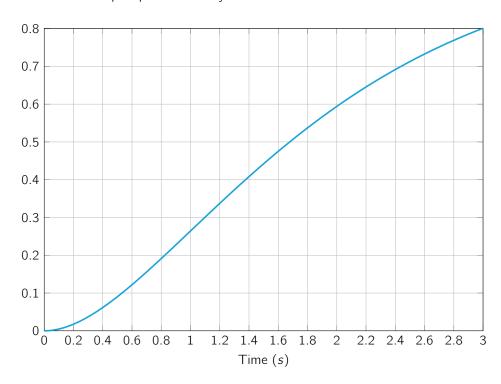
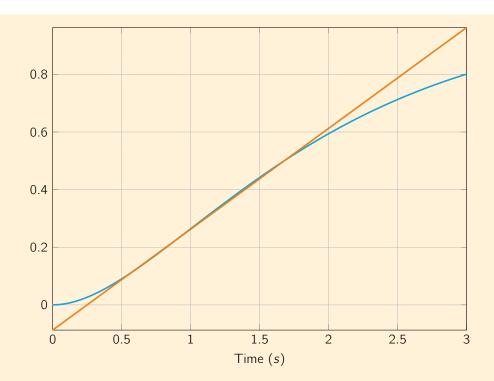
Problem 1.

Your goal is to design a PI controller for the system below using Ziegler-Nichols' method.

$$G(s) = \frac{1}{s^2 + 2s + 1}$$

a) The first three seconds of the step response of the system G is shown below





Measuring the maximum slope and intercept gives

$$a = 0.35$$

$$L = 0.25$$

Using the ZN formula from the cheat sheet gives:

$$K_p = \frac{0.9}{aL} = \frac{0.9}{0.35 \cdot 0.25} \approx 10$$

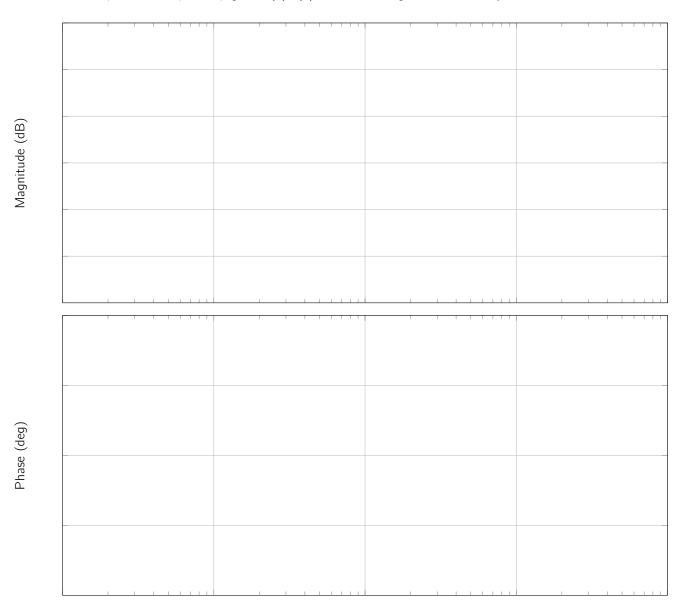
$$T_i = 3.3L = 3.3 \cdot 0.25 \approx 0.8$$

Use the Zeigler-Nichols method to compute a PI controller $K(s) = K_p \left(1 + \frac{1}{T_i s}\right)$ for this system

$$K_p = \boxed{10}$$

$$T_i = \boxed{0.8}$$

b) Sketch the Bode plot of the open-loop gain K(s)G(s) of the resulting controller and system

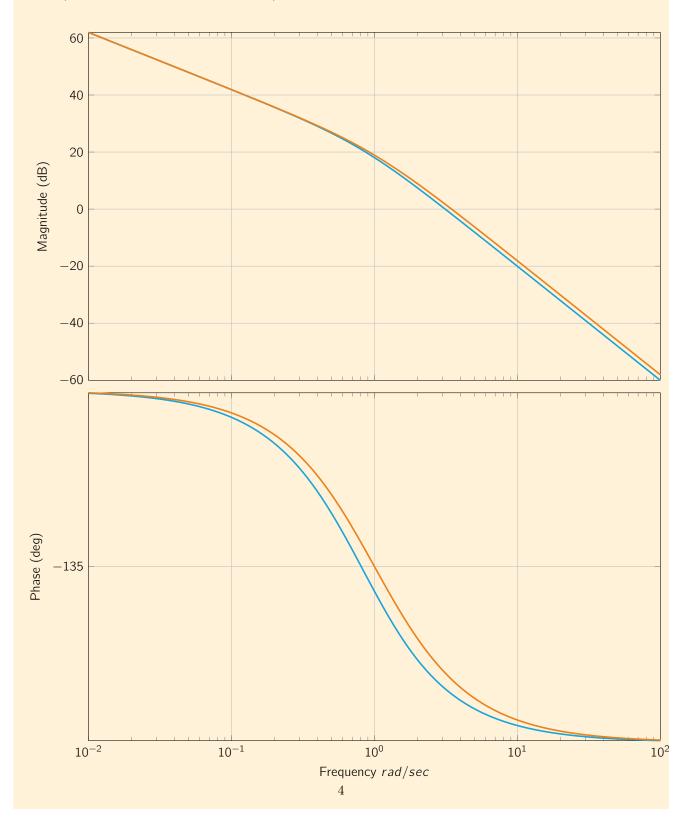


Frequency *rad/sec*

The open-loop gain is

$$KG = 10\left(1 + \frac{1}{0.8s}\right)\frac{1}{s^2 + 2s + 1}$$
$$= 12.5 \cdot \frac{1}{s} \cdot \frac{s/1.25 + 1}{(s+1)^2}$$

We have almost a pole-zero cancellation, which means we're approximately sketching $12.5\frac{1}{s(s+1)}$, which is shown below (orange = approximate, blue = exact).



Estimate the gain margin and phase margin

Phase margin estimate can be very inaccurate and still be correct, as long as it's based on a reasonable plot and analysis of the plot.

c) Give the gain K' such that the system $K' \cdot K(s)G(s)$ will have a phase margin of 45°

$$K' = \boxed{0.1}$$

From the Bode plot, we can see that the crossover frequency should be around 1r/s for a phase of -135° . We can either estimate the gain K' = -20dB = 0.1 from the magnitude plot, or we could calculate directly

$$K' = \left| \frac{1}{K(j)G(j)} \right|$$

$$= \left| \frac{1}{12.5} \cdot j \cdot \frac{(j+1)^2}{j/1.25 + 1} \right|$$

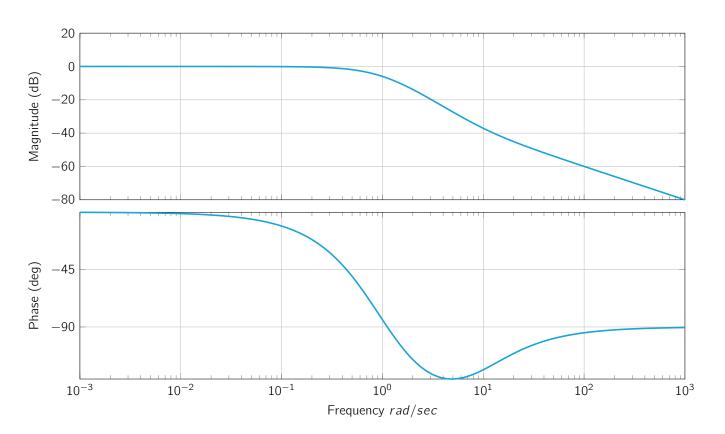
$$= 0.08 \cdot 2 \cdot 0.78$$

$$= 0.125$$

Problem 2.

Control Systems

a) Estimate the transfer function for the bode plot given below



$$G(s) = \frac{s/10+1}{s^2+2s+1} = \frac{s/10+1}{(s+1)^2}$$

b) Give the model in control canonical form

$$\dot{x} = \begin{bmatrix} -2 & -1 \\ 1 & 0 \end{bmatrix} \qquad x + \begin{bmatrix} 1 \\ 0 \end{bmatrix} \qquad u$$

$$y = \begin{bmatrix} 1/10 & 1 \end{bmatrix} \qquad x + 0 \qquad u$$

c) Design a state-feedback controller so that the closed-loop system will have an overshoot of 25% and a settling time of 1 second.

The overshoot and settling time conditions give $\zeta=0.4$ and $\omega_n=9.9$, giving a target characteristic equation of

$$\alpha(s) = s^2 + 2\zeta\omega_n s + \omega_n^2 = s^2 + 7.9s + 98$$

We're in control canonical form, so the control law is

$$K = \begin{bmatrix} -a_1 + \alpha_1 & -a_2 + \alpha_2 \end{bmatrix}$$
$$= \begin{bmatrix} -2 + 7.9 & -1 + 98 \end{bmatrix}$$
$$= \begin{bmatrix} 5.9 & 97 \end{bmatrix}$$

$$K = \begin{bmatrix} 5.9 & 97 \end{bmatrix}$$

d) Design an observer with poles at -10 and -20

$$\det(sI - (A - LC)) = \begin{bmatrix} s & 0 \\ 0 & s \end{bmatrix} - \begin{bmatrix} -2 & -1 \\ 1 & 0 \end{bmatrix} + \begin{bmatrix} L_1 \\ L_2 \end{bmatrix} \begin{bmatrix} 1/10 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} s + 2 + L_1/10 & 1 + L_1 \\ -1 + L_2/10 & s + L_2 \end{bmatrix}$$

$$= (s + 2 + L_1/10)(s + L_2) - (1 + L_1)(-1 + L_2/10)$$

$$= s^2 + (L_1/10 + L_2 + 2)s + L_1 + 1.9L_2 + 1$$

$$= \alpha(s) = (s + 10)(s + 20) = s^2 + 30s + 200$$

Solving for *L* gives

$$L = \begin{bmatrix} 180 \\ 10 \end{bmatrix}$$

$$L = \begin{bmatrix} 180 \\ 10 \end{bmatrix}$$

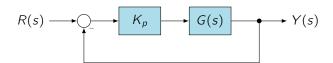
e) Under what circumstances would it be better to take the poles of the observer to be -100 and -200?

The observer needs to be faster than the system, so these poles would be fine.

If the sensor produces noise between the frequencies of -10 and -100, then we should not take the faster poles, otherwise it's better.

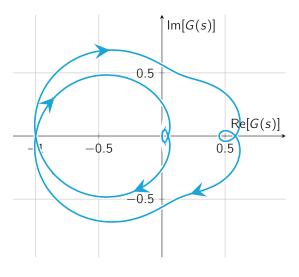
Problem 3.

a) Determine the range of gains \mathcal{K}_p for which the closed-loop system below will be stable.



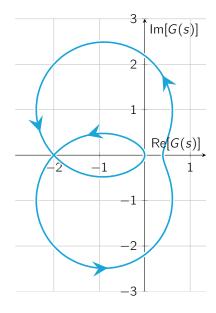
i)
$$K_p \in [-1.7, 1]$$

The system whose Nyquist plot is shown below is open-loop stable.

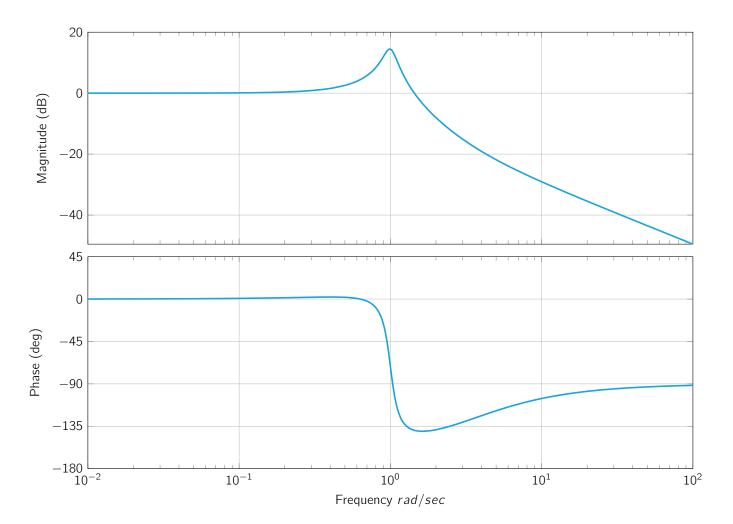


ii)
$$K_p \in \boxed{[0.5, \infty]}$$

$$G(s) = 0.4 \frac{s+1}{s^2 - 0.2s + 1}$$



b) Consider the Bode plot shown below



i) What are the stability margins of this system?

Gain margin
$$=$$
 ∞

ii) What will the stability margins be if the controller $K(s) = 1 + \frac{1}{T_i s}$ is used with $T_i = 10$?

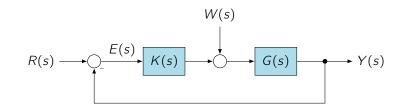
Gain margin
$$=$$
 ∞

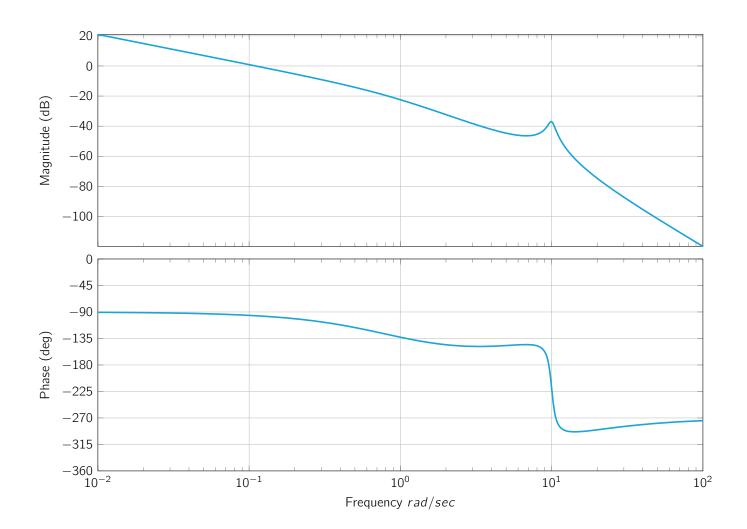
iii) Give two methods to increase the phase margin

Change the gain to any other value or add a lead compensator

Problem 4.

Consider the following closed-loop system and the bode plot of G(s) given below.





a) What is the steady-state error of the closed-loop system for K(s) = 10 for the following situations:

i)
$$W(s) = 0$$
 and $R(s) = \frac{1}{s}$

$$\lim_{t\to\infty}e(t)=\boxed{0}$$

ii)
$$W(s) = \frac{1}{s}$$
 and $R(s) = 0$

$$\lim_{t\to\infty}e(t)=\boxed{-0.1}$$

iii)
$$W(s) = \frac{2}{s}$$
 and $R(s) = \frac{1}{s^2}$

$$\lim_{t\to\infty}e(t)=\boxed{0.8}$$

The transfer function to the error is

$$E = R - G(W + K * E)$$

$$E(1 + GK) = R - GW$$

$$E = \frac{1}{1 + GK}R - \frac{G}{1 + GK}W$$

The low-frequency system looks like $\frac{1}{10s}$, and the controller is K=10

$$E = \frac{1}{1 + \frac{1}{10s} 10} R - \frac{\frac{1}{10s}}{1 + \frac{1}{10s} 10} W$$
$$= \frac{1}{1 + \frac{1}{s}} R - \frac{\frac{1}{10s}}{1 + \frac{1}{s}} W$$
$$= \frac{s}{s + 1} R - \frac{\frac{1}{10}}{s + 1} W$$

Use the final value theorem to compute the result in each case

i)
$$W(s) = 0$$
, $R(s) = 1/s$

$$\lim_{t \to \infty} e(t) = \lim_{s \to 0} sE(s) = s \frac{s}{s+1} R - s \frac{\frac{1}{10}}{s+1} W$$
$$= s \frac{s}{s+1} \frac{1}{s}$$
$$= 0$$

ii)
$$W(s) = 1/s$$
, $R(s) = 0$

$$\lim_{t \to \infty} e(t) = \lim_{s \to 0} sE(s) = s \frac{s}{s+1} R - s \frac{\frac{1}{10}}{s+1} W$$
$$= -s \frac{\frac{1}{10}}{s+1} \frac{1}{s}$$
$$= -0.1$$

iii)
$$W(s) = 2/s$$
, $R(s) = 1/s^2$

$$\lim_{t \to \infty} e(t) = \lim_{s \to 0} sE(s) = s \frac{s}{s+1} R - s \frac{\frac{1}{10}}{s+1} W$$

$$= s \frac{s}{s+1} \frac{1}{s^2} - s \frac{\frac{1}{10}}{s+1} \frac{2}{s}$$

$$= 1 - 0.2$$

$$= 0.8$$

b) Design a lag-compensator K(s) to reduce all steady-state errors listed above to zero, maximize the bandwidth and keep the overshoot in response to a step reference below 25%.

$$K(s) = 10\left(1 + \frac{1}{5s}\right)$$

We need to increase the system type by adding an integrator. We'll design a phase-lag compensator with $\alpha=\infty$; i.e., a PI controller

$$K(s) = K_p \left(1 + \frac{1}{T_i s} \right)$$

Step response less than 25% \rightarrow Phase margin better than 45°, or a phase of -135° .

Since a lag compensator is only gong to reduce the phase, we look for the highest frequency where the phase is higher than -135° , which is at 1r/s. The gain is approx -20dB at this frequency, so we choose the gain to be $K_p = 20dB = 10$.

Since we have chosen the phase margin to be exactly 45° , we need to be conservative with the lag compensator, and choose the corner frequency to be 1/5 the crossover frequency : $1/T_i = 1/5 \rightarrow T_i = 5$.

Alternatively, we could choose the phase margin to be about 60° , resulting in a crossover frequency of 0.6r/s and a gain of $K_p = 16dB = 6.3$. The resulting corner frequency would then be around $1/T_i = 0.6/3 \rightarrow T_i = 5$.

c) Give a difference equation using the Tustin approximation for your controller with a sample period of $T_s = 0.1s$.

$$u(k) = u(k-1) + 10.1y(k) - 9.9y(k-1)$$

We replace $s \rightarrow \frac{2}{T_s} \frac{z-1}{z+1} = 20 \frac{z-1}{z+1}$

$$K(z) \approx K_p \left(1 + \frac{1}{T_i 20 \frac{z-1}{z+1}} \right)$$

$$= \frac{K_p}{20T_i} \frac{(1 + 20T_i)z + 1 - 20T_i}{z - 1}$$

$$= \frac{K_p}{20T_i} \frac{(1 + 20T_i) + (1 - 20T_i)z^{-1}}{1 - z^{-1}}$$

We convert to a difference equation:

$$U(z) = z^{-1}U(z) + \frac{K_p}{20T_i}(1 + 20T_i)Y(z) + \frac{K_p}{20T_i}(1 - 20T_i)z^{-1}Y(z)$$

$$u(k) = u(k-1) + \frac{K_p}{20T_i}(1 + 20T_i)y(k) + \frac{K_p}{20T_i}(1 - 20T_i)y(k-1)$$

$$u(k) = u(k-1) + 10.1y(k) - 9.9y(k-1)$$

d) If the controller measures y(0) = 1 and y(0.1) = 2, and the input and output are zero before time t = 0, what will the control action be at t = 0.1s?

$$u(0.1) = 20.4$$

We just run the difference equation:

$$u(0) = u(-1) + 10.1y(0) - 9.9y(-1) = 10.1$$

 $u(1) = u(0) + 10.1y(1) - 9.9y(0) = 10.1 + 10.1 \cdot 2 - 9.9 \cdot 1 = 20.4$

Problem 5.

Consider the system
$$G(s) = \frac{6}{s+4}$$

a) Give the system in control canonical form

$$\dot{x} = \begin{bmatrix} -4 & x + 1 & u \\ x + 0 & u \end{bmatrix}$$

$$y = \begin{bmatrix} 6 & x + 0 & u \end{bmatrix}$$

b) Augment the system to add an integrator for offset-free tracking.

$$\begin{bmatrix} \dot{x} \\ \dot{x}_{l} \end{bmatrix} = \begin{bmatrix} -4 & 0 \\ -6 & 0 \end{bmatrix} \quad \begin{bmatrix} x \\ x_{l} \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$y = \begin{bmatrix} 6 & 0 \end{bmatrix} \quad \begin{bmatrix} x \\ x_{l} \end{bmatrix} + \begin{bmatrix} 0 & 0 \end{bmatrix}$$

c) The augmented system is not observable. Why is this not a problem?

The integrator state is simulated, and so can be measured directly.

d) Design an LQR controller for the augmented system with the weights $Q = \begin{bmatrix} 8 & 0 \\ 0 & 1 \end{bmatrix}$ and R = 1

We solve the Riccati equation to compute the Lyapunov matrix $P = \begin{bmatrix} P_1 & P_2 \\ P_2 & P_3 \end{bmatrix}$

$$Q + A^{T}P + PA - PBR^{-1}B^{T}P = 0$$

$$\begin{bmatrix} -P_{1}^{2} - 8P_{1} - 12P_{2} + 8 & -4P_{2} - 6P_{3} - P_{1}P_{2} \\ -4P_{2} - 6P_{3} - P_{1}P_{2} & 1 - P_{2}^{2} \end{bmatrix} = 0$$

Solving gives $P = \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix}$ Compute the controller K

$$K = -R^{-1}B^TP = \begin{bmatrix} -P_1 & -P_2 \end{bmatrix} = \begin{bmatrix} -2 & 1 \end{bmatrix}$$

$$K = \begin{bmatrix} 2 & -1 \end{bmatrix}$$

e) Design an estimator gain so that the estimator frequency is 4 times faster than the open-loop system.

We need only design an estimator for the system, and not the augmented system The target frequency is $4\cdot 4=16$

$$A - LC = -4 - L6 = -16 \rightarrow L = (16 - 4)/6 = 2$$

$$L = 2$$

- f) Supposed that the LQR gains are changed to $Q = \begin{bmatrix} 8 & 0 \\ 0 & 1 \end{bmatrix}$ and R = 2
 - i) How will the estimator poles change? Why?

They won't change. The controller does not influence the estimator poles.

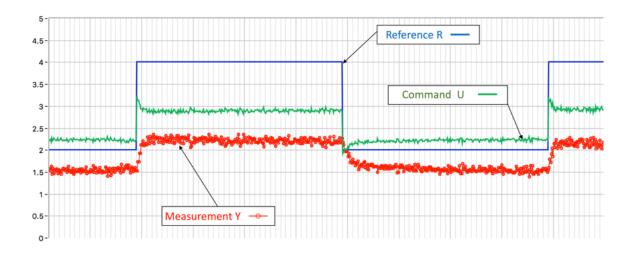
ii) How do you expect the closed-loop poles to change? Why?

The input is now weighted more strongly, meaning that less input authority will be used and the closed-loop system will act more slowly. As a result, the poles will become 'slower', or move 'to the right' towards the imaginary axis.

Problem 6. Travaux Pratiques

Notes:

- The answer and the justification must be correct to get the points.
- Measurements have been made on the electrical drives used during the labs.



1a) A proportional controller + a feedforward command is used. Give the controller parameters.

Proportional gain $K_p = 0.5$

Feedforward command $U_0 = 2 \text{ V}$

Justify your response

$$U = K_p(\text{Ref} - \text{Mes}) + U_0$$

2.9 = $K_p(4-2.1) + U_0$ 2.2 = $K_p(2-1.6) + U_0$ => $K_p = 0.5$, $U_0 = 2V$

$$2.2 = K_p(2 - 1.6) + U_0$$

$$K_p = 0.5, \ U_0 = 2V$$

1b) Given that the friction is 0.4 [V], compute a new feedforward command to follow a reference of 3 [V] without error. Justify your response.

$$Y + \text{friction} = U \cdot K$$
 \rightarrow $3 + 0.4 = U_0 \cdot 0.89$ \rightarrow

$$\rightarrow$$

$$2.2 + 0.4 = 2.9K$$

$$K = \sim 0.89$$

$$3 + 0.4 = U_0 \cdot 0.89$$

$$\rightarrow$$

$$U_0 = \sim 3.8 \text{ [V]}$$

2a) The speed sensor has been replaced, what are the new steady-state (static) gain and time constant of the system?

dMes =
$$3.5 - 0 = 3.5V$$
 $dU = 3 - 0.5 = 2.5V$ \rightarrow $K = dM/dU = 3.5/2.5 = 1.4$ $63\% \rightarrow 3.5 \cdot 0.63 = 2.2V$ \rightarrow $\tau = \sim 0.5s$

2b) Compute a controller so that the closed-loop system matches the model $T(s) = \frac{1}{1 + \tau_m s}$ with $\tau_m = 0.15$ [s].

$$\frac{1}{1+\tau_m s} = \frac{KG}{1+KG}$$

$$K_p = \frac{\tau}{K \cdot \tau_m} = \frac{0.5}{1.4 \cdot 0.15} = \sim 2.38$$

$$T_i = \tau = 0.5$$