

Control Systems: Set 4: PID (3)

Prob 1 | A simple mechanical system is shown in the figure below. The parameters are k = spring constant, b = viscous friction constant and m = mass. A step of 2 Newtons force is applied and the resulting step response is shown below. What are the values of the system parameters k, b, and m?

Prob 2 | Consider the automobile speed control system depicted in the figure below.

- a) Find the transfer functions from W(s) and from R(s) to Y(s).
- b) Assume that the desired speed is a constant reference r_o , so that $R(s) = r_o/s$. Assume that the road is level, so w(t) = 0. Compute values of the feedforward gain H_r to guarantee that

$$\lim_{t\to\infty}y(t)=r_o$$

Consider two cases

- (i) $H_{\gamma} = 0$. This is an open-loop feed-forward controller, as there is no feedback.
- (ii) $H_y \neq 0$. This is now a closed-loop feedback controller.
- c) Now assume that a constant grade disturbance $W(s) = w_o/s$ is present in addition to the reference input. Find the variation in speed Y due to the grade change for both the feed-forward and feedback cases, using the values for H_r computed in part (b). Use your results to explain (i) why feedback control is necessary and (ii) how the gain k_p should be chosen to reduce steady-state error.
- d) Assume that w(t) = 0 and that the gain A undergoes the perturbation $A + \delta A$. Determine the error in speed due to the gain change for both the feed forward and feedback cases (use the values for H_r derived in (b)). How should the gains be chosen in this case to reduce the effects of δA ?

Note that the controller gains have to be chosen as a function of A, and not of $A + \delta A$, as the control engineer does not know that the system gains will change during operation.

Prob 3 | The open-loop transfer function of a unity feedback system (i.e., a system whose controller is a proportional gain equal to one) is

$$G(s) = \frac{K}{s(s+5)}$$

The desired system response to a step input is specified as having a peak time less than $t_p = 2\sec$ and an overshoot less than $M_p = 10\%$.

- a) Determine whether both specifications can be met simultaneously by selecting the right value of K.
- b) Sketch the associated region in the s-plane where both specifications are met, and indicate what root locations are possible for some likely values of K.
- c) Find the maximum value for K for the system to oscillate.