
Control Systems : Set 11 : Statespace (2)
Prob 1 | Consider a system with state matrices

A =

[
−2 1

0 −3

]
B =

[
1

1

]
C =

[
1 3

]
a) Use feedback of the form u(t) = −Kx(t) + N̄r(t), where N̄ is a nonzero scalar, to move

the poles to −3± 3j

b) Choose N̄ so that if r is a constant, the system has zero steady-state error, that is y(∞) = r

c) The system steady-state error performance can be made robust by augmenting the system
with an integrator and using unity feedback, that is, by setting ẋI = r − y , where xI is the
state of the integrator. To see this, first use state feedback of the form u = −Kx −KIxI so
that the poles of the augmented system are at −3, −2± j
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3

Prob 2 | For the system

ẋ =

[
0 1

−6 −5

]
x +

[
0

1

]
u

y =
[
1 0

]
x

design a state feedback controller that satisfies the following specifications:

• Closed-loop poles have a damping coefficient ζ = 0.707

• Step-response peak time is under 3.14sec

Prob 3 | Consider the following system

ẋ =

[
0 1

0 −10

]
x +

[
0

1

]
u

y =
[
1 0

]
x

a) Design a state feedback controller so that the closed-loop step response has an overshoot
of less than 25% and a 1% settling time under 0.115sec

b) Use the step command in Matlab to verify that your design meets the specifications. If it
does not, modify your feedback gains accordingly.

Prob 4 | Consider the electric circuit shown in the figure below, that you designed a controller for in the
fifth exercise

7045

Figure 7.90: Electric circuit for Problem 7.37.

(a) Apply Kirchho§ís voltage and current laws, with x1 = iL and x2 = vc, we obtain,

L _x1 +Rx1 = x2 +RC _x2;

_x2 = u! x1;
y = (u! x1)R

Thus,

!
_x1
_x2

"
=

!
!2R=L 1=L
!1=C 0

" !
x1
x2

"
+

!
R=L
1=C

"
u;

y =
#
!R 0

$
x+Ru:

(b) The condition for the system to be uncontrollable is det(C) =0.

C =
#
B AB

$
=

!
R=L !2R2=L2 + 1=LC
1=C !R=LC

"
:

det(C) = R2=L2C ! 1=LC2:

Thus, the system is controllable if R2 6= L=C.
(c) The condition for the system to be unobservable is,

O =

!
C
CA

"
=

!
!R 0
2R2=L !R=L

"
:

det(O) = R2=L:

Since det(O) 6= 0 for any R;L;C except R = 0 or L =1, the system is observable.

38. The block diagram of a feedback system is shown in Fig. 7.91. The system state is,

x =

!
xp
xf

"
;

and the dimensions of the matrices are as follows:

A = n& n; L = n& 1;
B = n& 1; x = 2n& 1;
C = 1& n; r = 1& 1;
K = 1& n; y = 1& 1;
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a) What condition(s) on R, L and C will guarantee that the system is observable?

Prob 5 | Consider the system

A =

[
−2 1

1 0

]
B =

[
1

0

]
C =

[
1 2

]
and assume that you are using feedback of the form u = −Kx + r where r is a reference input
signal

a) Show that (A,C) is observable

b) Show that there exists a K such that (A− BK,C) is unobservable

c) Compute a K of the form K =
[
1 K2

]
that will make the system unobservable as in part

(b), that is, find K2 so that the closed-loop system is not observable

d) Compare the open-loop transfer function with the transfer function of the closed-loop
system of part (c). What is the unobservability due to?


