Control Systems : Set 8 : Loopshaping (4)

Prob 1 \mid For the closed-loop transfer function

$$T(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

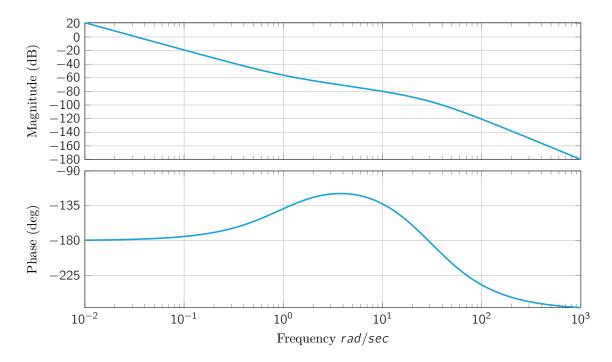
derive the following expression for the bandwidth ω_{BW} of $\mathcal{T}(s)$ in terms of ω_n and ζ

$$\omega_{BW} = \omega_n \sqrt{1 - 2\zeta^2 + \sqrt{2 + 4\zeta^4 - 4\zeta^2}}$$

Assuming $\omega_n=1,$ use Matlab to plot ω_{BW} for $0<\zeta<1.$

Prob 2 | The Bode plot of the following system for K = 1 is given below

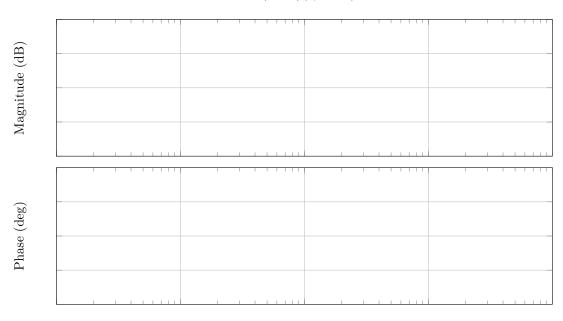
$$KG(s) = \frac{K(s+1)}{s^2(s+30)^2}$$



- a) Determine the range of gains K that will yield a phase margin of at least 30° .
- b) What is the maximum possible closed-loop bandwidth that satisfies $PM \ge 30^{\circ}$?
- c) Use Matlab to confirm your finding.

Prob 3 | Design a lead compensator $D_c(s)$ with unity DC gain so that $PM \ge 40^\circ$ using Bode plot sketches, then verify your design using Matlab. What is the approximate bandwidth of the system?

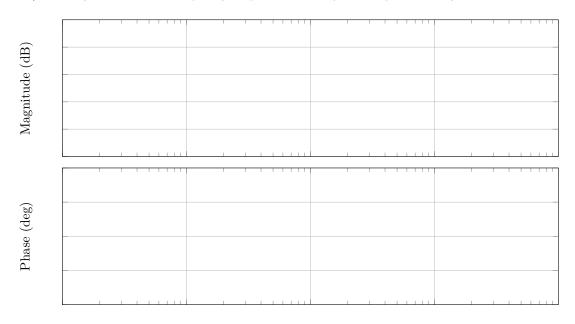
$$G(s) = \frac{5}{s(s+1)(s/5+1)}$$



Frequency rad/sec

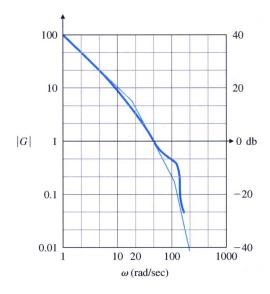
$$G(s) = \frac{1}{s^2 - 1}$$

- a) Design a lead compensator to achieve a PM of 30° and a bandwidth around 1r/s using a Bode plot sketch, then verify and refine your design using Matlab.
- b) Could you obtain the frequency response of this system experimentally?



Frequency rad/sec

Prob $5 \mid$ The frequency response of a plant in a unity-feedback configuration is sketched in the figure below. Assume that the plant is open-loop stable and minimum-phase.



- a) What is the velocity constant K_{ν} for the system as drawn?
- b) What is the damping ratio of the complex poles at $\omega = 100$?
- c) Estimate the PM of the system as drawn. (Hint: Bode phase-gain relationship)