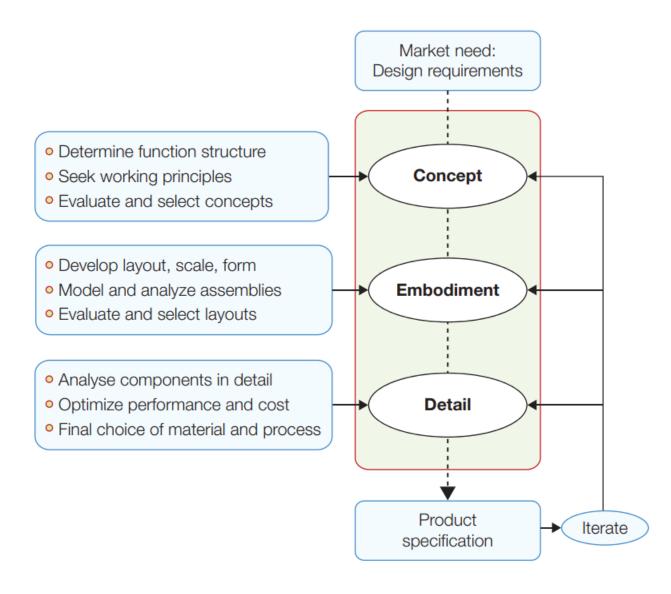


PROF. JOSIE HUGHES

Lecture 2: Ideation and Design Selection



Recap: Stages of Design

How do we capture, and how do we formulate a neutral problem statement.

3 key stages of design & some of the associated design methods and tools

https://ttpoll.eu/p/datadriven

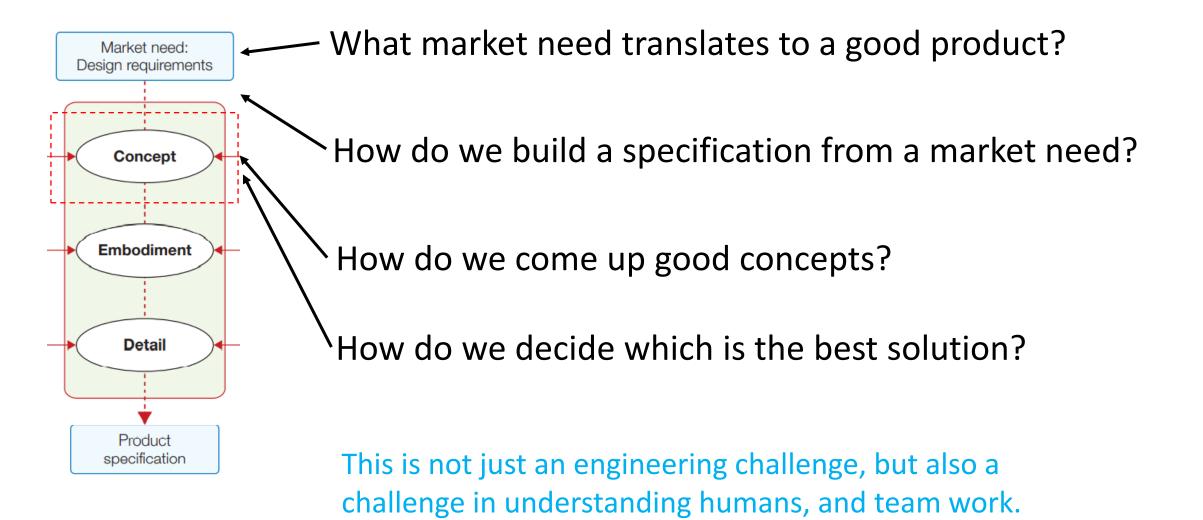
Team Sign Up

Project Groups

Please create projects groups of 5 students and sign up in the sheet below providing a group name and number, names, scipers and emails of everyone is each group. If you would be prefer to be randomly allocated, please add your name, sciper and email to the columns on the right hand side of the sign-up sheet.

Deadline for signing up Tuesday September 10th at mid-day.

- Everyone who signed up has now been assigned to groups of 5
- Please everyone check you have found everyone in your groups
- Any questions/problems come and speak with me



Today's Topics: Stages of Design

A product opportunity exists when there is a gap between

what is currently on the market...

and the possibility for new or significantly improved products ...

that result from emerging trends.

A product opportunity exists when there is a gap between

what is currently on the market...

Current State

and the possibility for new or significantly improved products ... Future State

that result from emerging trends.

Current Rate of Change

How do we identify or quantify this gap?

SOCIAL Social and cultural trends and drivers Reviving historical trends **PRODUCT OPPORTUNITY ECONOMIC** GAP State of the economy Shift in focus on where to spend money Level of disposable **TECHNOLOGY** income State-of-the-art and emerging technology Re-evaluating existing technology

Figure 1.2 Scanning SET Factors leads to POGs.

How do we identify or quantify this gap?

Sweep a number of factors in three major areas.

- Social
- Technology
- Economic

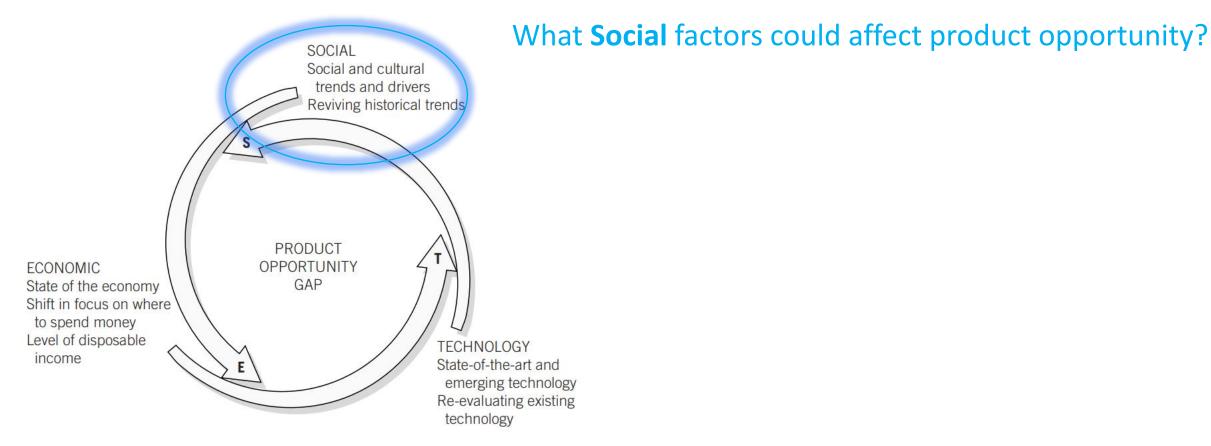


Figure 1.2 Scanning SET Factors leads to POGs.

Requires a constant sweep of a number of factors in three major areas.

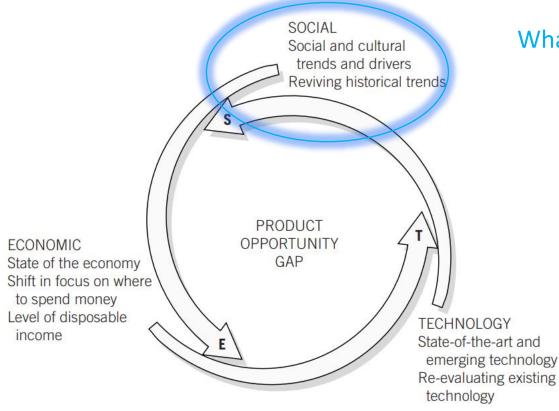
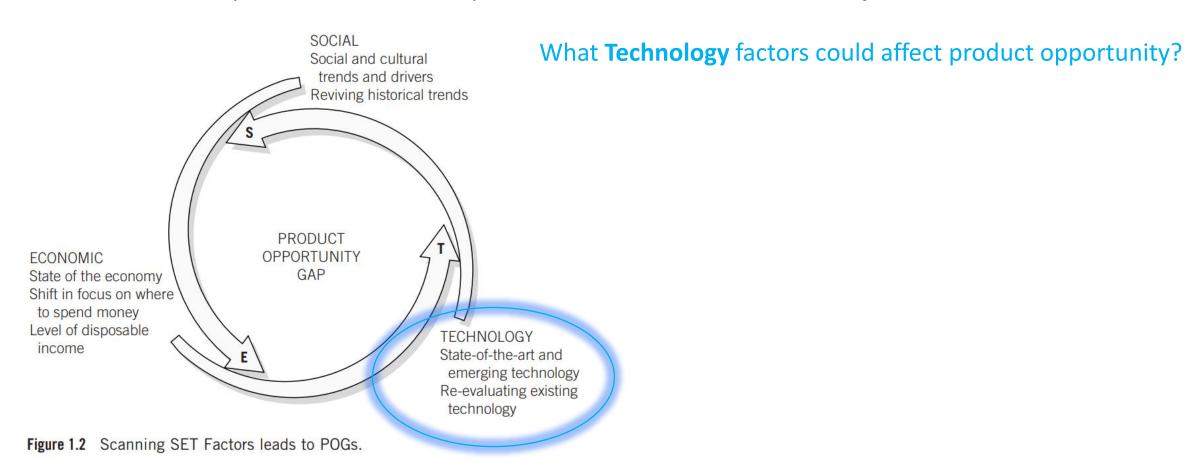


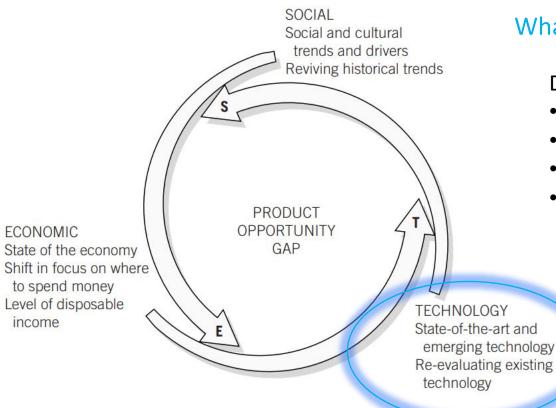
Figure 1.2 Scanning SET Factors leads to POGs.

What **Social** factors could affect product opportunity?

- Family and work patterns (work from home)
- Health issues (e.g. people living for longer)
- Use of technology
- Political environment
- Successful products in other fields,
- Sports and recreation
- Sporting events (e.g., the emergence of new, retro state-of the-art facilities)
- The entertainment industries
- Books (e.g., the Oprah Book Club)



Requires a constant sweep of a number of factors in three major areas.



Requires a constant sweep of a number of factors in three major areas.

What **Technology** factors could affect product opportunity?

Direct or predicted results from science that may come from:

- Corporate R&D
- Military research
- University research
- Implied capabilities from research

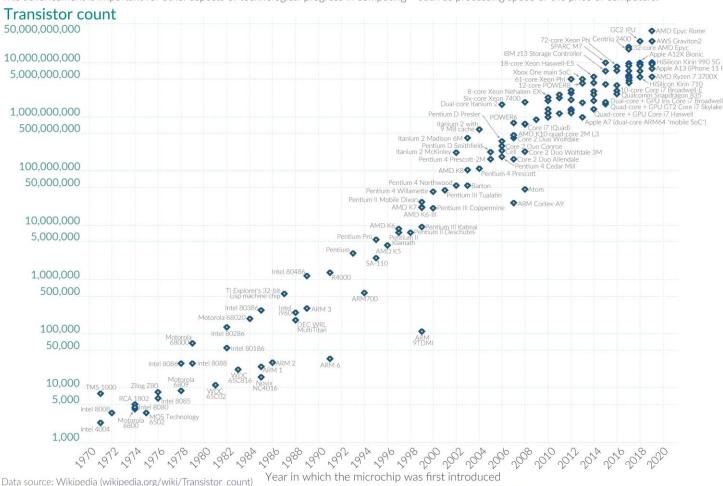


Figure 1.2 Scanning SET Factors leads to POGs.

Moore's Law: The number of transistors on microchips doubles every two years Our World

Licensed under CC-BY by the authors Hannah Ritchie and Max Roser.

For example, Moore's Law (Intel cofounder Gordon Moore's prediction in 1965 that the number of transistors per square inch on integrated circuits would double every year)

→ Both current and future technology capabilities

OurWorldinData.org - Research and data to make progress against the world's largest problems

Results from University Science can translate to a product opportunity

EPFL Startups

Search			
Company	🔷 Year	♦ Status	Sector
Corintis	2022	Private	Electronics
Orbis Medecines	2022	Private	Biotech
<u>EMETS</u>	2022	Private	Cleantech
Oniri	2022	Private	ICT
Resilio	2022	Private	Cleantech
Rea Diagnostics	2022	Private	Medtech
Voltiris	2022	Private	Cleantech
<u>Omnigrasp</u>	2022	Private	Engineering
Virtuosis Artificial Intelligence	2022	Private	ICT
EVOLY	2021	Private	CleanTech
Tune Insight	2021	Private	ICT
Crypties	2021	Private	Fintech
<u>Green Future</u>	2021	Private	Cleantech
Algaltek	2021	Private	Engineering
<u>Fusion Lab Technologies</u>	2021	Private	Medtech
School Rebound	2021	Private	Edtech
Space4impact	2021	Private	Cleantech
Autonomyo	2∩21	Privata	Medtech

Requires a constant sweep of a number of factors in three major areas.

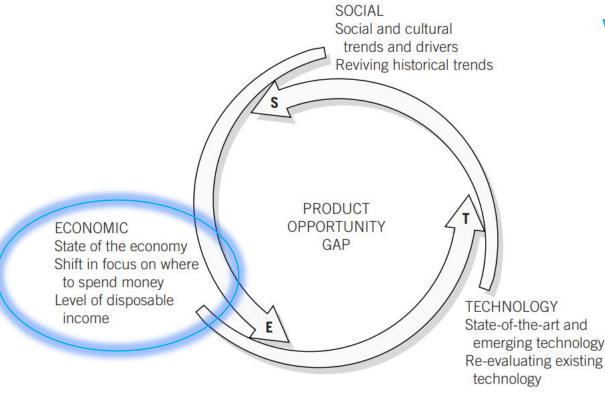


Figure 1.2 Scanning SET Factors leads to POGs.

What **Economic** factors could affect product opportunity?

- Excess income that people perceive they have, or that they expect to have, to give them purchasing power
- who has the income, who is doing the purchasing, and for whom the purchasers are buying
- Cost of salaries

All affected by stock market, fuel prices, interest rates,

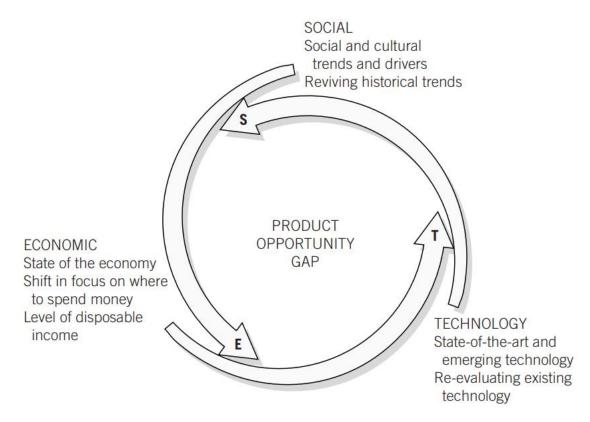


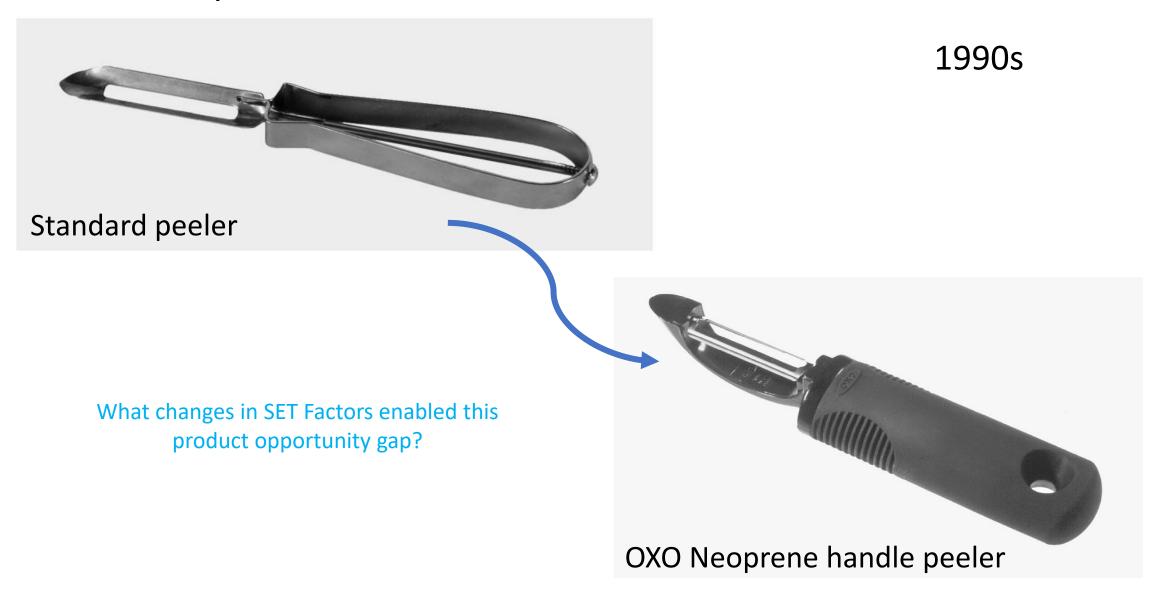
Figure 1.2 Scanning SET Factors leads to POGs.

Changes in the SET Factor(s) produce Product Opportunity Gaps (POGs).

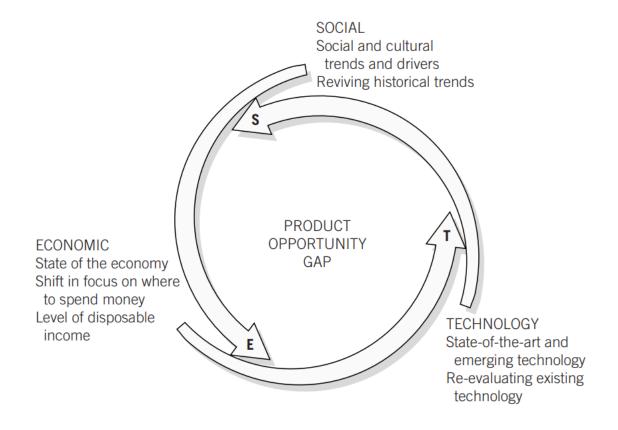
Translate the POG into a new product or a significant modification of an existing product.

Combination of new aesthetic or new features

- Stemming from new technology
- Must match emerging shifts in consumer preference



POGs: Examples



1990s

SOCIAL Social and cultural trends and drivers Reviving historical trends **PRODUCT OPPORTUNITY ECONOMIC GAP** State of the economy Shift in focus on where to spend money Level of disposable **TECHNOLOGY** income State-of-the-art and emerging technology Re-evaluating existing Seniors have disposable income

- Increased awareness of needs for disabled
- Increase in population 65+
 - Increase in home based food preparation

- Neoprene
- New moulding techniques
- New capabilities for manufacturing tolerances

technology

Increase in money spent in housewares

Adult children buying aids for aging

parents

Trends had changed and people were able to recognize and were willing to pay for the value embedded in this product.

SET Factors Change → POG

ECONOMIC
State of the economy
Shift in focus on where
to spend money
Level of disposable
income

- Seniors have disposable income
- Increase in money spent in housewares
- Adult children buying aids for aging parents

- Increased awareness of needs for disabled
- Legislation for

SOCIAL

PRODUCT OPPORTUNITY

GAP

Social and cultural trends and drivers

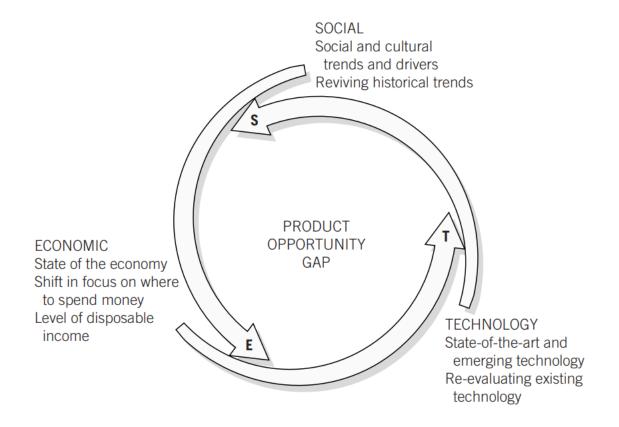
Reviving historical trends

- Increase in population 65+
 - Increase in home based food preparation

- Neoprene
- New moulding techniques
- New capabilities for manufacturing tolerances

Starbucks

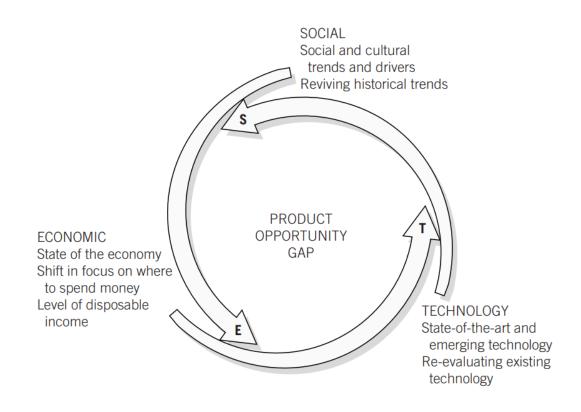
- An experience
- A brand
- Technology driven (water filtering, coffee machines, roasting facilities).



SOCIAL Social and cultural trends and drivers Reviving historical trends **PRODUCT OPPORTUNITY ECONOMIC GAP** State of the economy Shift in focus on where to spend money Level of disposable **TECHNOLOGY** income State-of-the-art and emerging technology • Re-evaluating existing technology

- Need for escape opportunities
- More free time
- Breakfast on the run
- Caffeine popular
- Coffee is a highlight of the day

- Quality roasting and brewing process
- Systems approach to environmental design
- Water filtration technology



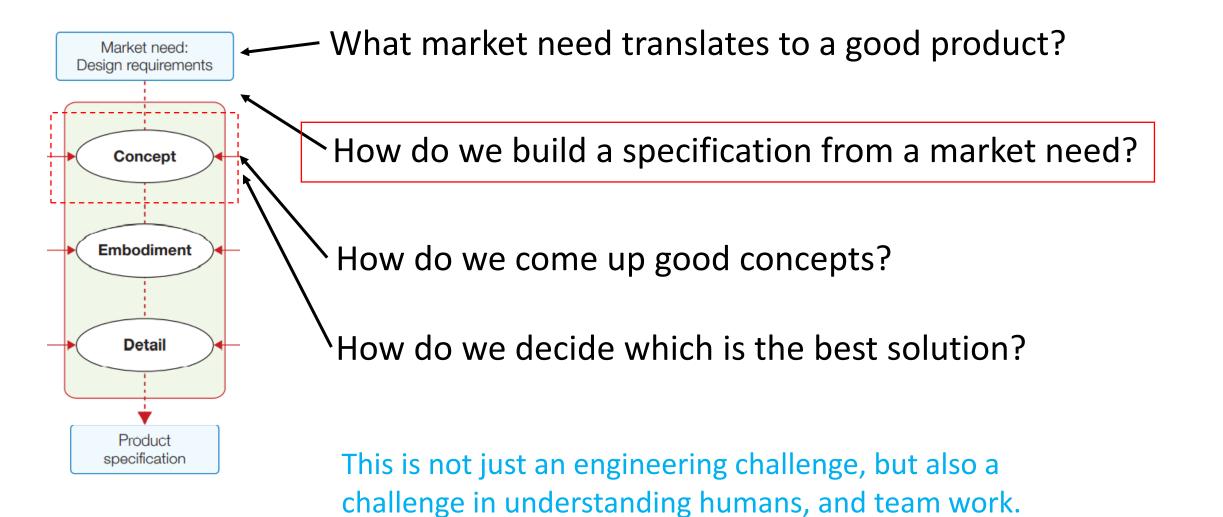
Value placed on high-quality intense

Expendable income

breaks

Cost of eating on the run

SET Factors in at least 2, if not 3 areas leads to a product opportunity!

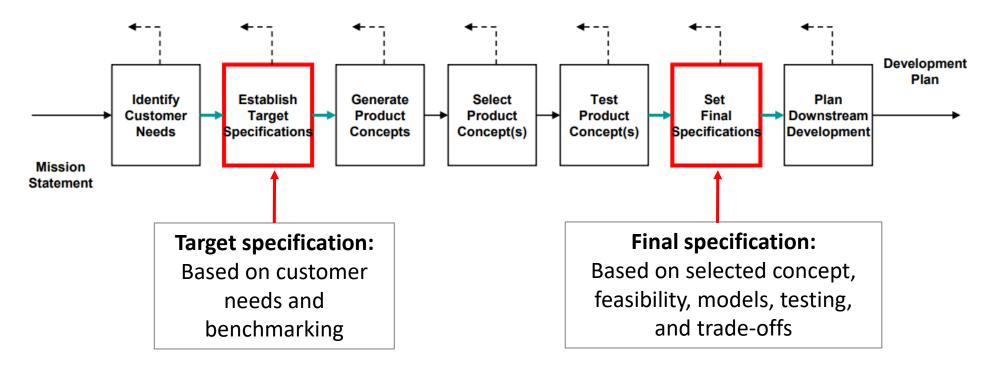


Recap: Stages of Design

Developing a Specification

What is a specification?

- Specifications spell out in precise, measurable detail what the product has to do.
- Specifications represent an unambiguous agreement on what the team will attempt to achieve in order to satisfy the identified customer needs.
- Should include any regulatory and agency approval requirements



When do we form a specification?

- For simple products early in the development process, right after identifying customer needs
- For technology-intensive products: at least twice ...

Forming (target) specifications

Form of a specification:

A 'specification' (sing.) consists of a metric and a value

Example:

metric → "Average time to assemble" value → "less than 75 seconds"

Forming (target) specifications

Form of a specification:

A 'specification' (sing.) consists of a metric and a value

Example:

metric → "Average time to assemble" value → "less than 75 seconds"

To form these specs:

- Prepare list of metrics, using the needs/metrics matrix.
- Collect benchmarking information.
- Set ideal and marginally acceptable target values for each metric.

Forming (target) specifications

Step 1: Convert needs from customer to specificiations

Needs captured from customer discussions

#		NEED	Imp
1	The suspension	reduces vibration to the hands.	3
2	The suspension	allows easy traversal of slow, difficult terrain.	2
3	The suspension	enables high speed descents on bumpy trails.	5
4	The suspension	allows sensitivity adjustment.	3
5	The suspension	preserves the steering characteristics of the bike.	4
6	The suspension	remains rigid during hard cornering.	4
7	The suspension	is lightweight.	4
8	The suspension	provides stiff mounting points for the brakes.	2
9	The suspension	fits a wide variety of bikes, wheels, and tires.	5
10	The suspension	is easy to install.	1

How do we convert needs to metrics?

How do we generate metrics from needs?

- Metrics should be dependent, NOT independent, variables.
- Metrics should be practical.
- Some needs cannot be easily translated into quantifiable metrics (subjective needs).
- Metrics should include popular criteria used for 'marketplace' comparisons.
- Should be quantifiable

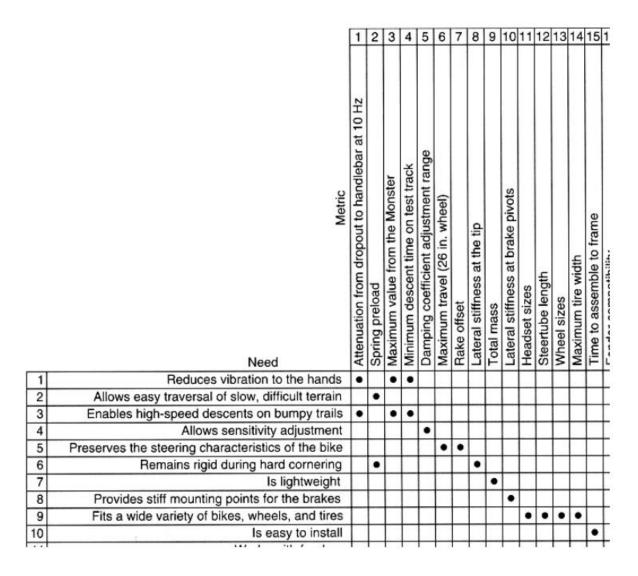
How do we generate metrics from needs?

What would appropriate metrics be for these needs?

#		NEED	Imp
1	The suspension	reduces vibration to the hands.	3

L	U	1110 000001101011	pomano nga aanng nara comenny.		П
	7	The suspension	is lightweight.	4	I
Γ		T1		$\overline{}$	T

	1110 000001101011	ino a vido varioty of binos, viriodis, and incs.	
10	The suspension	is easy to install.	1
4.4			



We can tabulate Needs vs. Metrics

- Some needs can have multiple metrics.
- Metrics can be used to assess multiple needs

Example: Needs & Metrics for a pen

Customer Need: – The pen writes smoothly

Assuming that smooth writing can be characterized by:

•N1: Good quality line

•N2: Preservation of line quality

•N3: Ease of use...

Example: Needs & Metrics for a pen

Metrics

•N2: Preservation of line quality

Example: Needs & Metrics for a pen

Needs

•N1: Good quality line

•N2: Preservation of line quality

•N3: Ease of use...

Metrics

- 1. Variation in line thickness (mm)
- 2. Variation in ink coverage (cc/mm 2)
- 3. Functional range of writing force (N)
- 4. Functional range of writing velocity (mm/sec)
- 5. Functional range of pen angle from vertical (deg)

6. Variation in resistance to translational motion (N)

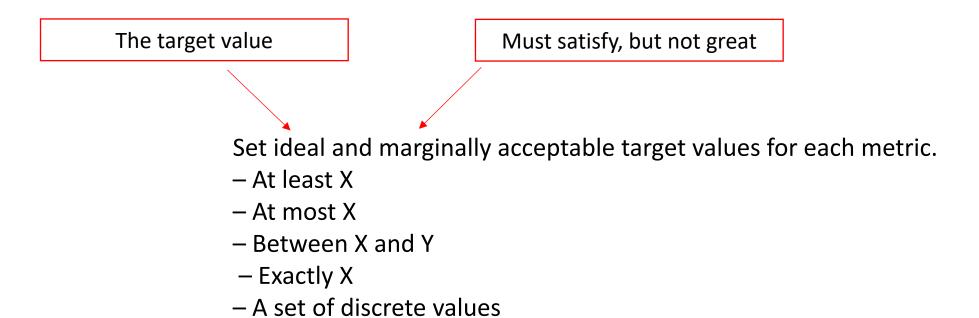
Benchmarking

To form these specs:

- Prepare metrics
- Collect benchmarking information.
- Set ideal/marginal values

No product development team can expect to succeed without 'benchmarking' the project against competing products.

- Data in competitors' catalogues and supporting literature may not be accurate.
- Values for key metrics should be verified by independent testing and observation.



Setting Target Values

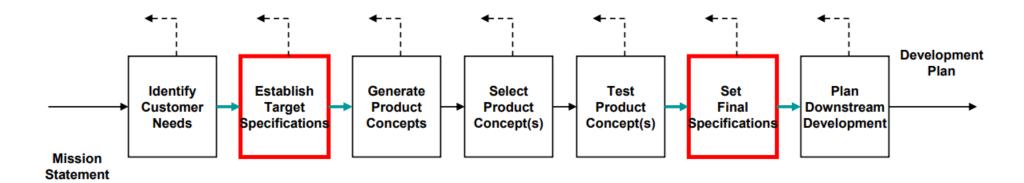
To form these specs:

- Prepare metrics
- Collect benchmarking information.
- Set ideal/marginal values

Setting Target Values

	-			
			Marginal Value	Ideal Value
	Metric	Units	Mar	lde
1	Attenuation from dropout to handlebar at 10hz	dB	>10	>15
2		N	480 - 800	650 - 700
3	Maximum value from the Monster	g	<3.5	<3.2
4	Minimum descent time on test track	S	<13.0	<11.0
5	Damping coefficient adjustment range	N-s/m	0	>200
6	Maximum travel (26in wheel)	mm	33 - 50	45
7	Rake offset	mm	37 - 45	38
8	Lateral stiffness at the tip	kN/m	>65	>130
9	Total mass	kg	<1.4	<1.1
10	Lateral stiffness at brake pivots	kN/m	>325	>650
11	Headset sizes	in	1.000 1.125	1.000 1.125 1.250
				150
			150 170 190	170 190 210
12	Steertube length	mm	210	230
13	Wheel sizes	list	26in	26in 700c
14	Maximum tire width	in	>1.5	>1.75
15	Time to assemble to frame	S	<60	<35

- Must have units!
- Marginal often a range, which includes the ideal value
- Try and be as specific as possible
- These target values could be conflicting (i.e. total mass and lateral stiffness)
- Remember, the specification could be updated later in the process.

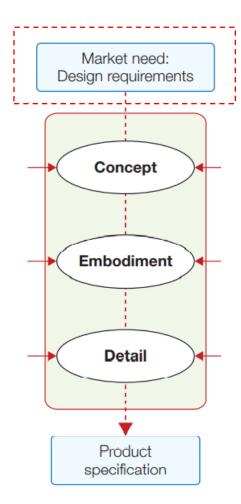


Refining the Specification...

It might not be right the first time!

We may want to refine the specs later due to:

- Develop technical models of products and can improve
- Develop cost model which affects specifications
- Reflect on results and process.

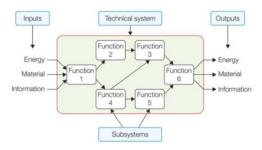


Summary

- Customer needs expressed in the "language of the customer"
- First target specifications than final specs
- For target specifications:
 - Prepare the list of metrics
 - Collect benchmarking information
 - Set ideal and marginally acceptable values
 - Reflect on the results and the process
- Final specifications are developed by assessing the actual technological constraints and the expected production costs using analytical and physical models

Concept Selection (15% of Grade):

Due Week 5 October 9th, will also have a TA review with this document


Concept Ideation & Selection

This report should be submitted as a single .pdf to Moodle, please use your group number as the file name. It should be a maximum of 8 pages, and contain the following. All group members should contribute.

Functional Diagram (1 page)

For your task, generate a functional diagram (1/2 page) which shows the inputs, systems and outputs and the different functions you choose to sub-divide it into.

To accompany the functional diagram provide a brief description of each of the functions required.

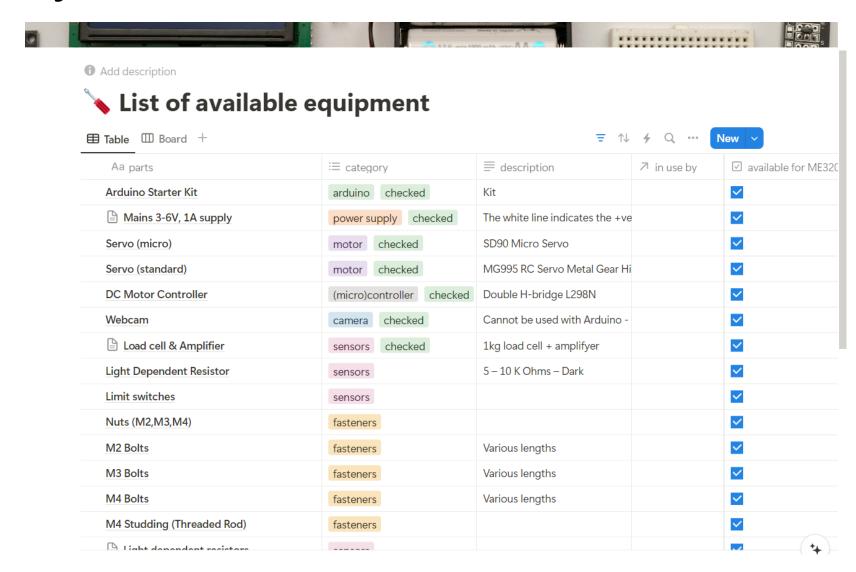
Some useful links on generating functional diagrams:

- · About functional structure diagrams
- Conceptual example

Concept Generation (max. 5 pages, 1 concept per page)

Generate 4 different concepts and on each page provide a sketch of the design. This should include

https://flossy-quartz-a5a.notion.site/Concept-Ideation-Selectionf7ebd3d28b5a43e5bd80709233bce651?pvs=74

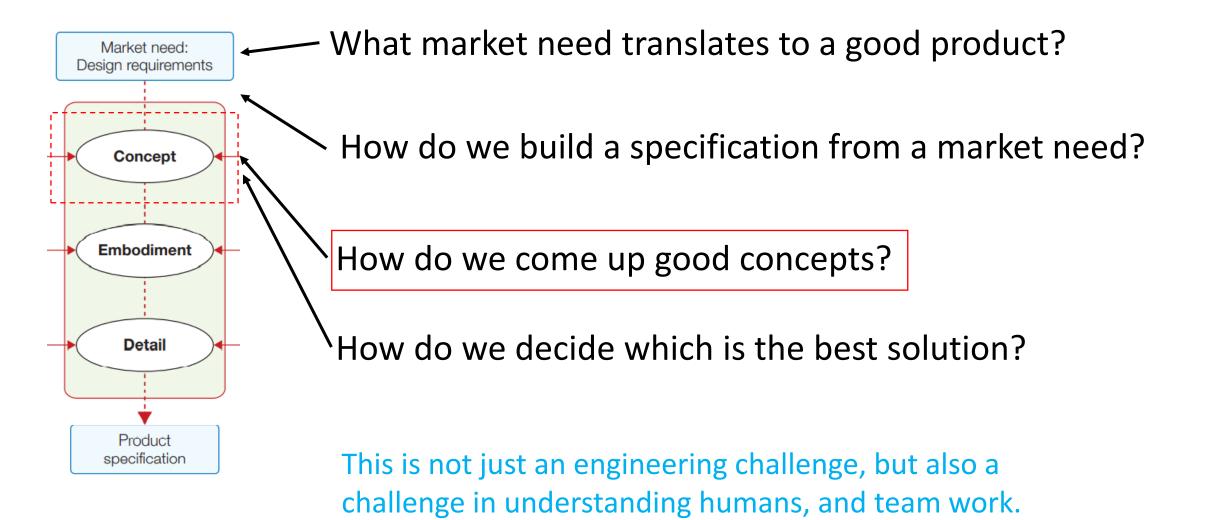


Project Details

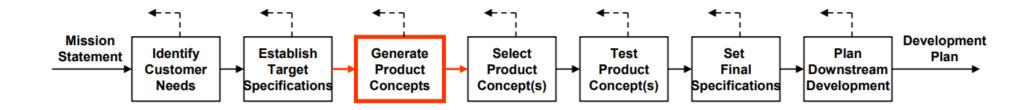
Project: Practical Steps to take

- Remember to add to the team list if not done so
- Complete the safety for SPOT (email was sent earlier in the week)

 Sign up for 3D printer training in the SPOT (your team will need this, to be able to prototype!) Slots may go quickly at the beginning of the semester



Recap: Stages of Design



- Concept generation is the process of creating ideas for designing a product based on the target specifications and requirements.
- These ideas describe the design and working principles of the product, along with how it can meet the customer requirements.
- Can be useful to graphically illustrate the proposed design as rough drawings,
 3D model
- Creativity and problem-solving skills are vital for this process.

The process should address:

- What existing solutions could be adapted for this application?
- What new concepts might satisfy these needs and specifications?
- What methods can be used to facilitate concept generation process?

...but it is not easy!

Generate concepts in groups of 2-3 to the solve the need of:

- We want undamaged raspberries to eat
- There are not enough workers to harvest the raspberries

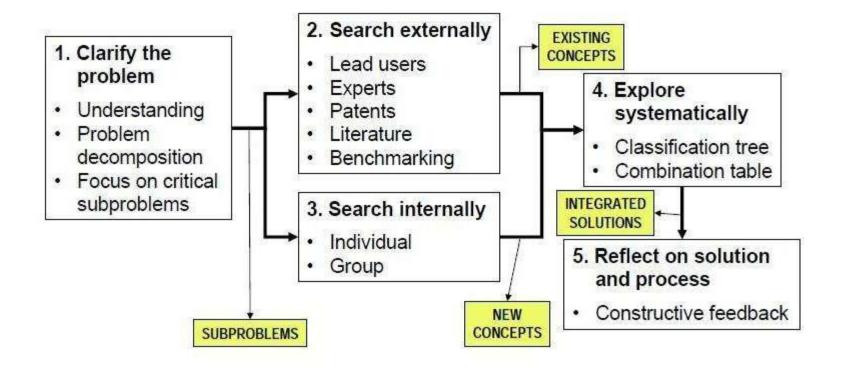
How did you approach the problem?

Concept generation can lead to poor outcomes when:

- Consideration of only a few concepts
- Failure to consider carefully existing solutions
- Involvement of only a few people

 lack of confidence and commitment by others in the team
- Ineffective integration of promising partial solutions.
- Failure to consider entire categories of solutions.

Structured approaches reduce the likelihood of limited an inefficiently concept generation.



Concept Generation Process

A Five-Step Method

Step 1: Clarify the Problem

- Clarify understanding
- Problem decomposition
- Focus on critical sub-components

Review the need and understanding of the goal

Need: "Design a better vegetable peeler."

Feedback on existing ones: "none of the peelers works for everyone

in every situation".

- 1. Customer comments (Feedback from user studies)
- "Carrots and potatoes are very different."
- •"I cut myself with this one."
- •"I just leave the skin on."
- •"I'm left-handed. I use a knife."
- •"This one is fast, but it takes a lot off."
- •"How do you peel a squash?"
- •"Here's a rusty one."
- •"This looked OK in the store."

Customer Needs

- •The peeler peels a variety of produce.
- •The peeler works both right and left handed.
- •The peeler creates minimal waste.
- •The peeler saves time.
- •The peeler is durable.
- •The peeler is easy to clean.
- •The peeler is safe to use and store.
- •The peeler is comfortable to use.
- •The peeler stays sharp or is sharpenable.

Metrics & Target Specifications

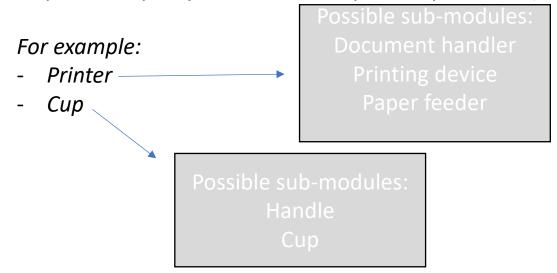
- Time to peel vegetables
- Life of the peeler
- Force exerted during peeling
- Time to clean the peeler etc. etc.

Step 1: Clarify the Problem

- Clarify understanding
- Problem decomposition
- Focus on critical sub-components

Problem decomposition

- Decompose complex problem into simpler sub-problems. Many design challenges are too complex to solve as a single problem.
- Split a complex problem into simpler subproblems.(Problem decomposition)

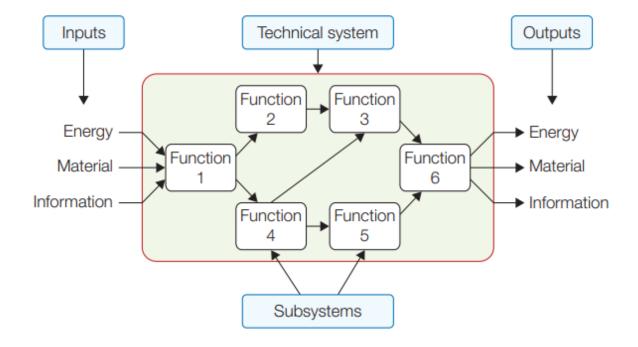


Step 1: Clarify the Problem

- Clarify understanding
- Problem decomposition
- Focus on critical sub-components

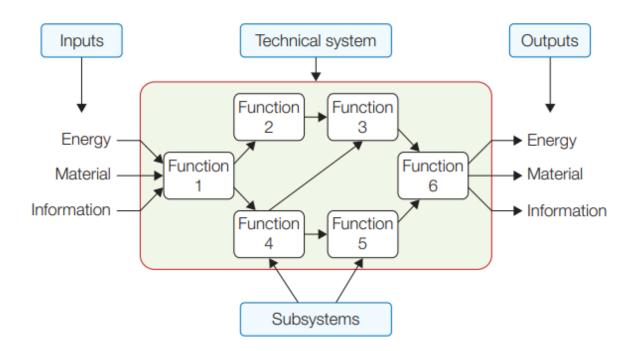
Problem decomposition

- Decompose complex problem into simpler sub-problems. Many design challenges are too complex to solve as a single problem.
- Split a complex problem into simpler subproblems.(Problem decomposition)



Problem Decomposition by Function

What is our output(s)?

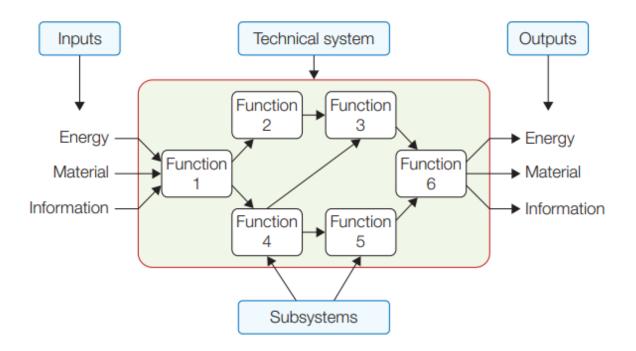


What is our output(s)?

Whole Vegetable

> Hand Power

Peeled Vegetable

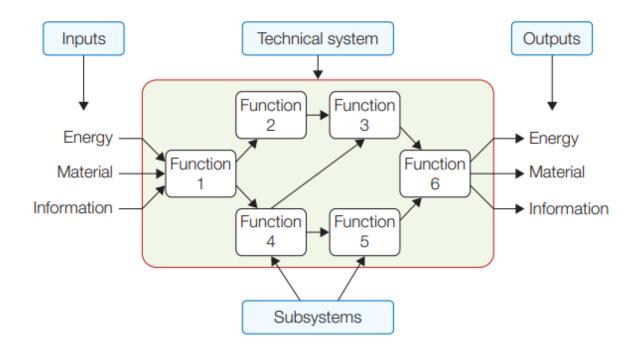


What functions are needed

What is our output(s)?

Whole Vegetable Separate Skin Discard Vegetable Peeled Vegetable

Hand Apply Hand Power

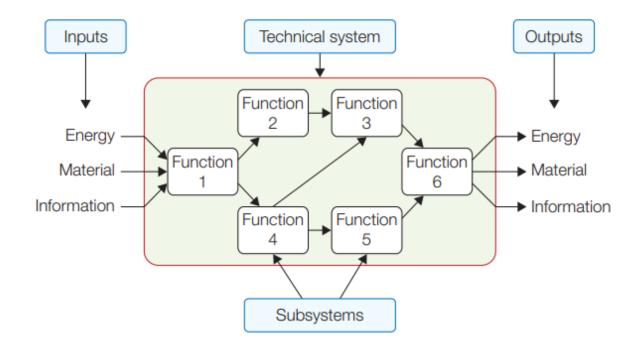


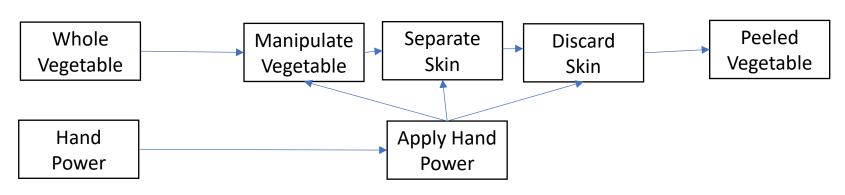
What functions are needed

What is our output(s)?

Whole
VegetableManipulate
VegetableSeparate
SkinDiscard
SkinPeeled
VegetableHand
PowerApply Hand
Power

How can they be connected

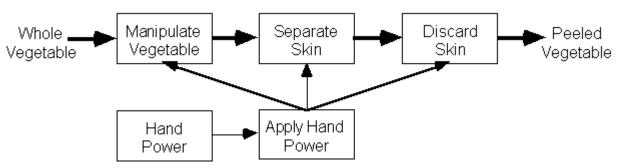




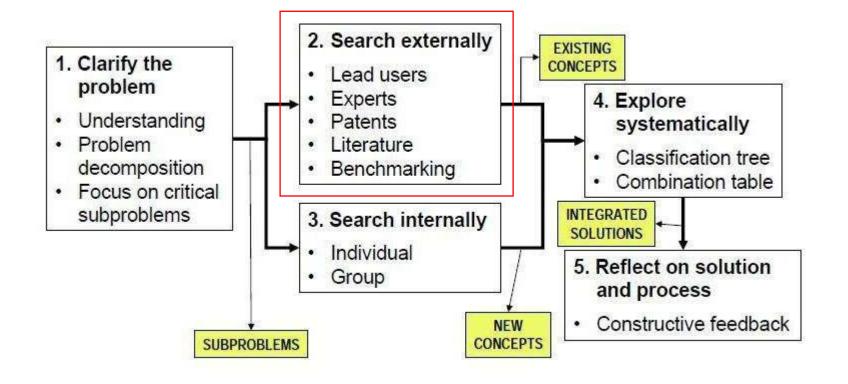
What functions are needed

What is our output(s)?

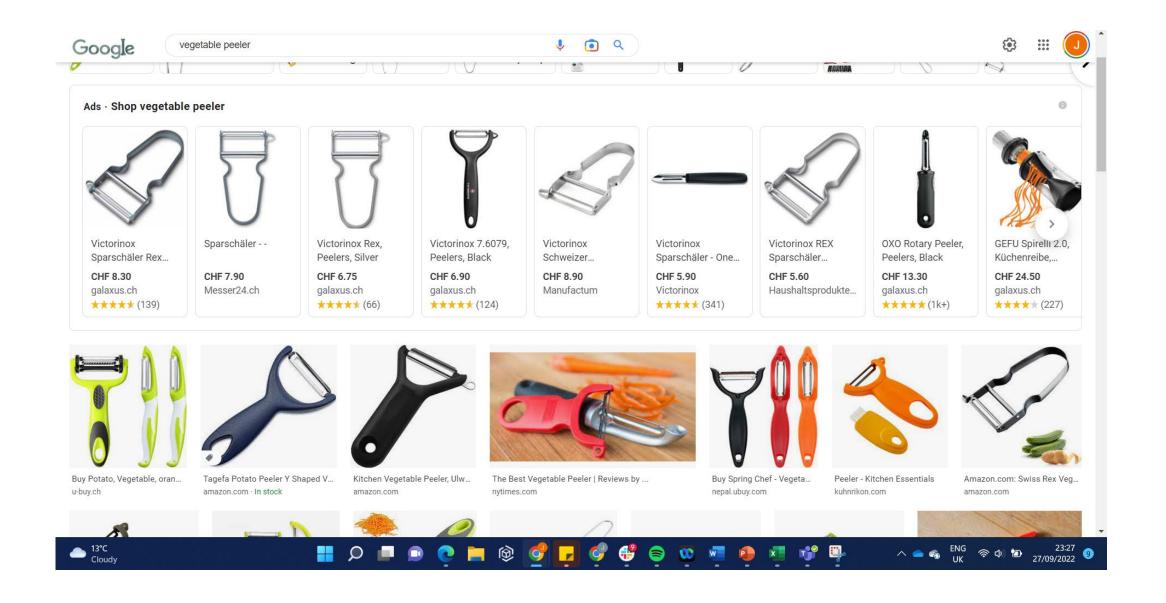
How can they be connected



Functional Decomposition



Step 2: Search Externally



External and Internet Searches

Conduct external searches to find existing solutions to either the overall problem or a sub-problem identified during the decomposition step.

Lead Users

- see emerging needs before others
- adopt and generate innovations first
- Benchmarking
 - competitive products
- Experts
 - technical experts
 - experienced customers

Patents

search related inventions

Literature

- technical journals
- conference proceedings
- trade literature
- government reports
- consumer information

Try the European patent office:

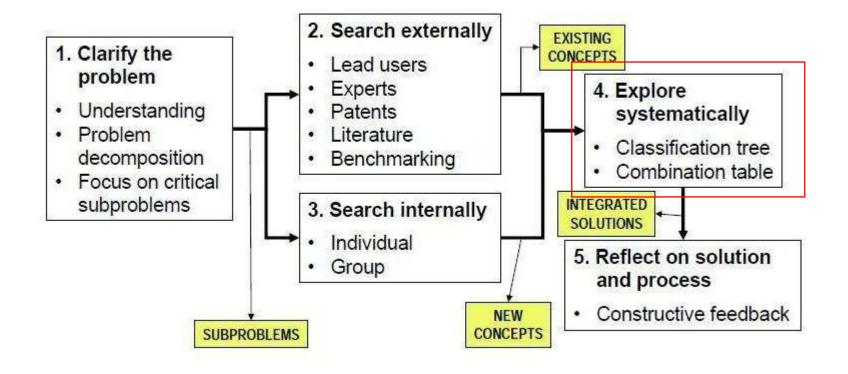
http://ep.espacenet.com

• US patent office:

http://patft.uspto.gov

Search Internally (within your team): Practical Advice

- Suspend judgement just ideate
- Generate lots of ideas (explore as much of the solution space as possible)
- Welcome ideas, even if they don't seem feasible
- Use graphical/physical means to discuss
- Make analogies (other designs/problems)
- Wish and wonder... I wonder what would happen if?
- Set quantitative goals generate 20 concepts

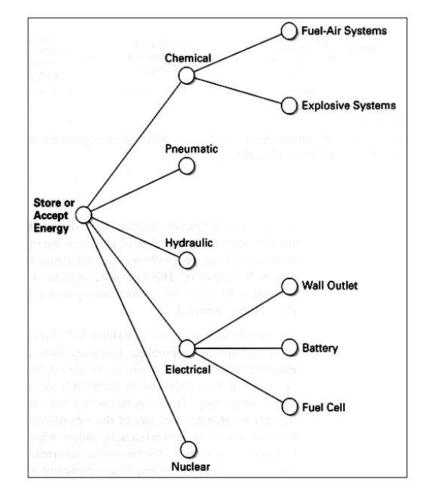


Concept Generation Process: Step 4 Explore Systematically

Explore Systematically

After external and internal search there are probably tens or hundreds of solutions to subproblems, or concept fragments.

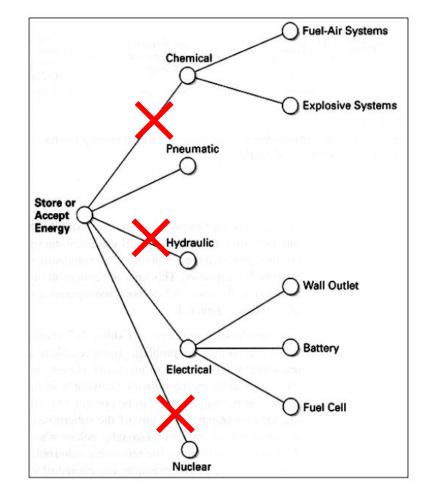
- Navigate the space of possibilities...
 - With the concept classification tree
 - With the concept combination table



Concept classification tree

- Prune less promising branches (carefully)
- Identify related verse independent approaches
- Highlight inappropriate emphasis (certain branches)
- Refine problem decomposition

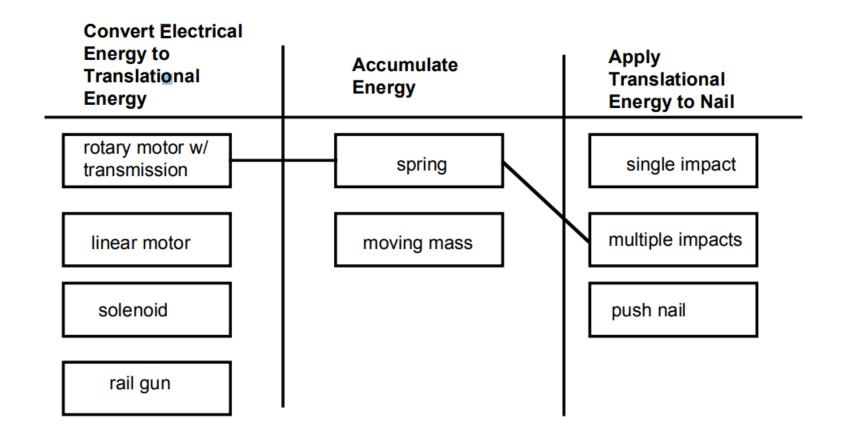
For example, for an 'electrically powered peeler'



Concept classification tree

- Prune less promising branches (carefully)
- Identify related verse independent approaches
- Highlight inappropriate emphasis (certain branches)
- Refine problem decomposition

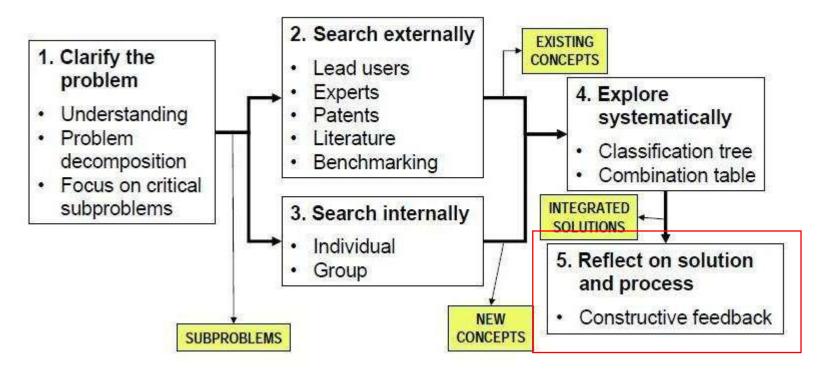
For example, for an 'electrically powered nailer'



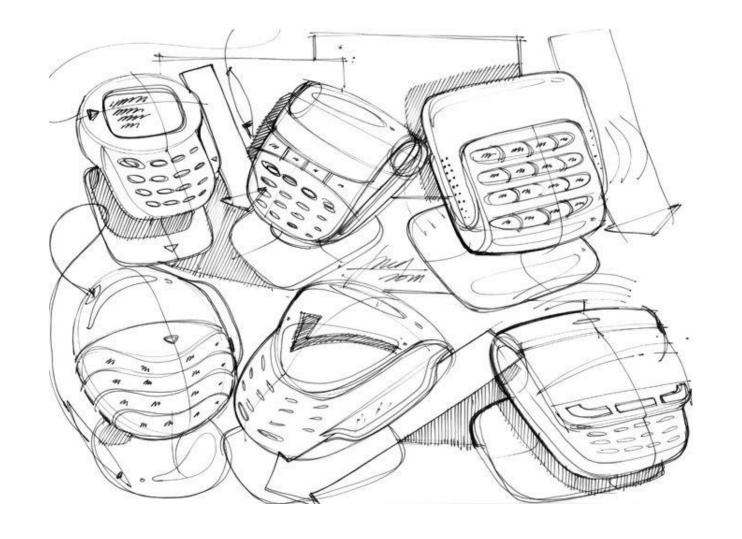
Concept combination table

Example for an 'electrically powered nailer'

 Can systematically explore different combinations



- Is the team developing confidence that the solution space has been fully explored?
- Are there alternative function diagrams?
- Are there alternative ways to decompose the problem?
- Have external sources been thoroughly pursued?
- Have ideas from everyone been accepted and integrated into process?

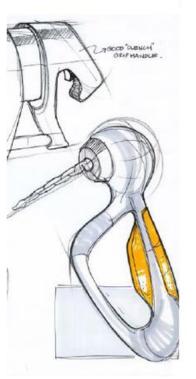

Concept Generation: Sketching

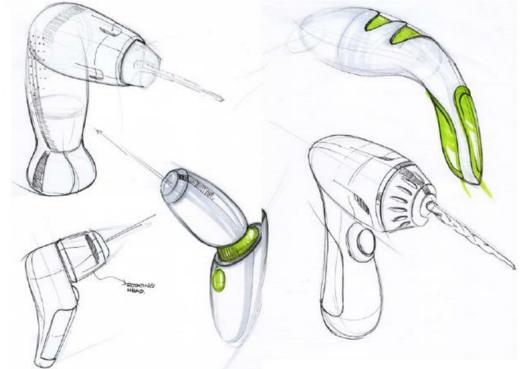
Product design sketching

Sketching allows product designers to generate ideas quickly, without committing resources to any single idea.

Allows for visual communication of an idea or a concept

Illustrates concepts rapidly Rapid Validation

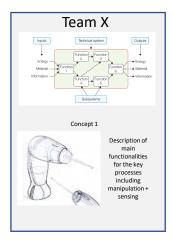


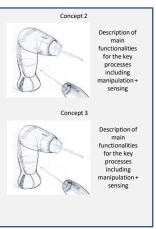


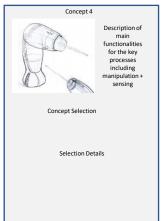
Concept Generation: Sketching

'Technical sketching'

- 3D can make it easier to convey an idea
- Clearly show function (or actuation)
 e.g. in another color
- Try using construction lines (light pencil), before then adding more dominant lines for the form
- Show multiple views
- Show exploded views

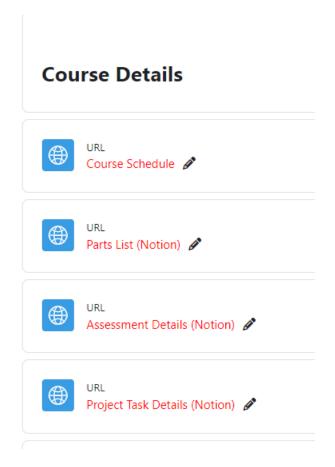

Project Work: Concept Generation & Selection


Break down the functionality you require in the gripper and represent in a functional diagram Generate (lots of concepts within you team)


Evaluate and determine the best concept

You will need to hand in:

- → Functionality diagram
- → Examples of four concepts you have generated (mini sketch + short description)
- → Evaluation of which one you have chosen and why



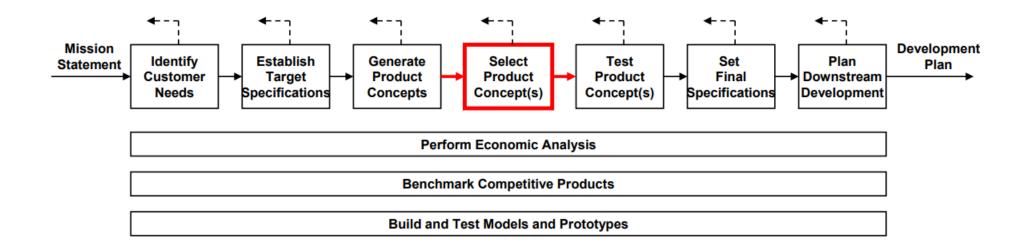
Project Details

Assessment Details:

https://flossy-quartz-a5a.notion.site/Assessment-Details-1923ea02ed1746bd84b0eaecaa62f9a1

Parts List:

https://flossy-quartza5a.notion.site/d5eb659cb9ed46ffba1ae9eb213a3da2?v=30835 a3e1f104f6e8c3aa486966e6a46



Concept Selection

What concept(s) should be taken further?

Concept Selection: The methodology

The concept selection process is based on two methodologies:

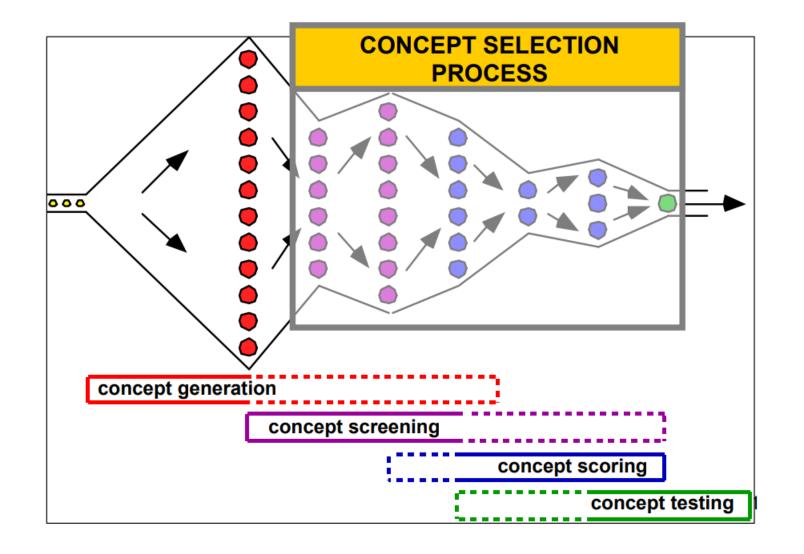
Concept Screening

Concept Scoring •

To reduce the best concepts to refine further. Or to generate additional concepts

Select the final solution

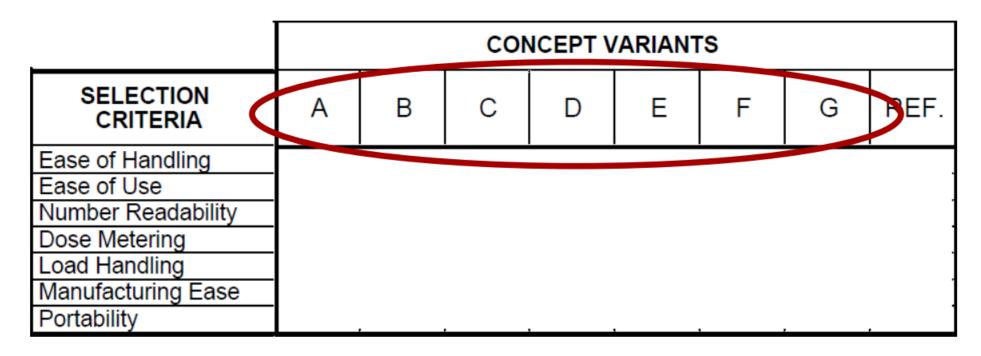
- Concept screening is just for narrowing the number of concepts
- For a small number of concepts, go directly to concept scoring



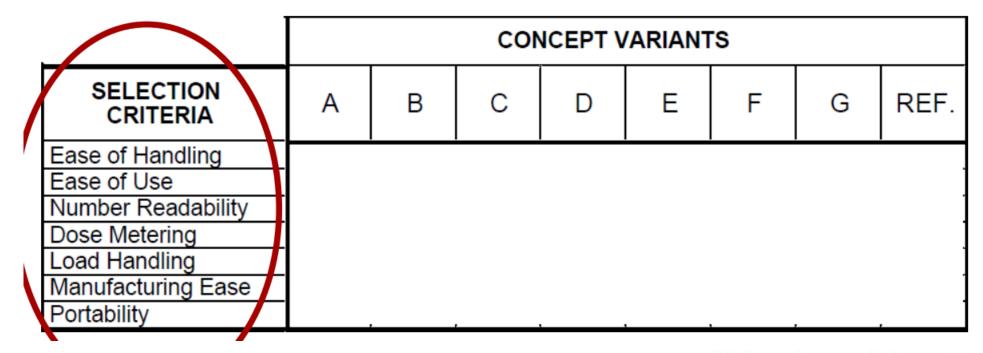
Concept Selection Funnel

Often called Pugh Concept Selection. The purpose is to narrow the number of concepts and improve the concepts.

- Step 1: Prepare the selection matrix
- Step 2: Rate the concepts
- Step 3: Rank the concepts
- Step 4: Combine and improve the concepts
- Step 5: Select one or more concepts
- Step 6: Reflect on results and process



- Step 1: Prepare the selection matrix
 - Enter concept variants
 - The same <u>level of detail</u>
 - Graphical and/or textual representation



- Step 1: Prepare the selection matrix
 - Choose selection criteria
 - Consider use of primary <u>customer</u> needs
 - Consider use of <u>enterprise</u> needs (price, manufacturability, etc.)
 - Choose criteria that <u>differentiate</u> your concepts
 - List criteria of <u>similar importance</u>
 - Do not list <u>unimportant criteria</u>

- Step 1: Prepare the selection matrix
 - Choose reference concept
 - Could be industry standard, best-in-class benchmark, top seller, an early concept, a new concept or one of the considered concepts
 - Pick a reference that will allow you to <u>differentiate</u> your concepts

	CONCEPT VARIANTS							
SELECTION CRITERIA	Α	В	С	D	E	F	G	REF.
Ease of Handling								
Ease of Use								
Number Readability								
Dose Metering								Ţ
Load Handling	1							
Manufacturing Ease								
Portability				Ď.				

- Step 2: Rate the concepts
 - Rate the concepts assign <u>relative scores</u>
 - "better than" (+)
 - "same as" (0)
 - "worse than" (-)
 - Use <u>objective metrics</u> if possible

	CONCEPT VARIANTS								
SELECTION CRITERIA	Α	В	С	D	Е	F	G	REF.	
Ease of Handling	0	0	_	0	0	_	_	0	
Ease of Use	0	_	_	0	0	+	0	0	
Number Readability	0	0	+	0	+	0	+	0	
Dose Metering	+	+	+	+	+	0	+	0	
Load Handling	0	0	0	0	0	+	0	0	
Manufacturing Ease	+	1	-	0	0	ı	0	0	
Portability	+	+	_	_	0	_	_	0	

Step 3: Rank the concepts

The sum of all the "better than" "same as" and "worse than"

		CONCEPT VARIANTS								
SELECTION CRITERIA		Α	В	O	D	Ш	F	G	REF.	
Ease of H	landling	0	0	_	0	0	-	_	0	
Ease of U	Jse	0	-	-	0	0	+	0	0	
Number F	Readability	0	0	+	0	+	0	+	0	
Dose Met	tering	+	+	+	+	+	0	+	0	
Load Handling		0	0	0	0	0	+	0	0	
Manufacti	uring Ease	+	_	_	0	0	-	0	0	
Portability	/	+	+			0	-	_	0	
	PLUSES	3	2	2	1	2	2	- 2		
	SAMES	4	3	1	5	5	2	3		
	MINUSES	0	2	4	1	0	3	2	ĺ	
	NET	3	0	- 2	0	2	-1	0	.	
	RANK	1	3	7	5	2	6	4		
	CONTINUE?	Yes	Yes	1/10	IVO	Yes	No	Yes		

Is there a concept that is generally good but degraded by one bad feature?

Can a minor modification improve the overall concept while remaining distinct from the other concepts?

Are there two concepts which can be combined to preserve the "better than" qualities while eliminating the "worse than" qualities?

Step 4: Combine and improve the concepts

		CONCEPT VARIANTS								
	SELECTION CRITERIA		В	С	D	E	F	G	REF.	
Ease of	f Handling	0	0	_	0	0			0	
Ease of	fUse	0	_	_	0	0	(+)	U	0	
Numbe	r Readability	0	0	+	0	+	0	+	0	
Dose M	letering	+	+	+	+	+	0	+	0	
Load H	Load Handling		0	0	0	0	+	0	0	
Manufa	cturing Ease	+	_	_	0	0	_	0	0	
Portabi	lity	+	+	_	_	0	_		0	
	PLUSES	3	2	2	1	2	2	2		
	SAMES	4	3	1	5	5	2	3	l	
	MINUSES	0	2	4	1	0	3	2	l	
	NET	3	0	-2	0	2	<u>–1</u>	0	ĺ	
	RANK	1	3	7	5	2	6	4	ĺ	
	CONTINUE?	Yes	Yes	No	No	Yes	No	Yes		

- Combine D + F = DF
 Improve G = G+

- Step 5: Select one or more concepts
 - The <u>number of concepts</u> selected for further review will be limited by team resources (personnel, money, and time)
 - The team must clarify which issues need to be investigated further before a final selection can be made.
 - Another round of concept <u>screening</u>?
 - Will concept scoring be applied next?

The goal of concept selection is not to \rightarrow Select the best concept. The goal of concept selection is to \rightarrow Develop the best concept.So remember to combine and refine the concepts to develop better ones

- Used when increased resolution (detail) will better differentiate among competing concepts
- A more quantitative version of concept screening

• Step 2: Rate concepts

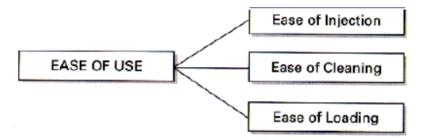
• Step 3: Rank concepts

Step 4: Combine and improve concepts

• Step 5: Select one or more concepts

Step 6: Reflect on results and process

Relative Performance	Rating
Much worse than reference	Sievelengt -
Worse than reference	2
Same as reference	3
Better than reference	4
Much better than reference	5



- Step 1: Prepare the selection matrix
 - Choose selection criteria
 - Consider more detailed selection criteria

- Include importance weights for the criteria
 - 1 to 5
 - allocating 100% among all
- Choose reference concept
 - Different reference concepts may be used for each criterion to avoid scale compression
 - Average performance concept, benchmarked concept, target values for product specifications

- Step 2: Rate the concepts
 - Choose scale (1 to 5, or 1 to 9)
 - Reference point is in the middle

Relative Performance	Rating
Much worse than reference	1-24871
Worse than reference	2
Same as reference	3
Better than reference	4
Much better than reference	5

- Assign relative scores to the concepts
 - For each criterion consider the performance of each concept relative to the reference point

Step 3: Rank the concepts

 Calculate weighted scores by multiplying the raw scores by the criteria weights

$$S_{j} = \sum_{i=1}^{n} r_{ij} W_{i}$$

where

 r_{ij} = raw rating of concept j for the ith criterion

 w_i = weighting for *i*th criterion

n = number of criteria

 $S_j = \text{total score for concept } j$

		Concepts							
		,	A)F	E		G+	
		Master Cylinder		Lever Stop		Swash Ring		Dial Screw+	
Selection Criteria	Weight	Rating	Weighted Score	Rating	Weighted Score	Rating	Weighted Score	Rating	Weighted Score
Ease of Handling	5%	3		3		4		4	
Ease of Use	15%	3		4		4		3	
Readability of Settings	10%	2		3		5		5	
Dose Metering Accuracy	25%	3		3		2		3	
Durability	15%	2		5		4		3	
Ease of Manufacture	20%	3		3		2		2	
Portability	10%	3		3		3		3	

		Concepts							
		,	A)F	E		G+	
		Master	Cylinder	Leve	r Stop	Swas	h Ring	Dial S	crew+
Selection Criteria	Weight	Rating	Weighted Score	Rating	Weighted Score	Rating	Weighted Score	Rating	Weighted Score
Ease of Handling	5%	3	0.15	3	0.15	4	0.2	4	0.2
Ease of Use	15%	3	0.45	4	0.6	4	0.6	3	0.45
Readability of Settings	10%	2	0.2	3	0.3	5	0.5	5	0.5
Dose Metering Accuracy	25%	3	0.75	3	0.75	2	0.5	3	0.75
Durability	15%	2	0.3	5	0.75	4	0.6	3	0.45
Ease of Manufacture	20%	3	0.6	3	0.6	2	0.4	2	0.4
Portability	10%	3	0.3	3	0.3	3	0.3	3	0.3
Total Score		2.75		3.45		3.10		3.05	
	Rank		4	1		2		3	
ni	Continue*		No	Dev	/elop	N	No	No	

Step 4: Combine and improve the concepts

Look for changes and combinations that improve the concept

Step 5: Select one or more concepts

- Check sensitivity of selection to the importance weightings and ratings.
- Consider uncertainty about ratings

The goal of concept selection is not to \rightarrow Select the best concept. The goal of concept selection is to \rightarrow Develop the best concept.

....So remember to combine and refine the concepts to develop better ones

What happens after concept selection?

What happens after concept selection?

Product Generation & Prototyping!

Engineering Design:

- Actuators
- Mechanism
- Sensors
- Control

Practical Implementation

(aka how to..):

- Fabricate/3D print
- Use microcontrollers
- Prototype

Project Work

Component	% of grade	Deadline
0. Teams & DLL Safety	-	
		Week 2
1. Concept Section & Gantt Chart	20%	Week 5
2. Drawings & Schematics, Patent & Literature Review	20%	Week 14
3. One minute pitch video	10%	Week 13
4. Gripper Performance (Competition)	30%	
		Week 14
5. 2 Page Final Report	20%	
		2 weeks later
Returning of parts	-20%	

Deadlines are Tuesday midnight for that week unless stated otherwise

