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Implementation Analog Implementation

All controllers developed in this course look something like

: bo + sby + s°b
K(s):U(g): 0 + sb1 + b2
E(s) 1+ sa1+ s%az2 + s3as
or equivalently in the time domain
u(t) = 7(111‘1,(1’) — azﬁ(t) — (lg“’U:(t) + boe(t) + ble(t) + bze(t)
Mes. 100K 100kE2
Ref. N
- . command
Challenge: How can we implement this ? . MH«TO

ano g

— derivative



Sensors are “Discrete-Time”

* Sensors and computers can only “see” the CLOCK
world at fixed time intervals
* From the computer’s perspective the world
only exists at these fixed points in time!
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“Analogue”: Changes
continuously with time and
can take any value

Control Loop with Digital Controller

Convert physical quantity
into a digital number

“Discrete”

Number representing
physical quantity updated
at fixed points in time

Controller ——1 D/A

System

Control Actions are Updated in “Discrete-Time”

CLOCK
* Interface between computer and

actuator runs on a fixed clock
* The action that the computer wants

can only be changed at fixed points in time
« The action stays constant between updates

Computer

“Take action x”

Actuator
e.g.,
» Electromagnetic switch
open
¢ Buy stock y
*  Windows blinds to z
* Robot move to g

S ——

Compute can only take
decisions at fixed points
in time

Control Loop with Digital Controller

Actuators turn ‘numbers’
into real actions; physical
or logical

System




Perspective of the System

Control Loop wi

Continuous

Continuous
Clock &
: : : Controller 3
A4 A4 A"A :
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O A/D [—>| Controller —> D/A —> System —71— Takes continuous-times signals : S
T ‘ + Produces continuous-times signals | ystem

The system sees the discrete-time controller as a continuous-time device

Continuous

Sampling

Controller

The controller sees the continuous-time system as a discrete-time entity



Continuous-Time vs Discrete-Time Signals
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Continuous-time signal: Function w(t) mapping from R to R.
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Discrete-time signal:

e Function w(ty) mapping from {Tk |k € Z} to R } Equivalent
e Function w(k) mapping from Z to R

Nyquist Theorem
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Selection of a Sampling Rate

A sampled signal contains all information about the continuous signal it was sampled
from up to half the sample frequency.

You will learn a lot more about this next year.

This tells us that we need to sample at least twice as fast as the highest frequency
that we care about.

In practice: Sample 10x to 40x faster than the bandwidth of your system, depending
on the cost of sensors, speed of the system, etc.

Sampling - A Few Notes

e Normally sample with a constant sampling period T’
tk—tk—1 =T, VkeZ

e Sampling frequency
1

f:T Hz w = 27 f rad/sec

e Discrete-time signals and systems are often expressed in terms of the time index
k, rather than the physical time t;, = T'k.

o We'll often write w(k), w(Tk) or w(ty) for the sampled signal
e Controller doesn’t care what ‘time’ it is - it operates on ‘clock cycles’

Demo sampling



Difference Equations

A linear difference equation of order n:

y(k) + ary(k — 1) + -+ + any(k — n)
=bou(k —d) + bhiu(k —d —1) + - - - + bpu(k — d — m)

or equivalently

Difference Equations y(k) == > awy(k —i)+ Y _ bou(k —d — i)
=1 =0

Given an input signal u, the difference equation generates an output signal y.

e d is the system delay
e Represented by a finite number of constants {a;}, {b;}
e Can compute the value of y at time k given
e last n outputs {y(k —1),...,y(k —n)}
e m inputs from d steps ago {u(k —d),u(k —d—1),...,u(k —d—m)}
A computer can calculate a difference equation
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Example: Pl Controller

The PI controller is a dynamic system that takes the error e as an input and produces
the system input u as its output

1
u(k) = Kp <e(k) + e ; e(l)T>
Not a difference equation - requires a growing input history.

Can re-write: Delay operator

w(k) — ulk —1) = Kp (e(k) + Ti 3 e(l)T>

—Kp <e(k ~1+ o 3 e(l)T>

1N

= Kpe(k) + Kp ( - 1) e(k—1)

=

An equivalent representation as a difference equation
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Algebraic Representation of Difference Equations [ ] Algebraic Representation of Difference Equations

Introduce the shift operator z Introduce the shift operator z
zy(k) =y(k+1) Foward shift zy(k) =y(k+1) Foward shift
27 y(k) = y(k —1) Backward shift 2 (k) = y(k—1) Backward shift

We can now re-write a difference equation as

y(k) +awy(k — 1)+ -+ any(k —n) =bou(k —d) + bru(k —d — 1)+ - + bu(k — d
A+arz '+ Fanz "ylk) =2 %bo+brz "+ +bmz ™uk)

_m)

The next control course will introduce the Z-transform formally, which allows us to
define a discrete time transfer function
Y(2)
U(z)

—H(x) = 2o+ b1z bz ™)
I+aiz7t+-- +anz™"

Discrete time transfer function
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Approximate an ODE with a Difference Equation

Approximate Discretization

What we have

dPu dPe

. . . what we want
Discretization

(k) + ara(k — 1) + - - - + ant(k —n)
=boe(k —d)+bhe(k—d—1)+ -+ bmée(k —d—m)

Such that a(k) = u(t)



Tustin Approximation

Write the transfer function in integral form

U(s)  bos™ "™ 4 bys™ ™D oo fbs™ "

K(s) = =
() E(s) 1+ais ' +ass 24 -+ aps™
Re-writing gives
1 1 1
U(s) + a1gU(s) + aQ?U(S) +- Q"STIU(S)
=b ! E b L E b ! E
= Yo gn—m (S) +b gn—m+1 (S) t+ot "L; (8)

with the equivalent time-domain representation

t t T
u(t) + al/ U(T)d7+a2/ / w(o)dodr + - = -
0 o Jo
Idea: Approximate the integral
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Tustin Approximation

We now have

1 Tz+1
Il(s)ng(S) ~ Ii( ):52—1 '(2)
More generally, we can approximate the derivative operator s with % ;j
o271
TTz41

Given our transfer function

K(s)= U _botbist -+ bus

E(s)  1+4ais+-- +ans"

we can compute a discrete approximation:

Ui both (3) o (B5)
EE) 1ta (223) ++an (

K'(z) =

z+
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Tustin Approximation

Take a trapezoidal approximation of the integral

u(kT -T)

>

&
| —

0 (kT) = Lﬂ u(r)dr = i1 (KT = T) + %(u(kT —T) +u(kT))

Write in terms of the shift operator

h(z):z*lh(z)+§(z*1+1)U(z) - Li(z) = giiU

Example - Lead Compensator

_U(s)  Tps+1
D(s) = E(s)  aTps+1

Approximate discrete time transfer function
Tp (% j*}) +1
D)=~
oTp (251) +1

16




Example - Lead Compensator Example - Lead Compensator

D(s) = U(s)  Tps+1 U(s) Tps+1
v E(s) T aTlps+1

D(s b
() E(s) oIps+1
Approximate discrete time transfer function Approximate discrete time transfer function
2 z—1 2 L
D'(2) Io (?z+1>+1 (T+2Tp)z+T —2Tp D'(2) To <T§+i)+1 (T+2Tp)2+T - 2Tp
= = z) = =
oTp (%zﬁ)Jrl (T+2Tpa)z+ T — 2Tpc oTh (%;i)"‘l (T +2Tpa)z+ T — 2Tpa
Write in terms of the delay operator Write in terms of the delay operator
(T +2Tpa)z+T — 2Tpa)u(k) = (T + 2Tp)z + T — 2Tp)e(k) (T +2Tpa)z+T —2Tpa)u(k) = (T + 2Tp)z + T — 2Tp)e(k)
(T +2Tpa) + (T — 2Tpa)z Du(k) = (T + 2Tp) + (T — 2Tp)z"e(k)

(T + 2Tpa) + (T — 2Tpa)z" Nu(k) = (T + 2Tp) + (T — 2Tp)z " e(k)

Convert to a difference equation

T —2Tpa T +2Tp T —2Tp
et AV P s i 8 et
ulk) = = oo W~ D+ g W) + gtk - 1)

which gives us an expression that we can calculate in a computer
18

Input

Input

Time (s)

Time (s)
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In matlab c2d(D, T, 'Tustin') 19



Given a transfer function for a controller K(s) = ;Ez;

compute a difference equation that can be implemented in a computer.

and a sample period T,

e Compute an approximate discrete-time transfer function

_ m m—1
K'(:) = K (22 1) boz™ + b1z 4t b

Tz+1) 2 taiz" '+ +an

e Write in terms of the delay operator z~*

CbotbizT 4 bz

K'(2) =
(=) I4+aiz=t 4+ +anz™"

e Write the difference equation

u(k) = —aru(k —1) — - — apu(k — n) + boe(k) + bie(k — 1) + - - + bne(k — m)
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Impact of Sample Rate on Frequency Response
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e Blue : Continuous time controller

e Green : ZOH approximation sampled at 7' = 0.01
e Red : Tustin approximation sampled at 7" = 0.01
e Cyan : Euler approximation sampled at 7' = 0.01
e Purple : Zero-pole matching sampled at 7" = 0.01

e There are a number of different approximations depending on the system

e Tustin approximation — Matches well in the frequency domain
e Zero/pole matching — Good for controllers based on pole placement
e Euler approximation — Low complexity controller

e All the techniques match well if the sample rate is high enough

e Matlab command for continuous to discrete time conversion c2d
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Impact of Sample Rate on Frequency Response
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e Blue : Continuous time controller

e Green : ZOH approximation sampled at 7' = 0.1
e Red : Tustin approximation sampled at 7' = 0.1
e Cyan : Euler approximation sampled at 7" = 0.1

e Purple : Zero-pole matching sampled at 7" = 0.1
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