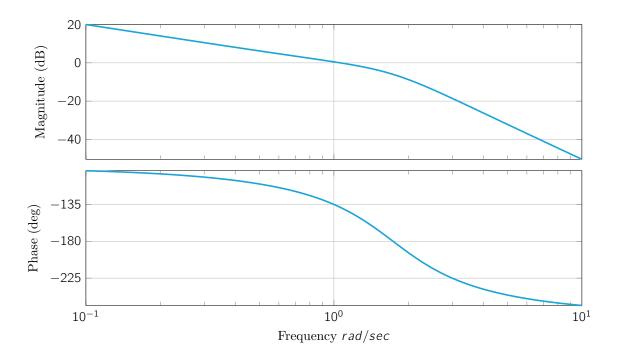
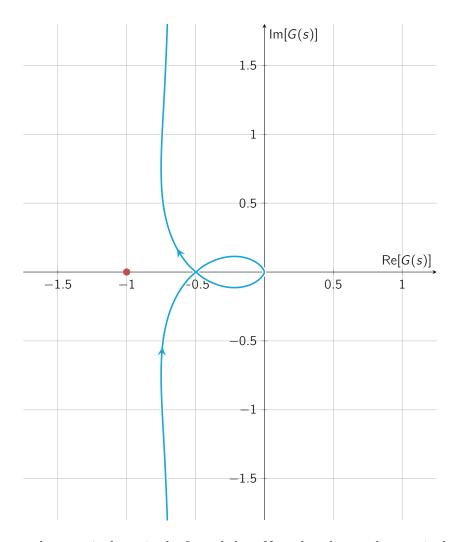

Control Systems: Set 7: Loopshaping (3)

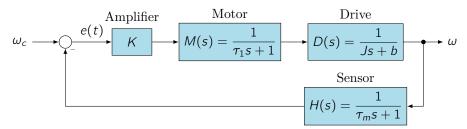
Prob 1 | The Nyquist plot of an open-loop stable system resembles the one shown in the figure below. What are the gain and phase margin(s) for this system given that $\alpha = 0.4$, $\beta = 1.3$ and $\phi = 40^{\circ}$? Describe what happens to the stability of the system as the gain goes from zero to a very large value. Sketch what the corresponding Bode plot would look like for the system.

Note: What is shown in the figure is only half of the Nyquist plot from $\omega=0$ to $\omega=\infty$ (i.e., the part that corresponds to the Bode diagram). The full nyquist plot also contains the range $\omega=-\infty$ to $\omega=0$. However, since the coefficients of the polynomials in our system G(s) are always real numbers, the segment from $[0,\infty]$ will always be a reflection across the real axis of the segment from $[-\infty,0]$.

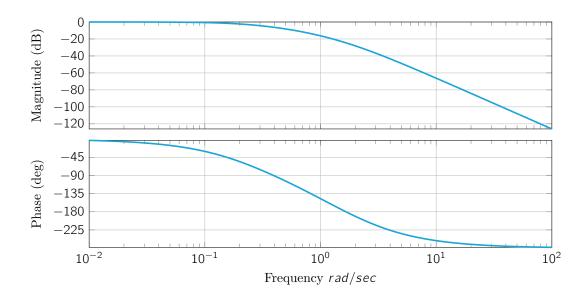

Prob 2 | The steering dynamics of a ship are represented by the transfer function


$$\frac{V(s)}{\delta_r(s)} = G(s) = \frac{K(0.1s+1)}{s(0.5s+1)^2(0.05s+1)}$$

where ν is the ship's velocity in meters per second and δ_r is the rudder angle in radians.


- a) Use Matlab to generate the Bode plot for K = 0.2
- b) Indicate the phase margin and the gain margin on the plot
- c) Is the ship steering system stable for K=0.5
- d) What value of K would yield a PM of 30° and what would the crossover frequency be?

Prob 3 | Consider the Bode plot and the Nyquist plot for the system G(s) below. Show how the ultimate period (the period of oscillation for Ziegler-Nichols tuning) and the ultimate gain (the gain at which the system oscillates) can be read from the Bode plot and from the Nyquist plot.



Prob 4 | A speed control system is shown in the figure below. Note that the speed sensor is slow enough that its dynamics mush be included, since the speed-measurement time constant is $\tau_m = 0.5sec$. The time constant of the drive being controlled is $\tau_r = J/b = 4sec$, where the damping constant $b = 1N \cdot m \cdot sec$ and the motor time constant is $\tau_1 = 1sec$.



- a) Determine the gain K required to keep the steady-state speed error to less than 7% of the reference speed setting
- b) Consider the bode plot of the open-loop system M(s)D(s)H(s) show below. Determine the

gain and phase margins for the value of K determined above. Is a proportional controller a good design for this system?

Prob 5 | A block diagram of a control system is shown in the figure below.

- a) What is the system type?
- b) If R is a step input and the system is closed-loop stable, what is the steady-state tracking error?
- c) What is the steady-state error to a ramp input of velocity 5.0 if $K_2 = 2$ and K_1 is adjusted to give a system step overshoot of 17%? Use Matlab and the step command to determine the value of K_1 .