
1	

Module	8	-	Implement	your	PI	controller	
Control	Systems	+	TP,	December	2024	v3	

1 Introduction	
This	document	is	here	to	provide	you	with	information	and	instructions	about	the	practical.	In	this	module	you	will	
implement	your	own	PID	controller.	Please	note	that	the	software,	this	document	and	the	whole	infrastructure	is	still	
in	beta	stage.	

1.1 Interface	

	

Figure	1:	Interface	used	for	the	practical.	

On	Figure	1	you	can	Aind	the	different	functionalities	of	the	new	web	interface.	

• 1:	 Similar	 to	 the	 old	modules,	 you	 can	 control	 the	 Signal	 generator,	 i.e.	 the	 reference	 signal.	 Signal	 shape,	
amplitude,	offset	and	frequency.	

• 2:	Measurement	let	you	choose	the	input	between	position	and	speed,	other	options	are	not	yet	active.	Similarly,	
the	Controller	type	can	be	Open	Loop,	PID	and	Custom,	and	other	options.	Note	that	compared	to	old	interface,	
the	open	loop	mode	is	selected	via	the	Controller	type.	Custom	Controller	type	allows	you	to	write	your	own	C	
code	(C	subset),	see	point	6.	

• 3:	The	PID	params	work	the	same	as	in	the	old	interface,	remember	to	click	on	the	variable	names	will	activate	
them.	Note	that	Kp	is	always	active	in	PID	mode.	

• 4:	Params	enables	you	to	pass	parameter	to	your	custom	code.	The	size	limit	is	10.		

• 5:	Each	time	you	want	to	push	new	C	code	written	in	6.	First	Check	Source,	then	if	no	error	click	on	Apply	source	
to	push	the	new	code	to	the	server.	In	case	of	error	a	message	will	be	displayed.	You	can’t	push	a	bugus	code.	
Remember	 that	 you	 need	 to	 be	 in	 Custom	 mode.	 The	 supported	 syntax	 is	 deAined	 here	 :	
https://www.ni.com/docs/en-US/bundle/labview/page/formula-node-syntax.html	
	



2	

• 6:	This	block	enables	you	to	write	your	worn	controller	in	C,	a	subset	of	C	actually.	Read	the	description	of	the	
various	variable	already	at	your	disposal,	which	can	help	you	a	lot.	Due	to	a	typo	pCmd	can	be	accessed	with	
pCMD.	Furthermore,	if	you	need	for	loops	you	have	to	initialize	the	loop	variable	outside	of	the	loop.	

• 7	&	8:	The	button	enables	to	rescale	the	measurement	window.	

• 9:	This	button	enables	you	to	pause	the	measurement	windows.	You	will	be	able	to	take	different	values.	

1.2 Motivation	
During	this	semester,	 through	the	various	hand	on	sessions,	you	were	able	to	apply	some	of	the	knowledge	gained	
during	the	course:	parameter	identiAication,	model-matching,	Ziegler	Nichols	method	on	a	basic	mechanism.	However,	
you	never	had	to	implement	by	yourself	the	various	steps	of	such	an	algorithm.	Such	a	task	as	an	engineer	can	become	
tricky,	and	although	in	the	future	you	will	probably	take	a	code	found	online,	it	is	good	to	have	done	it	at	least	once	in	
its	life	to	grasp	the	small	details	of	such	a	control	algorithm.	
	
1.3 Usefull	slides	
Some	code	implementation	examples	can	be	found	on	the	Moodle	page	of	Week	14	in	”PID	implementation”.	The	initial	
steps	are	very	much	like	Module	1,	2	and	3.	

2 Experiment	
2.1 Parameter	identi9ication	
The	system	at	our	disposal	can	be	identiAied	as	a	Airst	order-system	in	speed	mode:	
	

	

Identify	the	two	constants	by	making	the	measurements	in	speed	and	open	loop	mode.	You	will	need	to	apply	a	step	
and	stop	the	measurement’s	scrolling	to	compute	the	different	values.	What	is	the	value	after	which	the	system	is	not	
affected	by	the	friction	anymore?	
Hint:	Module	1.	As	we	are	in	open	loop	the	input	range	can	vary	between	0	and	5V.	The	value	you	get	are	VERY	different	
that	what	you	get	with	in	module	1.	

You	can	use	the	new	Pause	button	(9)	to	stop	the	graphs	update.	If	you	place	the	mouse	over	the	2	graphs	a	popup	
window	will	show	the	measurements	under	the	mouse	cursor.	And	computer	both	values	without	the	need	for	the	
extra	temporal	Ait	tool.	Please	note	that	the	units	for	the	measurement	does	not	(yet)	update,	it	remains	deg	when	in	speed	
it	should	be	read	as	deg/sec.	Same	for	the	Y	axis,	it	should	be	speed.	

	

	



3	

2.2 Model	Matching	
We	want	to	improve	the	system’s	response.	This	is	done	by	imposing	the	closed-loop	response,	i.e.	model	matching	
method.	Your	goal	is	to	identify	the	parameter	Kp	and	Ti.	The	closed	loop	transfer	function	you	want	to	match	is:	
	

	

Similarly	to	module	2,	we	want	τm	=	0.1sec.	After	computing	the	values	change	into	PID	mode	and	stay	in	speed	mode.	
Apply	a	step	that	varies	with	time,	does	it	behave	as	expected?	Try	different	input	values.	
What	is	the	new	input	range?	Why?	
	
Hint:	Module	2.	Your	controller	should	look	like	𝐾(𝑠) = 𝐾!(1 +

"
#!$
).		

2.3 Feed	Forward	
During	the	course	we	saw	the	feedforward	control.	Compute	the	compute	the	feedforward	constant	U0,	for	a	certain	
speed	that	you	choose.	Add	it	to	your	PI	controller.	Do	you	notice	any	difference?	The	new	interface	allows	you	to	set	a	
FF	commande	that	is	function	of	the	reference	signal.	Set	G(0)	to	the	value	you	identify	previously	and	click	on	c.FF	
button.	Try	various	references	values	and	check	that	the	FF	command	works	as	expected.		

		
	
2.4 Code	implementation	
The	next	step	is	to	implement	your	own	PID	controller	in	C.	The	code	is	written	in	area	(6),	please	note	that	the	page	
does	NOT	save	your	code.	If	you	reload	the	page	the	code	is	back	to	its	default	value.	You	need	to	keep	track	of	your	
code	in	another	docuement.	

You	have	various	variables	that	you	can	read/write		

//	h:	(r)	sampling	period	in	[s]		
//	Globals:	(r/w)	1D	array	of	10	double	to	store	values	between	calls	
//	Mes:	(r)	1D	array,	last	10	measurements	(speed	or	pos)	
//	Ref:		(r)		1D	array,	last	10	reference	values	
//	pCMD:	(r)		1D	array	of	the	9	previous	command	values	
//	Params:	(r)		1D	array	of	n	params	deAined	in	the	client	UI	(4)	
//	Out:	(w)	1D	array	of	10	values	you	can	pass	to	the	client	application		
//	uMin:	(r)	min	voltage	that	can	be	applied	to	the	QUBE	motor	
//	uMax:	(r)	max	voltage	that	can	be	applied	to	the	QUBE	motor	
//	uCMD:	(w)	unsaturated	command	
//	CMD:	(w)	saturated	(by	you)	command	applied	to	the	QUBE	
	
uCMD=0.0;	//	command	before	any	saturation,	will	be	displayed	with	dots	in	the	graph	
CMD=0.0;		//	the	actual	command	applied	to	the	QUBE,	if	greater	than	uMin/uMax	will	be	saturated	
	
//	the	current	measurement	is	Mes[0]	
//	the	current	reference	is	Ref[0]	
//	the	Airst	parameter	in	the	client	UI	(4)	is	Params[0]	
	
//	the	current	error	is	Lloat	err	=	Ref[0]	-	Mes[0];	

	



4	

2.4.1 Implementation	of	the	PI	controller	

Implement	your	code	in	the	code	block.	You	should	pass	the	parameters	of	your	controller	with	the	Params	variable	
(4).	You	can	also	store	local	values	in	the	Globals	variable.	The	output	command	is	CMD.	You	should	start	with	a	simple	
P	controller	(1-2	lines)	then	add	UI	computation	using	the	trapezoidal	approximation	for	the	integral.	Between	calls	
the	UI	value	should	be	save	in	Globals[0].	

2.4.2 Implementation	of	the	ARW	

Add	a	snippet	of	code	to	saturate	the	command	and	add	the	anti-reset	windup.	The	VI	already	apply	a	saturation	on	
the	command.	The	variables	uMin	and	uMax	 informs	you	about	 the	existing	saturation.	 If	you	command	uCMD	 is	
greater	that	uMax	you	should	saturate	your	integral	term,	do	similarly	with	uMin.	
Hint:	Integral	term	saturation	can	be	implemented	by	setting	the	current	UI(k)	term	to	the	previous	UI(k-1)	stored	one.	
The	UI	term	can	be	stored	in	Global[0]	for	example.	

2.4.3 Implementation	of	the	PID	

If	time	allows	it	you	can	add	the	computation	of	the	derivative	part	UD.	
	
	
	


