Mécanique des structures

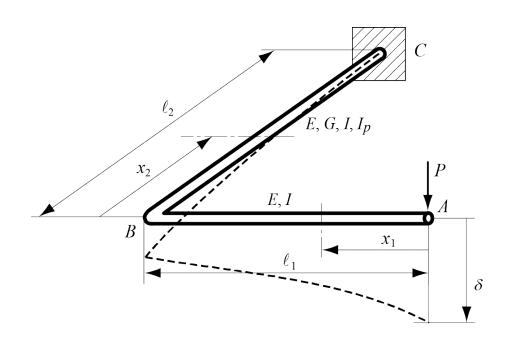
$$\boldsymbol{\delta}_{k} = \frac{\partial \boldsymbol{U}}{\partial \boldsymbol{P}_{k}}$$

Chapitre 10 : Energie de déformation élatique

Dr. Alain Prenleloup SGM BA3

Problème 10.1

En négligeant l'influence de l'effort tranchant, déterminer par le théorème de Castigliano le déplacement vertical δ du point A d'une poutre encastrée en forme de L de section circulaire, soumise à une force P en son extrémité libre



Problème 10.1

Sur le tronçon AB – soumis uniquement à la flexion –, le moment fléchissant et sa dérivée première par rapport à la force ponctuelle s'écrivent $(0 \le x_1 \le \ell_1)$

$$M_f = -x_1 P$$

$$\frac{\partial M_f}{\partial P} = -x_1$$

La partie BC est sollicitée par la flexion et la torsion, les moments respectifs et leurs dérivées ayant pour expression $(0 \le x_2 \le \ell_2)$

$$M_f = -x_2 P$$

$$\frac{\partial M_f}{\partial P} = -x_2$$

$$M_t = \ell_1 P \qquad \frac{\partial M_t}{\partial P} = \ell_1$$

On trouve le déplacement vertical au point A

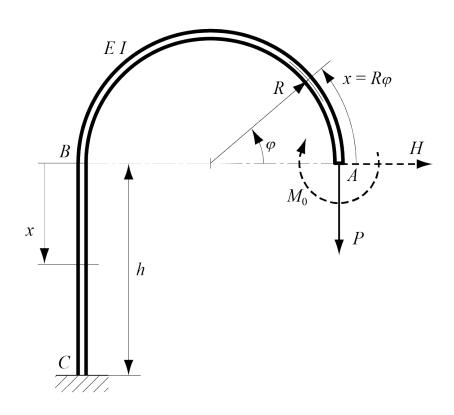
$$\delta = \frac{1}{EI} \int_{A}^{C} M_{f} \frac{\partial M_{f}}{\partial P} dx + \frac{1}{GI_{p}} \int_{B}^{C} M_{t} \frac{\partial M_{t}}{\partial P} dx = \frac{P}{EI} \left[\int_{0}^{\ell_{1}} x_{1}^{2} dx_{1} + \int_{0}^{\ell_{2}} x_{2}^{2} dx_{2} \right] + \frac{P\ell_{1}^{2}}{GI_{p}} \int_{B0}^{\ell_{2}} dx_{2}$$

L'intégration donne finalement, compte tenu de la condition $I_p = 2I$ valable pour une poutre de section circulaire,

•
$$\delta = \frac{P}{3EI} (\ell_1^3 + \ell_2^3) + \frac{P\ell_1^2\ell_2}{2GI}$$

Problème 10.2

En ne tenant compte que de la flexion et en recourant au théorème de Castigliano, calculer pour la poutre encastrée représentée le déplacement vertical δ_V , le déplacement horizontal δ_H ainsi que la rotation α au point A où s'applique une force verticale P



Problème 10.2

Pour calculer le déplacement δ_H et la rotation α , on introduit une force auxiliaire horizontale H et un moment auxiliaire M_0 au point A.

Si l'on choisit comme moment positif celui qui tend les fibres extérieures, le moment de flexion sur l'arc AB et ses dérivées par rapport aux forces généralisées réelle P et auxiliaires H et M_0 s'écrivent

•
$$M = PR(1 - \cos \varphi) - HR \sin \varphi + M_0$$

•
$$\frac{\partial M}{\partial P} = R(1 - \cos \varphi)$$
 $\frac{\partial M}{\partial H} = -R \sin \varphi$ $\frac{\partial M}{\partial M_0} = 1$

où R désigne le rayon de l'arc et j représente l'angle pris comme variable d'intégration. Pour le montant BC, on trouve de même

•
$$M = 2 P R + x H + M_0$$

•
$$\frac{\partial M}{\partial P} = 2R$$
 $\frac{\partial M}{\partial H} = x$ $\frac{\partial M}{\partial M_0} = 1$

Problème 10.2

Les dérivées partielles étant maintenant évaluées, on peut annuler les forces généralisées auxiliaires H et M_0 et calculer les déplacements dV et dH ainsi que la rotation α

•
$$\delta_V = \frac{1}{EI} \int_A^C M \frac{\partial M}{\partial P} dx = \frac{PR^3}{EI} \int_0^\pi (1 - \cos \varphi)^2 d\varphi + \frac{4PR^2}{EI} \int_0^h dx = \frac{PR^2}{2EI} (3\pi R + 8h)$$

•
$$\delta_H = \frac{1}{EI} \int_A^C M \frac{\partial M}{\partial H} dx = \frac{-P R^3}{EI} \int_0^\pi (1 - \cos \varphi) \sin \varphi \, d\varphi + \frac{2P R}{EI} \int_0^h x \, dx = \frac{P R}{EI} (h^2 - 2R^2)$$

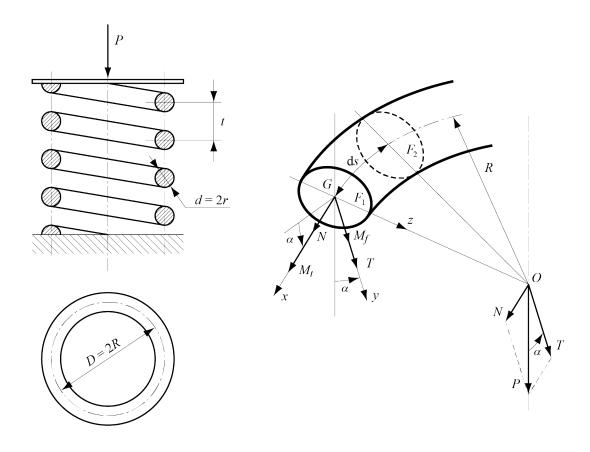
•
$$\alpha = \frac{1}{EI} \int_{A}^{C} M \frac{\partial M}{\partial M_0} dx = \frac{PR^2}{EI} \int_{0}^{\pi} (1 - \cos \varphi) d\varphi + \frac{2PR}{EI} \int_{0}^{h} dx = \frac{PR}{EI} (\pi R + 2h)$$

Le déplacement vertical δV et la rotation a sont strictement positifs et sont donc orientés selon le sens respectif de la force P et du moment M_0

Le déplacement horizontal δH est par contre positif, nul ou négatif selon que la hauteur h du montant est supérieure, égale ou inférieure à $\sqrt{2} R$

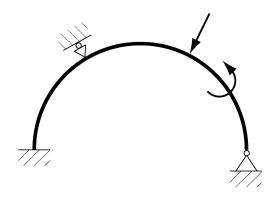
Problème 5.2

Calculer la contrainte de cisaillement maximum dans un ressort hélicoïdal de diamètre D, formé de n spires de diamètre d et soumis à une charge de compression P. Déterminer ensuite la flèche, la constante du ressort et l'énergie emmagasinée.



Merci pour vote attention

Mécanique des structures

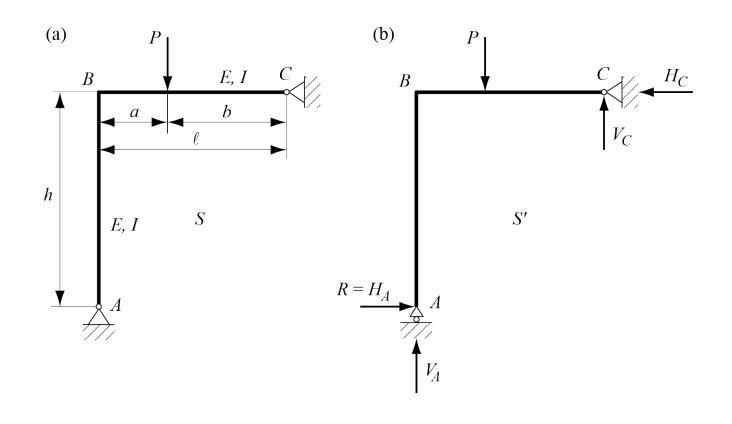


Chapitre 11: Systèmes hyperstatiques

Dr. Alain Prenleloup SGM BA3

Problème 11.1

Calculer les réactions aux points A et C du système hyperstatique S



Problème 11.1

Les réactions inconnues sont au nombre de quatre, le système S étant dès lors hyperstatique extérieurement d'ordre 4-3=1. En choisissant comme hyperstatique R la réaction horizontale $H_{\rm A}$ au point A, on obtient le système isostatique fondamental S'

Les conditions d'équilibre statique fournissent trois équations

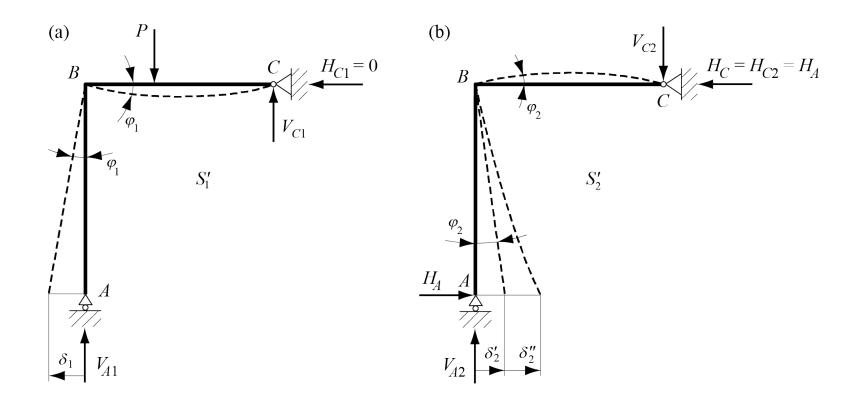
•
$$H_A = H_C$$
 (a)

•
$$V_A + V_C = P$$
 (b)

•
$$aP = \ell V_C + H_C$$
 (c)

Problème 11.1

La quatrième équation nécessaire pour déterminer les réactions est donnée par la condition que le déplacement horizontal δ du point A est nul dans le système S'. Il est commode pour calculer δ de décomposer S' en deux systèmes S'_1 et S'_2 .



Problème 11.1

Les réactions d'appui du système S'_1 valent

- $V_{A1} = P \frac{b}{\ell}$
- $V_{C1} = P \frac{a}{\ell}$
- $H_{C1} = 0$

tandis que le déplacement δ_1 a pour valeur, d'après l'annexe II,

•
$$\delta_1 = h \, \varphi_1 = h \frac{ab(\ell+b)}{6\ell \, EI} P$$

Pour le système S'2, les réactions s'écrivent

•
$$V_{A2} = V_{C2} = H_A \frac{h}{\ell}$$

•
$$H_{C1} = H_C = H_A$$

alors que le déplacement δ_2 , séparé en deux composantes δ_2' et δ_2'' , est calculé à nouveau au moyen de l'annexe II

•
$$\delta_2 = \delta_2' + \delta_2'' = h \varphi_2 + \delta_2'' = \frac{h^2 \ell}{3 EI} H_A + \frac{h^3}{3 EI} H_A = \frac{H_A h^2}{3 EI} (\ell - h)$$

Problème 11.1

La condition d = d1 – d2 permet de calculer directement l'hyperstatique HA

•
$$H_A = \frac{ab(\ell+b)}{2\ell h(\ell+h)} P = \frac{\alpha\beta(1+\beta)}{2\xi(1+\xi)} P$$

où les grandeurs a = a/I, b = b/I et x = h/I sont trois facteurs adimensionnels. En utilisant les équations (a), (c) et (b), on obtient finalement les trois réactions d'appui

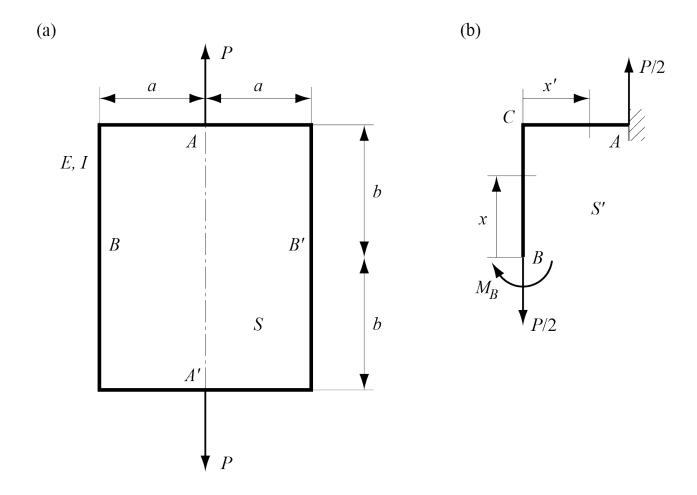
•
$$H_C = H_A = \frac{\alpha\beta(1+\beta)}{2\xi(1+\xi)}P$$

•
$$V_C = P \frac{a}{\ell} - H_C \frac{h}{\ell} = \alpha \left(1 - \frac{\beta(1+\beta)}{2(1+\xi)} \right) P$$

•
$$V_A = P - V_C = \left((1 - \alpha) - \frac{\alpha\beta(1+\beta)}{2(1+\xi)} \right) P$$

Problème 11.3

Par le théorème de Menabrea, trouver le moment hyperstatique intérieur au point B du cadre , puis calculer le déplacement relatif des points A et A'. On ne considérera que l'énergie de flexion.



Problème 11.3

Le système est plan, mais possède deux axes de symétrie, de sorte que son degré d'hyperstaticité intérieure est ramené à k=3-2=1. La double symétrie permet de ne considérer que le quart du cadre

On choisit comme hyperstatique intérieure le moment $M_{\rm B}$ en B, déterminé grâce au théorème de Menabrea par la condition $\partial U/\partial M_{\rm B}=0$, tandis que le déplacement relatif des points A et A' est calculé au moyen du théorème de Castigliano par la relation $\delta=\partial U/\partial P$. Si seule l'énergie de flexion est prise en compte, les conditions précitées peuvent être explicitées sous la forme

•
$$0 = \frac{4}{EI} \int_{B}^{A} M \frac{\partial M}{\partial M_{B}} dx$$
 et $\delta = \frac{4}{EI} \int_{B}^{A} M \frac{\partial M}{\partial P} dx$

Sur la portion verticale BC du quart de cadre, le moment de flexion et ses dérivées partielles par rapport respectivement à l'hyperstatique intérieure $M_{\rm B}$ et la force P valent

•
$$M(x) = M_B$$
 $0 \le x \le b$

$$\frac{\partial M}{\partial M_B} = 1 \qquad \frac{\partial M}{\partial P} = 0$$

Problème 11.3

Alors que ces mêmes grandeurs sur la partie horizontale CA s'écrivent

•
$$M(x') = M_B - \frac{P}{2}x'$$
 $0 \le x' \le a$

•
$$\frac{\partial M}{\partial M_B} = 1$$
 $\frac{\partial M}{\partial P} = -\frac{x'}{2}$

En portant ces égalités dans l'équation (a), on obtient

•
$$0 = \int_0^b M_B dx + \int_0^a \left(M_B - \frac{P}{2} x' \right) dx' = M_B b + \left(M_B a - \frac{P a^2}{4} \right)$$

d'où l'on tire aisément la valeur de l'hyperstatique intérieure M_R

$$M_B = \frac{Pa^2}{4(a+b)}$$

En procédant de même pour l'équation (b), on a

•
$$\delta = -\frac{4}{EI} \int_0^a \left(M_B - \frac{P}{2} x' \right) \frac{x'}{2} dx' = -\frac{4}{EI} \left(\frac{M_B a^2}{4} - \frac{P a^3}{12} \right)$$

De sorte que, compte tenu du résultat (c), le déplacement cherché vaut

$$\delta = \frac{P \, a^3}{12 \, EI} \frac{a+4b}{a+b}$$

Merci pour vote attention

Mécanique des structures

Chapitre 12: Flambage des poutres droites

Dr. Alain Prenleloup SGM BA3

Problème 12.1

Calculer l'écart de température Δt qui provoque le flambage d'un tube de longueur ℓ en acier S 235, articulé à ses extrémités A et B. Déterminer les charge et contrainte critiques correspondantes et évaluer ces mêmes valeurs pour un tube encastré à ses extrémités.

Données numériques

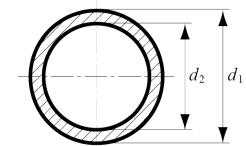
$$\ell = 2.5 \text{ m}$$

 $d_1 = 5 \text{ cm}$

$$d_2 = 4 \text{ cm}$$

 $E = 2,1.1011 \text{ Pa}$

$$\alpha = 12.10-6/^{\circ}C$$



Problème 12.1

Afin de déterminer si le flambage est élastique, il est nécessaire de calculer d'abord l'élancement du tube. D'après l'aire F de la section, son moment d'inertie I, ainsi que le rayon de gyration résultant i,

•
$$F = \frac{\pi}{4} (D_1^2 - D_2^2) = 7.07 \cdot 10^{-4} m^2$$

•
$$I = \frac{\pi}{64} (D_1^4 - D_2^4) = 0.181 \cdot 10^{-6} m^2$$

•
$$i = \sqrt{\frac{I}{F}} = 16 \cdot 10^{-3} m$$

Compte tenu du fait que la demi-longueur d'onde ℓ_0 est égale à la longueur ℓ dans le cas d'une poutre biarticulée l'élancement vaut

•
$$\lambda = \frac{\ell_0}{i} = \frac{\ell}{i} = 156$$

Comme cette valeur est supérieure à l'élancement limite $\lambda_p = 104$ d'une poutre en acier S 235 le flambage est élastique, de sorte que la formule d'Euler est applicable.

Problème 12.1

Pour calculer $\Delta\theta$, exprimons qu'au moment où le flambage démarre l'allongement thermique est égal au raccourcissement dû à la compression

•
$$\ell \propto \Delta \theta = \ell \frac{\sigma_c}{E}$$

En remplaçant dans cette égalité la contrainte critique σ_c par sa définition, on trouve

•
$$\ell \alpha \Delta \theta = \ell \frac{\pi^2}{\lambda^2}$$

D'où l'on tire aisément la variation de température cherchée

•
$$\Delta\theta = \frac{\pi^2}{\alpha \lambda^2} = 34 \, ^{\circ}C$$

La charge critique, donnée par la formule d'Euler, vaut

•
$$N_c = \frac{\pi^2 EI}{\ell_0^2} = \frac{\pi^2 EI}{\ell^2} = 60 \ kN$$

Alors que la contrainte critique associée a pour valeur

•
$$\sigma_c = \frac{N_c}{F} = 85 MPa$$

Problème 12.1

Si la poutre est encastrée à ses deux extrémités, la longueur de flambage est réduite de moitié ($\ell_0 = \ell/2$) et l'élancement devient

$$\lambda = \frac{\ell_0}{i} = \frac{\ell}{2i} = 78$$

Ce nombre étant inférieur à la limite $\ell_p=104$ valable pour l'acier S 235, le flambage a lieu dans le domaine de Tetmayer.

La contrainte critique est alors donnée par la formule appliquée au matériau considéré

•
$$\sigma_c = 400 - 2\lambda = 244 \, MPa$$

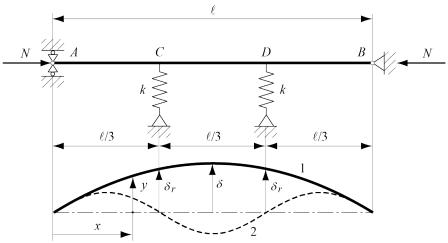
De sorte que la charge critique s'élève cette fois à

•
$$N_c = \sigma_c F = 173 \ kN$$

Notons qu'un rapide calcul montrerait que la charge critique vaudrait 240 kN si la formule d'Euler restait valable.

Problème 12.3

Le système représenté est constitué d'une poutre articulée à ses extrémités et de deux ressorts de constante k. Calculer la charge critique du système en prenant comme déformée celle qui se produit quand les ressorts n'existent pas, c'est à dire une sinusoïde à une demi onde (courbe 1). Trouver ensuite la valeur de la constante k pour laquelle la poutre flambe selon une sinusoïde à trois demi ondes (courbe 2).



Problème 12.3

La déformée imposée a pour équation

•
$$y = \delta \sin \frac{\pi x}{\ell}$$

Cette dernière satisfait bien aux conditions aux limites y(0) = 0 et $y(\ell) = 0$.

Ses dérivées première et seconde s'écrivent

•
$$y' = \frac{\pi \delta}{\ell} \cos \frac{\pi x}{\ell}$$

$$y'' = -\frac{\pi^2 \delta}{\ell^2} \sin \frac{\pi x}{\ell}$$

Le déplacement t est trouvé à partir de la relation

•
$$t = \frac{1}{2} \int_0^\ell y'^2 dx = \frac{\pi^2 \delta^2}{2 \ell^2} \int_0^\ell \cos^2 \frac{\pi x}{\ell} dx = \frac{\pi^2 \delta^2}{4 \ell^2}$$

L'énergie de déformation U du système est la somme de l'énergie de flexion U_p dans la poutre et de l'énergie de compression ou traction U_r dans les deux ressorts.

Problème 12.3

L'énergie U_p est donnée par

•
$$U_p = \frac{EI}{2} \int_0^\ell y''^2 dx = \frac{EI \pi^4 \delta^2}{2 \ell^4} \int_0^\ell \sin^2 \frac{\pi x}{\ell} dx = \frac{EI \pi^4 \delta^2}{4 \ell^3}$$

Alors que l'énergie U_r emmagasinée par les deux ressorts peut être exprimée sous la forme suivante

•
$$U_r = 2 \frac{k \delta_r^2}{2}$$

dans laquelle dr est le déplacement des ressorts. Dès lors que cette quantité vaut

•
$$\delta_r = y(\ell/3) = \sqrt{3} \delta/2$$

l'énergie U_r a pour expression finale

•
$$U_r = \frac{3k \delta^2}{4}$$

Il s'ensuit que l'énergie de déformation totale s'écrit

•
$$U = U_p + U_r = \frac{EI \pi^4 \delta^2}{4 \ell^3} + \frac{3k \delta^2}{4}$$

La charge critique N_{c1} selon le mode de flambage 1 a pour valeur

•
$$N_{C1} = \frac{U}{t} = \frac{\pi^2 EI}{\ell^2} + \frac{3k\ell}{\pi^2}$$

Problème 12.3

Alors que si le système flambe selon le mode 2, la formule d'Euler est applicable avec la demi-longueur d'onde $\ell_0=\ell/3$ et la charge critique associée N_{c2} prend la forme

•
$$N_{C2} = \frac{\pi^2 EI}{\ell_0^2} = \frac{\pi^2 EI}{(\ell/3)^2} = \frac{9\pi^2 EI}{\ell^2}$$

Le deuxième mode de flambage apparaît quand les deux charges N_{c1} et N_{c2} sont égales. Cette condition correspond à une valeur particulière k_0 de la constante des ressorts, trouvée en égalant $N_{C1}=N_{C2}$

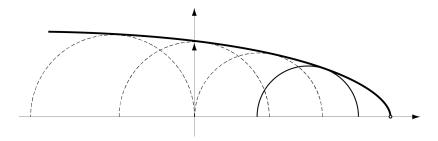
•
$$k_0 = \frac{8\pi^4 EI}{3\ell^3} = 259.8 \frac{EI}{\ell^3}$$

Avec cette conception du problème, tout se passe comme si les ressorts étaient remplacés par des guides fixes aux points C et D quand la constante k est supérieure à k_0 et l'on retrouve le quatrième cas de la figure ($\ell_0 = \ell/3$). En réalité, les déformées 1 et 2 ne sont exactes que dans les cas limite k=0 et $k=\infty$. La solution rigoureuse du problème par intégration des équations différentielles donne la courbe en pointillés de la figure 11.17, la charge critique N_{c2} étant alors atteinte pour la constante suivante

•
$$k'_0 = \frac{27\pi^2 EI}{\ell^3} = 266.5 \frac{EI}{\ell^3}$$

Merci pour vote attention

Mécanique des structures



Chapitre 15 : Critères de rupture de l'équilibre élastique

Dr. Alain Prenleloup SGM BA3

Problème 15.1 et 15.2

La force de contact d'un engrenage, réduite à l'axe neutre de l'arbre porteur, donne lieu à une force répartie verticale q et un moment de torsion $M_{\rm t}$. Pour l'arbre, calculer au moyen du critère de Tresca et von Mises le coefficient de sécurité n aux points A et B de la section C.

Données numériques

$$q = 400 \text{ kN/m}$$

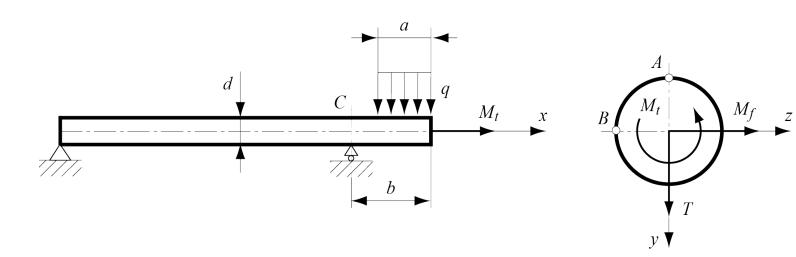
 $M_t = 80 \text{ Nm}$

$$d = 20 \text{ mm}$$

 $a = 20 \text{ mm}$

$$b = 30 \text{ mm}$$

 $\sigma_e = 280 \text{ MPa}$



Problème 15.1

Le moment de flexion et l'effort tranchant dans la section C au droit de l'appui situé du côté du porte-à-faux valent

•
$$M_f = q a \left(b - \frac{a}{2}\right) = 160 Nm$$

•
$$T = q \ a = 8000 \ N$$

Tandis que l'aire de la section et les moments de résistance à la flexion et à la torsion ont pour valeur

•
$$F == 0.314 \cdot 10^{-3} m^2$$

•
$$W = \frac{\pi d^3}{32} = 0.785 \cdot 10^{-6} m^4$$
 $W_p = \frac{\pi d^3}{16} = 1.57 \cdot 10^{-6} m^4$

Au point A de la section C, les contraintes normale due à la flexion et tangentielle provoquée par la torsion s'écrivent, compte tenu de leur orientation,

•
$$\sigma_x(A) = M_f/W = 204 MPa$$

•
$$\tau_{xz}(A) = -M_t/W_p = -51 MPa$$

Problème 15.1

De sorte que l'on obtient pour les contraintes principales σ_1 et σ_3 valables pour un état de contrainte bidimensionnel ($\sigma_2 = 0$),

•
$$\sigma_1 = \frac{\sigma_x(A)}{2} + \sqrt{\frac{\sigma_x^2(A)}{4} + \tau_{xz}^2(A)} = 216 MPa$$

•
$$\sigma_3 = \frac{\sigma_x(A)}{2} - \sqrt{\frac{\sigma_x^2(A)}{4} + \tau_{xz}^2(A)} = -12 MPa$$

La contrainte de comparaison et le coefficient de sécurité déterminés pour le point A au moyen du critère de Tresca valent finalement

•
$$\sigma_g(A) = \sigma_1 - \sigma_3 = 228 MPa$$

•
$$n(A) = \frac{\sigma_e}{\sigma_a} = 1,23$$

Problème 15.1

Au point B de la section C apparaissent deux contraintes tangentielles provenant respectivement du moment de torsion et de l'effort tranchant.

La contrainte totale de cisaillement a pour expression

•
$$\tau_{xy}(B) = \frac{M_t}{W_p} + \frac{4T}{3F} = 85 MPa$$

Le point *B* étant caractérisé par du cisaillement pur, la contrainte de comparaison relative au critère de Tresca se calcule directement grâce à la relation

•
$$\sigma_g(B) = 2\tau_{13} = 2\tau_{xy}(B) = 170 MPa$$

et le coefficient de sécurité associé vaut par conséquent

•
$$n(B) = \frac{\sigma_e}{\sigma_g} = 1,65$$

Problème 15.2

Puisque la contrainte de comparaison liée au critère de von Mises ne nécessite pas l'évaluation des contraintes principales, on a immédiatement au point A, compte tenu des valeurs numériques trouvées au problème 15.1,

•
$$\sigma_g(A) = \frac{1}{\sqrt{2}} \sqrt{\sigma_\chi^2(A) + \sigma_\chi^2(A) + 6\tau_{\chi Z}^2(A)} = 222 MPa$$

Et le coefficient de sécurité correspondant vaut

•
$$n(A) = \frac{\sigma_e}{\sigma_g} = 1,26$$

Pour le point *B*, on trouve similairement

•
$$\sigma_g(B) = \sqrt{3\tau_{xy}^2(B)} = 147 MPa$$

•
$$n(B) = \frac{\sigma_e}{\sigma_g} = 1,90$$

Comme prévu, les coefficients de sécurité sont plus élevés qu'au problème 15.1.

Merci pour vote attention