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Discrete-time concept



Implementation

All controllers developed in this course look something like

K(S) - U(S) - bo + sb1 + 8262
a E(s) 14 sai + s2as + s3as

or equivalently in the time domain

u(t) = —alzl(t) — az’ij,(t) — agl’&'(t) -+ boe(t) -+ blé(t) + bgé(t)

Challenge: How can we implement this ?
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Sensors are “Discrete-Time”

* Sensors and computers can only “see” the
world at fixed time intervals

« From the computer’s perspective the world
only exists at these fixed points in time!

CLOCK

Physical quantity
€.9.,
» Speed
* Pressure
* Temperature
» Color
* Curliness
» elc

Sensor

€€ e e

\'4

Computer

“Analogue”:; Changes
continuously with time and
can take any value

Convert physical quantity
into a digital number

“Discrete”

Number representing
physical quantity updated
at fixed points in time



Control Actions are Updated in “Discrete-Time”

CLOCK

» Interface between computer and

actuator runs on a fixed clock
* The action that the computer wants

can only be changed at fixed points in time
« The action stays constant between updates

€ = e e

Computer Actuator
e.g.,
« Electromagnetic switch
B open
|« Buy stock y >

 Windows blinds to z
* Robot move to g
“Take action x”

Compute can only take Actuators turn ‘numbers’
decisions at fixed points into real actions; physical
in time or logical



Control Loop with Digital Controller
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Control Loop with Digital Controller




Control Loop with Digital Controller
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Perspective of the System

Continuous
>

Continuous

___________________________________________________________

Controller

System >

« Takes continuous-times signals i
* Produces continuous-times signals 5

The system sees the discrete-time controller as a continuous-time device



Perspective of the Controller

The controller sees the continuous-time system as a discrete-time entity
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Sampling



Continuous-Time vs Discrete-Time Signals
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Continuous-time signal: Function w(¢) mapping from R to R.

1.6 ¢

0.8

04 F

| ®e®%%00000
I T T T T T T T
| o

0 000090 Lt
tatgtot gty &1 o t3 g4 b5 G t7 tg lo tip t11 li2 t13 t1a t1s

Discrete-time signal:

e Function w(tx) mapping from {Tk [k € Z} to R Equivalent

e Function w(k) mapping from Z to R



Sampling - A Few Notes

e Normally sample with a constant sampling period T’

ty, —t,_1 =1, Vkel
e Sampling frequency

f:% Hz w = 2mf rad/sec

e Discrete-time signals and systems are often expressed in terms of the time index
k, rather than the physical time ¢, = T'k.

e We'll often write w(k), w(Tk) or w(ty) for the sampled signal
e Controller doesn't care what ‘time’ it is - it operates on ‘clock cycles’



Selection of a Sampling Rate

Nyquist Theorem

A sampled signal contains all information about the continuous signal it was sampled
from up to half the sample frequency.

You will learn a lot more about this next year.

This tells us that we need to sample at least twice as fast as the highest frequency
that we care about.

In practice: Sample 10x to 40x faster than the bandwidth of your system, depending
on the cost of sensors, speed of the system, etc.

10



Demo sampling



Difference Equations




Difference Equations

A linear difference equation of order n:

y(k) +aiy(k—1)+ -+ any(k —n)
— bou(k —d) + byu(k —d —1) + - + bu(k — d — m)

or equivalently

y@ﬁz—E:ka—@+§:ka—d—@

1=0

Given an input signal u, the difference equation generates an output signal v.

e d is the system delay

e Represented by a finite number of constants {a;}, {b;}
e Can compute the value of y at time £k given

e last n outputs {y(k —1),...,y(k —n)}
e m inputs from d steps ago {u(k —d),u(k —d—1),...,u(k —d—m)}

A computer can calculate a difference equation

11



Example: Pl Controller

The Pl controller is a dynamic system that takes the error e as an input and produces

the system input u as its output

u(k) = Kp <e(l<3) + Tiz _ e(l)T>

Not a difference equation - requires a growing input history.

—

Can re-write:

_K» (e(k—1)+ ! ie(l)T)
:er(k)—l—Kp (—— )

An equivalent representation as a difference equation

12



Delay operator




Algebraic Representation of Difference Equations

Introduce the shift operator z

(k+1) Foward shift
(k—1) Backward shift



Algebraic Representation of Difference Equations

Introduce the shift operator z

(k+1) Foward shift
(k—1) Backward shift

We can now re-write a difference equation as

y(k) +ary(k —1)+ -4+ any(k —n) =bou(k —d) + biu(bk —d—1) +-- - + bpu(k — d
(I4a1z "+ Fanz yk) =2"%bo+biz " 4+ + bz ™)u(k) -m)

The next control course will introduce the Z-transform formally, which allows us to
define a discrete time transfer function

Y(2)
U(z)

27 bo + b1zt F bz ™)
14+a1z7t+.---+a,z2— "

\ - J/
Ve

Discrete time transfer function
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Discretization




Approximate an ODE with a Difference Equation

Approximate Discretization

What we have

LU
: dPu , d”e
u(t) + aru(t) +-- -+ an@(t) = boe(t) + bié(t) +--- + bp@(t)

what we want

u(k) + aru(k—1)+ - 4+ aptu(k — n)
=boe(k —d) + bie(k —d—1)+---+bpé(k—d—m)

Such that u(k) ~ u(t)

14



Tustin Approximation

Write the transfer function in integral form

K —
(5) E(s) l+ais™ ' +ags 24 4aps™
Re-writing gives
1 1 1
Ul(s) +a,1§U(s) +a28—2U(S) + - +an8—nU(s)
=b ! E b b E b ! E
— Y0 gn—m (S) + 01 gn—m+1 (8> Tt mS_n (S)

with the equivalent time-domain representation

t t T
’U/(t) + a1 / ’U,(’T)dT + ao / / ’Uz(O')dO'd'T + =
0 o Jo
Idea: Approximate the integral

15



Tustin Approximation

Take a trapezoidal approximation of the integral

A

/ fla)da~ (b — ) DI E

w(kT - T) kTﬁ)

i1 (KT = A u(r)dr & i (KT — T) + o (u(kT — T) + u(kT))

Write in terms of the shift operator

L(z)=z""L(z)+ =(""+1)U(2) > I (z)
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Tustin Approximation

We now have

1 T z+1
Ii(s) = ~U(s) R L(z) = 5 —=U'(2)
More generally, we can approximate the derivative operator s with % 'z:
ey 2271
T Tz+1
Given our transfer function
K(s) = Ul(s) _bo+b15+--- 4 bns
E(s) 14+ais+---4+ans”
we can compute a discrete approximation:
2 2—1 2 2-1\"
, U'(2) bo+b1(72+1)+---+bn(72+1)
K(Z)ZE’(z): 2 z—1 2 z2—1\"
1+ a1 (T;_-l) Tt an (T;_rl)
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Example - Lead Compensator ®
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Example - Lead Compensator

Approximate discrete time transfer function

2 z—1
D/() Tp (TZ-l-l)—I_l (T—I—QTD)Z—I—T—ZTD
Z) = —
ofp (222 ) 41 (T+2Tpa)z+T = 2Tpa

Write in terms of the delay operator

(T +2Tpa)z+ T — 2Tpa)u(k)
(T 4 2Tpa) + (T — 2Tpa)z” u(k)

(T'+2Tp)z+T —2Tp)e(k)
(T 4 2Tp) + (T — 2Tp)z" He(k)

18



Example - Lead Compensator

Approximate discrete time transfer function

Tp (223) +1 B
D'(z) = T _ (T'+2Tp)z+T —2Tp
aTp (253) +1 ~ (T+2Tpa)z+T —2Tpa

Write in terms of the delay operator

(T +2Tpa)z+T — 2Tpa)u(k)
(T 4 2Tpa) + (T — 2Tpa)z~ Hu(k)

((T'+2Tp)z+T — 2Tp)e(k)
(T + 2Tp) + (T — 2Tp)z" "e(k)

Convert to a difference equation

T —2Tp« T+ 2Tp T —2Tp
A 1 k
u(k) T+2TD@“< )+T+2TD@€( >+T—1—2TD04

e(k —1)

which gives us an expression that we can calculate in a computer

18



Time (s)

19



Error

Input

Time (s)

In matlab c2d(D, T, 'Tustin') 19



U(s)
E(s)

compute a difference equation that can be implemented in a computer.

Given a transfer function for a controller K(s) = and a sample period T,

e Compute an approximate discrete-time transfer function

zz—l B boz™ +b1zm o+ by,
T z+1 2"+ a1zt ...+ a,

K'(2) :K<

e Write in terms of the delay operator 2z~ *

K/(Z) _ bO + blz_l —|_ e —|_ bmz_m
14+a1z7t+.--+a,z2— "

e Write the difference equation

u(k) = —aru(k—1) — -+ —anu(k — n) + boe(k) + bre(k — 1)+ --- + be(k —m)

20



e There are a number of different approximations depending on the system

e Tustin approximation — Matches well in the frequency domain
e Zero/pole matching — Good for controllers based on pole placement
e Euler approximation — Low complexity controller

e All the techniques match well if the sample rate is high enough

e Matlab command for continuous to discrete time conversion c2d

21



Impact of Sample Rate on Frequency Response

Phase (deg)

Magnitude (dB)
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Blue : Continuous time controller
Green : ZOH approximation sampled at 17" = 0.01
Red : Tustin approximation sampled at 7" = 0.01
Cyan : Euler approximation sampled at 7" = 0.01

Purple : Zero-pole matching sampled at 7' = 0.01
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Impact of Sample Rate on Frequency Response

N
o

Magnitude (dB)
o 3

Phase (deg)
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e Blue : Continuous time controller

e Green : ZOH approximation sampled at 7' = 0.1
e Red : Tustin approximation sampled at 7' = 0.1
e Cyan : Euler approximation sampled at 7' = 0.1

e Purple : Zero-pole matching sampled at 17" = 0.1
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