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Sensors are “Discrete-Time”

Computer
Physical quantity

e.g.,

•  Speed

•  Pressure

•  Temperature

•  Color

•  Curliness

•  etc


Sensor


“Analogue”: Changes 
continuously with time and 
can take any value


Convert physical quantity 
into a digital number


“Discrete”

Number representing 
physical quantity updated 
at fixed points in time


CLOCK
•  Sensors and computers can only “see” the 
world at fixed time intervals


•  From the computer’s perspective the world 
only exists at these fixed points in time!
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Control Actions are Updated in “Discrete-Time”

Computer














“Take action x”


CLOCK


Actuator

e.g.,

•  Electromagnetic switch 

open

•  Buy stock y

•  Windows blinds to z

•  Robot move to q


Compute can only take "
decisions at fixed points "
in time


Actuators turn ‘numbers’ "
into real actions; physical "
or logical


•  Interface between computer and "
actuator runs on a fixed clock


•  The action that the computer wants "
can only be changed at fixed points in time


•  The action stays constant between updates
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Control Loop with Digital Controller

Controller
 System

+

�

Clock


A/D
 D/A
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Control Loop with Digital Controller

Controller
 System
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Clock
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Perspective of the System

System

+

�

Controller


•  Takes continuous-times signals

•  Produces continuous-times signals


Continuous


Continuous


The system sees the discrete-time controller as a continuous-time device
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Perspective of the Controller

Controller
 System


A/D


D/A


Discrete


Discrete


The controller sees the continuous-time system as a discrete-time entity

7

Sampling



Continuous-Time vs Discrete-Time Signals
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Continuous-time signal: Function w(t) mapping from R to R.

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15t�1t�2t�3t�4
0

0.4

0.8

1.2

1.6

Discrete-time signal:

• Function w(tk) mapping from {Tk | k 2 Z} to R
• Function w(k) mapping from Z to R

)
Equivalent
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Sampling - A Few Notes

• Normally sample with a constant sampling period T

tk � tk�1 = T, 8k 2 Z

• Sampling frequency

f =
1
T

Hz ! = 2⇡f rad/sec

• Discrete-time signals and systems are often expressed in terms of the time index

k, rather than the physical time tk = Tk.

• We’ll often write w(k), w(Tk) or w(tk) for the sampled signal
• Controller doesn’t care what ‘time’ it is - it operates on ‘clock cycles’
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Selection of a Sampling Rate

Nyquist Theorem

A sampled signal contains all information about the continuous signal it was sampled

from up to half the sample frequency.

You will learn a lot more about this next year.

This tells us that we need to sample at least twice as fast as the highest frequency

that we care about.

In practice: Sample 10⇥ to 40⇥ faster than the bandwidth of your system, depending

on the cost of sensors, speed of the system, etc.
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Demo sampling



Di↵erence Equations

Di↵erence Equations

A linear di↵erence equation of order n:

y(k) + a1y(k � 1) + · · ·+ any(k � n)

= b0u(k � d) + b1u(k � d� 1) + · · ·+ bmu(k � d�m)

or equivalently

y(k) = �
nX

i=1

aiy(k � i) +
mX

i=0

biu(k � d� i)

Given an input signal u, the di↵erence equation generates an output signal y.

• d is the system delay

• Represented by a finite number of constants {ai}, {bi}
• Can compute the value of y at time k given

• last n outputs {y(k � 1), . . . , y(k � n)}
• m inputs from d steps ago {u(k � d), u(k � d� 1), . . . , u(k � d�m)}

A computer can calculate a di↵erence equation
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Example: PI Controller

The PI controller is a dynamic system that takes the error e as an input and produces

the system input u as its output

u(k) = KP

 
e(k) +

1
Ti

k�1X

l=0

e(l)T

!

Not a di↵erence equation - requires a growing input history.

Can re-write:

u(k)� u(k � 1) = KP

 
e(k) +

1
Ti

k�1X

l=0

e(l)T

!

�KP

 
e(k � 1) +

1
Ti

k�2X

l=0

e(l)T

!

= KP e(k) +KP

✓
1
Ti

� 1

◆
e(k � 1)

An equivalent representation as a di↵erence equation
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Delay operator



Algebraic Representation of Di↵erence Equations

Introduce the shift operator z

zy(k) = y(k + 1) Foward shift

z
�1

y(k) = y(k � 1) Backward shift

We can now re-write a di↵erence equation as

y(k) + a1y(k � 1) + · · ·+ any(k � n) = b0u(k � d) + b1u(k � d� 1) + · · ·+ bmu(k � d�m)

(1 + a1z
�1 + · · ·+ anz

�n)y(k) = z
�d(b0 + b1z

�1 + · · ·+ bmz
�m)u(k)

The next control course will introduce the Z-transform formally, which allows us to

define a discrete time transfer function

Y (z)
U(z)

= H(z) =
z
�d(b0 + b1z

�1 + · · ·+ bmz
�m)

1 + a1z
�1 + · · ·+ anz

�n
| {z }

Discrete time transfer function
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Discretization

Approximate an ODE with a Di↵erence Equation

Approximate Discretization

What we have

K(s) =
U(s)
E(s)

u(t) + a1u̇(t) + · · ·+ an
dpu
dtp

(t) = b0e(t) + b1ė(t) + · · ·+ bp
dpe
dtp

(t)

what we want

ū(k) + a1ū(k � 1) + · · ·+ anū(k � n)

= b0ē(k � d) + b1ē(k � d� 1) + · · ·+ bmē(k � d�m)

Such that ū(k) ⇡ u(t)
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Tustin Approximation

Write the transfer function in integral form

K(s) =
U(s)
E(s)

=
b0s

�(n�m) + b1s
�(n�m+1) + · · ·+ bms

�n

1 + a1s
�1 + a2s

�2 + · · ·+ ans
�n

Re-writing gives

U(s) + a1
1
s
U(s) + a2

1
s2

U(s) + · · ·+ an
1
sn

U(s)

= b0
1

sn�m
E(s) + b1

1
sn�m+1

E(s) + · · ·+ bm
1
sn

E(s)

with the equivalent time-domain representation

u(t) + a1

Z t

0

u(⌧)d⌧ + a2

Z t

0

Z ⌧

0

u(�)d�d⌧ + · · · = · · ·

Idea: Approximate the integral
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Tustin Approximation

Take a trapezoidal approximation of the integral

Z b

a

f(x) dx ⇡ (b� a)
f(a) + f(b)

2

i1(kT ) =

Z kT

kT�T

u(⌧)d⌧ ⇡ i1(kT � T ) +
T

2
(u(kT � T ) + u(kT ))

Write in terms of the shift operator

I1(z) = z
�1

I1(z) +
T

2
(z�1 + 1)U(z) ! I1(z) =

T

2
z + 1
z � 1

U(z)
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0

Tustin Approximation

We now have

I1(s) =
1
s
U(s) ⇡ I

0
1(z) =

T

2
z + 1
z � 1

U
0(z)

More generally, we can approximate the derivative operator s with 2
T

z�1
z+1

s ⇡ 2
T

z � 1
z + 1

Given our transfer function

K(s) =
U(s)
E(s)

=
b0 + b1s+ · · ·+ bns

n

1 + a1s+ · · ·+ ans
n

we can compute a discrete approximation:

K
0(z) =

U
0(z)

E0(z)
=

b0 + b1

⇣
2
T

z�1
z+1

⌘
+ · · ·+ bn

⇣
2
T

z�1
z+1

⌘n

1 + a1

⇣
2
T

z�1
z+1

⌘
+ · · ·+ an

⇣
2
T

z�1
z+1

⌘n
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Example - Lead Compensator

D(s) =
U(s)
E(s)

=
TDs+ 1
↵TDs+ 1

Approximate discrete time transfer function

D
0(z) =

TD

⇣
2
T

z�1
z+1

⌘
+ 1

↵TD

⇣
2
T

z�1
z+1

⌘
+ 1

=
(T + 2TD) z + T � 2TD

(T + 2TD↵) z + T � 2TD↵

Write in terms of the delay operator

((T + 2TD↵)z + T � 2TD↵)u(k) = ((T + 2TD)z + T � 2TD)e(k)

((T + 2TD↵) + (T � 2TD↵)z�1)u(k) = ((T + 2TD) + (T � 2TD)z�1)e(k)

Convert to a di↵erence equation

u(k) = �T � 2TD↵

T + 2TD↵
u(k � 1) +

T + 2TD

T + 2TD↵
e(k) +

T � 2TD

T + 2TD↵
e(k � 1)

which gives us an expression that we can calculate in a computer
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Summary

Given a transfer function for a controller K(s) = U(s)
E(s) and a sample period T ,

compute a di↵erence equation that can be implemented in a computer.

• Compute an approximate discrete-time transfer function

K
0(z) = K

✓
2
T

z � 1
z + 1

◆
=

b0z
m + b1z

m�1 + · · ·+ bm

zn + a1z
n�1 + · · ·+ an

• Write in terms of the delay operator z�1

K
0(z) =

b0 + b1z
�1 + · · ·+ bmz

�m

1 + a1z
�1 + · · ·+ anz

�n

• Write the di↵erence equation

u(k) = �a1u(k � 1)� · · ·� anu(k � n) + b0e(k) + b1e(k � 1) + · · ·+ bme(k �m)
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Notes

• There are a number of di↵erent approximations depending on the system

• Tustin approximation ! Matches well in the frequency domain
• Zero/pole matching ! Good for controllers based on pole placement
• Euler approximation ! Low complexity controller

• All the techniques match well if the sample rate is high enough

• Matlab command for continuous to discrete time conversion c2d
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Impact of Sample Rate on Frequency Response
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• Blue : Continuous time controller

• Green : ZOH approximation sampled at T = 0.01

• Red : Tustin approximation sampled at T = 0.01

• Cyan : Euler approximation sampled at T = 0.01

• Purple : Zero-pole matching sampled at T = 0.01
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• Blue : Continuous time controller

• Green : ZOH approximation sampled at T = 0.1

• Red : Tustin approximation sampled at T = 0.1

• Cyan : Euler approximation sampled at T = 0.1

• Purple : Zero-pole matching sampled at T = 0.1
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