
Control Systems : Set 1 : Transfer functions

Prob 1 | Consider a system with transfer function given by

$$G(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

and the signal u(t) shown in the figure below.

- a) Write the Laplace transform of the signal u(t).
- b) What is the Laplace transform of the output if the signal u(t) is applied to the system G(s)?

Prob 2 | Find the Laplace transforms of the following functions

Note that you can use Matlab to compute Laplace transforms and check your work, for example:

>> syms t

>> laplace(4*sin(6*t) + cos(2*t+3))

ans =

 $24/(s^2 + 36) - (2*sin(3) - s*cos(3))/(s^2 + 4)$

- a) f(t) = 1 + 5t
- b) $f(t) = (t+1)^2$
- c) $f(t) = 4\cos 6t$
- d) $f(t) = t^2 + e^{-2t} \sin 3t$

Prob 3 | Find the inverse Laplace transforms of the following functions

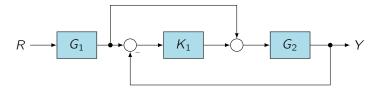
Note that you can use Matlab to compute inverse Laplace transforms and check your work, for example:

>> syms s

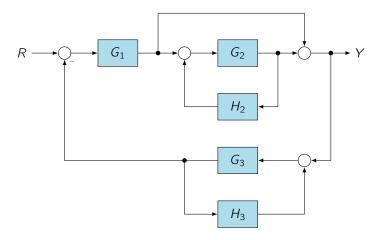
 $>> ilaplace(s/(s^2+3) + 1/s^4)$

$$ans =$$

$$\cos(3^{(1/2)*t}) + t^3/6$$


a)
$$F(s) = \frac{1}{s(s+1)}$$

b)
$$F(s) = \frac{5}{s(s+1)(s+5)}$$


c)
$$F(s) = \frac{3}{s^2 + 4s + 13}$$

d)
$$F(s) = \frac{5}{s(s+1)(s+5)(s^2+2s+3)}$$

Prob 4 | Compute the transfer function from R to Y for the feedforward block diagram shown below.

Prob 5 | Compute the transfer function from R to Y for the block diagram shown below.

