
Control Systems : Set 12 : Statespace (3)
Prob 1 | The linearized equations of motion of the simple pendulum in the figure below are

θ̈ + ω2θ = u7058 CHAPTER 7. STATE-SPACE DESIGN

Figure 7.96: Pendulum diagram for Problem 7.46.

estimator characteristic equations are,

!e;desired(s) = (s+ 2!)(s+ 3!)(s+ 3! ! j3!)(s+ 3! + j3!)
= s4 + 11!s3 + 54!2s2 + 126!3s+ 108!4

!e(s) = det(sI!A+ LC) = s4 + l3s3 + (l4 + !2)s2 + (!2!l2 + !2l3)s+ (!3!2l4 ! 6!3l1):

Equating coe¢cients gives,

l1 = !44:5!; l2 = !57:5!2; l3 = 11!; l4 = 53!2:

46. The linearized equations of motion of the simple pendulum in Fig. 7.96 are

1( + !2( = u:

a) Write the equations of motion in state-space form.

b) Design an estimator (observer) that reconstructs the state of the pendulum given measure-

ments of _(. Assume ! = 5 rad/sec, and pick the estimator roots to be at s = !10" 10j.
c) Write the transfer function of the estimator between the measured value of _( and the esti-
mated value of (.
d) Design a controller (that is, determine the state feedback gain K) so that the roots of the
closed-loop characteristic equation are at s = !4" 4j.
Solution:

(a) DeÖning x1 = ( and x2 = _(, and anticipating that the measured variable in part (b) is _(, we
have,
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(b) From,

det(sI!A+ LC) = 0;
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a) Write the equations of motion in state-space form.

b) Design an estimator (observer) that reconstructs the state of the pendulum given measure-
ments of θ̇. Assume ω = 5 rad/sec, and pick the estimator roots to be at s = −10± 10j .

c) Write the transfer function of the estimator between the measured value of θ̇ and the
estimated value of θ.

d) Design a controller (that is, determine the state feedback gain K) so that the roots of the
closed-loop characteristic equation are at s = −4± 4j .

Prob 2 | A certain process has the transfer function

G(s) =
4

s2 − 4

a) Find A, B and C for this system in observer canonical form

b) If u = −Kx , compute K so that the closed-loop control poles are located at s = −2± 2j

c) Compute L so that the estimator-error poles are located at s = −10± 10j

d) Give the transfer function of the resulting controller

e) What are the gain and phase margins of the controller and the given open-loop system?

Prob 3 | Consider the control of

G(s) =
Y (s)

U(s)
=

10

s(s + 1)

a) Let y = x1 and ẋ1 = x2 and write the state equations for the system

b) Find K1 and K2 so that u = −K1x1−K2x2 yields closed-loop poles with a natural frequency
ωn = 3 and a damping ratio ζ = 0.5



c) Design a state estimator for the system that yields estimator error poles with ωn1 = 15
and ζ1 = 0.5

d) What is the transfer function of the controller obtained by combining parts (a) - (c)?

Prob 4 | The linearized longitudinal motion of a helicopter near hover (figure below) can be modeled by
the normalized third-order systemq̇θ̇

u̇

 =
−0.4 0 −0.01
1 0 0

−1.4 9.8 −0.02

qθ
u

+
6.30
9.8

 δ
where

q = pitch rate
θ = pitch angle of fuselage
u = horizontal velocity (standard aircraft notation)
δ = rotor tilt angle (control variable)7062 CHAPTER 7. STATE-SPACE DESIGN

Figure 7.97: Helicopter for Problem 7.49.

normalized third-order system,
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where,

q = pitch rate;

" = pitch angle of fuselage;

u = horizontal velocity (standard aircraft notation);

% = rotor tilt angle (control variable):

Suppose our sensor measures the horizontal velocity u as the output; that is, y = u.
a) Find the open-loop pole locations.
b) Is the system controllable?
c) Find the feedback gain that places the poles of the system at s = !1" 1j and s = !2.
d) Design a full-order estimator for the system, and place the estimator poles at !8 and !4"
4
p
3j.

e) Design a reduced-order estimator with both poles at !4. What are the advantages and
disadvantages of the reduced-order estimator compared with the full-order case?
f) Compute the compensator transfer function using the control gain and the full-order estimator
designed in part (d), and plot its frequency response using Matlab. Draw a Bode plot for the
closed-loop design, and indicate the corresponding gain and phase margins.
g) Repeat part (f) with the reduced-order estimator.
h) Draw the symmetrical root locus (SRL) and select roots for a control law that will give a
control bandwidth matching the design of part (c), and select roots for a full-order estimator
that will result in an estimator error bandwidth comparable to the design of part (d). Draw
the corresponding Bode plot and compare the pole placement and SRL designs with respect to
bandwidth, stability margins, step response, and control e§ort for a unit-step rotor-angle input.
Use Matlab for the computations.

Solution:
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Suppose our sensor measures the horizontal velocity u as the output, that is y = u
Use Matlab to answer the following questions.

a) Design a state estimator with poles at −8 and −4± 4
√
3j

b) Compute the compensator transfer function using control you design for this problem in
exercise set 5, and the estimator designed above.

c) Draw Bode plots for the loop gain and the closed-loop system. What is the bandwidth,
gain margin and phase margin?

Prob 5 | The linearized equations of motion for a satellite are

ẋ = Ax + Bu

y = Cx



where
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]
The inputs u1 and u2 are the radial and tangential thrusts, the state variables x1 and x3 are the
radial and angular deviations from the reference (circular) orbit, and the outputs y1 and y2 are
the radial and angular measurements, respectively.

a) Show that the system is controllable using both control inputs

b) Show that the system is controllable using only a single input. Which one is it?

c) Show that the system is observable using both measurements.

d) Show that the system is observable using only one measurement. Which one it it?

Note that the definitions of controllability and observability matrices are valid for multiple in-
puts and outputs, and that full rank of these matrices is what’s required for controllability and
observability.

Prob 6 | Consider a system with the transfer function

G(s) =
9

s2 − 9

a) Find (A,B, C) for this system in observer canonical form

b) Is (A,B) controllable?

c) Compute K so that the closed-loop poles are assigned to s = −3± 3j

d) Is the system observable?

e) Design an estimator with estimator poles at s = −12± 12j

f) Suppose the system is modified to have a zero

G1(s) =
9(s + 1)

s2 − 9

Prove that if u = −Kx + r , there is a feedback gain K that makes the closed-loop system
unobservable. (Again assume an observer canonical realization for G1(s).)


