop poles

• As q becomes large, the output energy is dominant, and the system spends more

input energy to bring the input to zero faster
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Add Reference Input

Add a reference input to the system

ẋ =

[
−
√
2q −q2

1 0

]
x+

[
1

0

]
N̄r

y =
[
0 1

]
x

We want to steady-state gain between r and y to be one (i.e., y = r at steady-state)

0 =

[
−
√
2q −q2

1 0

]
x+

[
1

0

]
N̄r → x = −

[
−
√
2q −q2

1 0

]−1 [
1

0

]
N̄r

y =
[
0 1

]
x = −

[
0 1

] [−√
2q −q2

1 0

]−1 [
1

0

]
N̄r

We choose N̄ such that y = r

1 = −
[
0 1

] [−√
2q −q2

1 0

]−1 [
1

0

]
N̄

=
1

q2
N̄

So N̄ = q2 13



Step Response
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Choice of Weights

Weights are usually determined through a trial-and-error process, but a good initial

setting is given by Bryson’s rule.

Bryson’s rule scales the variables so that the maximum acceptable value for each term

is one.

Choose diagonal Q and R with

Qii =
1

maximum acceptable value of x2
i

Rjj =
1

maximum acceptable value of u2
j

Start with Bryson’s rule, and then increase or decrease the diagonal values to increase

or decrease the convergence rates of the corresponding states.
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LQR in Matlab


ẋ

ẍ

θ̇

θ̈

 =


0 1 0 0

0 −0.1818 2.6727 0

0 0 0 1

0 −0.4545 31.1818 0



x

ẋ

θ

θ̇

+


0

1.8182

0

4.5455

u

y =

[
1 0 0 0

0 0 1 0

]
x

ẋ

θ

θ̇



Objectives for a 0.2m step in cart position x are:

• Settling time for x and θ of less than 5 seconds

• Rise time for x of less than 0.5 seconds

• Pendulum angle θ never more than 20 degrees

(0.35 radians) from the vertical

• Steady-state error of less than 2% for x and θ
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Conclusion

• Define the behaviour that we want to achieve via a value function

• Choose the control law that minimizes the value function

• LQR is very effective because:

• The optimal controller is linear

• The value function is intuitive to tune
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