
Control Systems: Set 10: Statespace (1)

Prob 1 | Given the system

$$\dot{x} = \begin{bmatrix} -5 & 1 \\ -2 & -1 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$$

with zero initial conditions, find the steady-state value of x for a step input u.

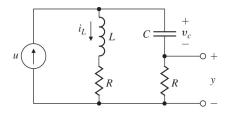
Prob 2 | Consider the system shown below

- a) Find the transfer function from U to Y
- b) Write state equations for the system using the state variables indicated
- Prob 3 | Show that a transfer function is not changed by a linear transformation of the state.
- Prob 4 | For each of the listed transfer functions, write the state equations in control canonical form. In each case draw a block diagram and give the appropriate expressions for A, B and C.

a)
$$G(s) = \frac{s^2 - 2}{s^2(s^2 - 1)}$$

b)
$$G(s) = \frac{3s+4}{s^2+2s+2}$$

Prob 5 | Consider the system in the figure below.


$$U \longrightarrow \boxed{\frac{s}{s^2 + 4}} \longrightarrow Y$$

- a) Write a set of equations that describes this system in the control canonical form as $\dot{x}=Ax+Bu$ and y=Cx
- b) Design a control law of the form

$$u = -\begin{bmatrix} K_1 & K_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

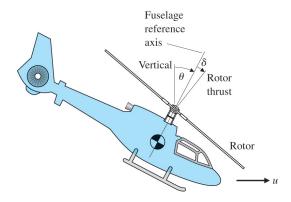
which will place the closed-loop poles at $s = -2 \pm 2i$

- c) Check your answer with Matlab
- Prob 6 | Consider the electric circuit shown in the figure below

- a) Write the internal (state) equations for the circuit. The input u(t) is a current, and the output y is a voltage. Let $x_1 = i_L$ and $x_2 = v_c$
- b) What condition(s) on R, L and C will guarantee that the system is controllable?

Prob 7 \mid The linearized longitudinal motion of a helicopter near hover (figure below) can be modeled by the normalized third-order system

$$\begin{bmatrix} \dot{q} \\ \dot{\theta} \\ \dot{u} \end{bmatrix} = \begin{bmatrix} -0.4 & 0 & -0.01 \\ 1 & 0 & 0 \\ -1.4 & 9.8 & -0.02 \end{bmatrix} \begin{bmatrix} q \\ \theta \\ u \end{bmatrix} + \begin{bmatrix} 6.3 \\ 0 \\ 9.8 \end{bmatrix} \delta$$


where

q = pitch rate

 $\theta = \text{pitch angle of fuse lage}$

u = horizontal velocity (standard aircraft notation)

 $\delta = \text{rotor tilt angle (control variable)}$

Suppose our sensor measures the horizontal velocity u as the output, that is y = u Use Matlab to answer the following questions.

- a) Find the open-loop pole locations.
- b) Is the system controllable?
- c) Find the feedback gain that places the poles of the system at $s=-1\pm 1j$ and s=-2