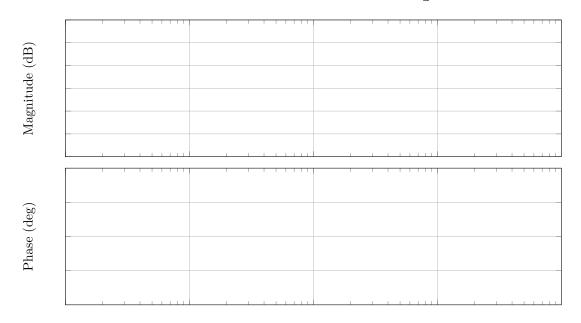
Control Systems : Set 9 : Loopshaping (5)

Prob 1 | For a system with open-loop transfer function


$$G(s) = \frac{10}{s(s/1.4+1)(s/3+1)}$$

design a lag compensator with unity DC gain so that $PM \geq 30^{\circ}$. What is the approximate bandwidth of this system?

Note: A lag compensator with unity DC gain takes the form

$$D(s) = \frac{T_I s + 1}{\alpha T_I s + 1}, \ \alpha > 1$$

The DC gain here will be one, and the gain at high frequency will be $\frac{1}{\alpha}.$

Frequency rad/sec

$$G(s) = \frac{100000}{s(20+s)(200+s)}$$

Design a PID controller for G(s) using loopshaping to satisfy the criteria

- Zero tracking for ramp inputs
- $\bullet~$ Phase margin of around 60°
- Minimum possible rise time

Hint: This is a minimum phase, stable system.

		1 1		1			1	-	1 1		ı		
_													
$\widehat{\mathbf{B}}$													
(dB)													
e e													
pr													
itı													
gn	_												
Magnitude													
~													
		 		 	 					ш		 	