
Structural Mechanics Exercises week 3 Prof. G. Fantner

Exercise 1
A bar of unstretched length l0 with uniform mass density ρ is hung from a rigid
ceiling. The bar has a cross-sectional area A(y) which varies along the length of
the bar and has a value A0 at the bottom (see figure 1).

a) What is the equation that describes A(y) if the bar is to have uniform
stress σ in the horizontal plane along its length?

b) What is the total elongation of the bar in this case?

ME-231(a) problem set 2

September 26, 2012

1. For the wood block shown in the figure below, the allowable shear stress parallel to the
grain is 1 MN/m2, and the maximum allowable compressive stress in any one direction is
4 MN/m2. Determine the maximum compressive force F that the block can support.

2. A rigid beam of weight W is mounted on 3 massless elastic bars (modulus E, cross-
sectional area A) as shown in the figure below. a) Determine the angle of the slope of the
rigid beam that is caused by its weight after the structure has been assembled. b) What
is the angle ↵ at which the bar will stay horizontal?

3. A bar of unstretched length l0 and with uniform mass density ⇢ is hung from a rigid
ceiling. The bar has a cross-sectional area A(y) which varies along the length of the bar
and has a value A0 at the bottom. a) What is the equation that describes A(y) if the
bar has uniform stress � in the horizontal plane along its length? b) What is the total
elongation of the bar in this case?
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Figure 1: Structure with nonuniform cross–section supported on ceiling.

Exercise solution 1
Given: Unstretched length l0, mass density ρ, cross section area of the bottom
A0, and uniform stress σ.

Asked: Find the equation to describe A(y) and the total elongation of the
bar.

Relevant relationships:

Sum of forces∑
i

Fi = 0 i ∈ x, y, z

Definition of stress

σ = P

A
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a)

Variation 1 Start with a horizontal section at point y from the bottom. Use h
as the variable for the coordinate in the section. We can findW (y) by integrating
over h from 0 to y:

W (y) =
∫ y

0
gρA(h) dh = ρg

∫ y

0
A(h) dh

A(h)

A(y)

y

h

w(y)

P(y)

Figure 2: Forces on the structure.

from the equilibrium of forces:∑
Fy = 0 → P (y)−W (y) = 0, P (y) = W (y)

where

P (y) = ρg

∫ y

0
A(h) dh

Since the stress over the structure is supposed to be constant (σ(y) = σ) we find

σ = P (y)
A(y) → σ = ρg

∫ y
0 A(h) dh
A(y)

σA(y) = ρg

∫ y

0
A(h) dh → A(y) = ρg

σ

∫ y

0
A(h) dh

This is the integral form of a common equation. To convert it into a more
familiar form, we can differentiate both sides with respect to y

dA(y)
dy = d

dy

(
ρg

σ

∫ y

0
A(h) dh

)
= ρg

σ

d
dy

(∫ y

0
A(h) dh

)
From the fundamental theorem of calculus we get

d
dy

∫ y

0
A(h) dh = A(y) → dA(y)

dy = ρg

σ
A(y)
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which is a first order ordinary differential equation. We use the Ansatz A(y) =
ceky where c and k are constants to be determined.
This gives us

ck · eky = ρg

σ
c · eky → k = ρg

σ

Using the boundary condition A(0) = A0 we get

A(0) = cek·0 = c → c = A0

which finally gives us

A(y) = A0e
(
ρg

σ
y

)
Variation 2 Alternatively, we can resolve this problem by solving the micro-
scopic equilibrium equation as seen in the course. In this case, we consider a
slice of height dy:

Figure 3: Forces on the structure.

Since the stress over the structure is supposed to be constant (σ(y) = σ), the
kinematic equation becomes:

du(y)
dy = ε(y) = σ

E
= const

The force acting at the bottom of the slice is:

N(y) = A(y)σ

From the force equilibrium in the y-direction, we obtain:

dN(y)
dy +N(y)− ρgA(y)−N(y) = 0

Upon substitution of N(y), we get:
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d
dyA(y)σ = ρgA(y)

Which simplifies to the formula we solved in variation 1:

dA(y)
dy = ρg

σ
A(y)

b)

We can calculate the elongation using Hooke’s Law (σ = Eε) and ε = δ/l0,
therefore

σ = E
δ

l0
, δ = σl0

E

since σ is a constant, as is l0 and E, we are done.

Exercise 2
You want to calculate the deformation of a Y shaped trabecula section in the
trabecular bone of a vertebra as shown in figure 4. To simplify the calculation,
we model the Y-shaped trabecula as shown in figure 5. Assume that the hori-
zontal beam is both infinitely thin and stiff and that it does not bend.

P

Figure 4: Schematics of a trabecular bone.

1. A force of F1 = 0.5 N is applied to the trabecular bone substructure.
Calculate the total elongation of the substructure, given the lengths
L1 = 1.5 mm, L2 = 0.8 mm and the diameter d = 200 µm. Young’s
modulus of the trabecular bone can be assumed to be E = 22 GPa.

2. There is now an extra force F2 = 0.2 N applied to the bone as shown
in figure 5. State the superposition principle and calculate the total
elongation.
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Figure 5: Simplification of the bone for calculations.

Exercise solution 2
Given: Forces F1 and F2, Young’s modulus E, diameter and lengths of the
substructures

Asked: Total elongation δtot in two different cases

Relevant relationships:

Hook’s law for normal stress σ = E · ε

Normal stress ε = ∆L
L

= δ

L

Normal strain σ = P

A

1. In the first question, there is only one force, F1. The total elongation of
the structure is the sum of the elongations from each substructure.
The elongation δ can be expressed as a function of the applied force P
by using Hooke’s law and the definitions of the normal stress σ and the
normal strain ε : δ = Lε = L

σ

E
= LP

EA
For the lower part, the length of the segment is L2, and the applied force
F1 is distributed on the area A = π(d/2)2. The same force F1 is acting
on the upper part of the structure (think about the methods of section
if you are not convinced), only that the force is distributed on the total
area of the two segments (with the length L1). Therefore, the area is
2A = 2π(d/2)2.
As indicated, we neglect the interconnection structure and the mass of
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each segment. The Young’s modulus E is the same for all segments.

δtot,1 = L1F1
E · 2A + L2F1

EA

= 1.5 · 10−3 · 0.5
22 · 109 · 2 · π(0.2·10−3

2 )2
+ 0.8 · 10−3 · 0.5

22 · 109 · π(0.2·10−3

2 )2

= 1.12× 10−6 m

The total elongation of the structure is therefore approximately 1.12× 10−6 m.

2. There are now two forces applied to the system, F1 and F2. The superpo-
sition principle states that, for all linear systems, the response to several
stimuli (forces in our case) is the sum of all the responses that would have
been caused by each individual stimulus. As a consequence, the elongation
of the system is the sum of the elongation δtot,1 caused by F1 alone and
the elongation δtot,2 caused by F2 alone. We already determined δtot,1 in
the previous question. Only the top part of the bone will be deformed
due to F2 (think about the methods of section if you are not convinced).
Since the F2 is pointing upwards, its effect is actually a contraction of the
beams. The total deformation due to F2 alone is thus :

δtot,2 = − L1F2
E · 2A + 0

= − 1.5 · 10−3 · 0.2
22 · 109 · 2 · π(0.2·10−3

2 )2

= −4.34× 10−7 m

Finally, according to the superposition principle, the total elongation due
to both F1 and F2 is δtot = δtot,1 + δtot,2 = (1.12− 0.43)10−7m = 0.69 µm.

Exercise 3

q(x)

L

x

Figure 6: Beam with a distributed load.

The bar in figure 6 is loaded with a force that is distributed over the length of
the beam. The load is described as

q(x) = q0 ·
x

L
+ q1

and we want to calculate the internal forces N(x) and the displacement field
u(x) along the beam.
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1. Find the differential equation that describes the displacement field of
the beam u(x) as a function of E, A and q(x), by considering the three
essential equations of structural mechanics:
- constitutive equation : E = σ

ε

- kinematic equation : ε(x) = ∂u(x)
∂x

- equilibrium equation : ∂N(x)
∂x

+
∑
i

qi(x) +BxA(x) = 0

2. Find the boundary conditions for the bar and deduce boundary conditions
for u (or its derivatives).

3. Solve the equations for u(x). Deduce the expression of the internal force
in the beam N(x).

Exercise solution 3
Given: Geometry, A, E. Distributed load q(x) = q0 · xL + q1

Asked: Governing differential equation, boundary conditions, internal force
N(x) and displacement field u(x).

Relevant relationships:

Equilibrium equation

∂N(x)
∂x

+
∑
i

qi(x) +BxA(x) = 0

Constitutive equation (Hooke’s law)

E = σ

ε

Kinematic equation

ε(x) = ∂u(x)
∂x

1. Differential equation that links u and q Since Bx = 0, the equilibrium
equation becomes, in our case, ∂N(x)

∂x
+ q(x) = 0.

—–
Comment : this can also be demonstrated as during the class by considering
an infinitesimla element. From the equilibrium of forces in x-direction on a
differential element (figure 7) and using the linear approximation N(x+ dx) =
N(x) + ∂N(x)

∂x
· dx, we get the same result :

−N(x) +N(x) + dN(x) + q(x) · dx = 0 → ∂N(x)
∂x

+ q(x) = 0
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q(x)

L

x

N(x) N(x) + dN(x)

q(x)

dx

Figure 7: Beam with distributed load and differential element.

—–
From Hooke’s law we get:

E(x) = σ(x)
ε(x) = N(x)

A(x)ε(x) → N(x) = EAε(x) (1)

where E and A are constant.

By substituting this into the equilibrium equation we get:

∂N(x)
∂x

= ∂AE · ε(x)
∂x

= −q(x)

Finally we can add in the kinematic equation:

∂

∂x

(
AE · ∂u(x)

∂x

)
= −q(x)

Since A and E are constant, we can rewrite this as:

AEu′′(x) = −q(x) (2)

2. Boundary conditions The bar is clamped at x = 0 so there is no
displacement at that point: u(0) = 0. The free end can not support any force,
so the second boundary condition is N(L)0, which becomes AEu′(L) = 0 by
using the kinematic equation.

3. Displacement field u(x) We are now looking to solve our differential
equation for the displacement field.

Eqn. (2) becomes, if we replace q(x) by its explicit expression :

AE · ∂
2u(x)
∂x2 = −q0

x

L
− q1

We have to integrate twice to find our solution:
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AE · ∂u
∂x

(x) = −q0
x2

2L − q1x+ C1

u (x) = 1
AE

(
−q0

x3

6L −
q1
2 x

2 + C1x+ C2

)
where C1 and C2 are coefficients to be determined with the boundary conditions.

For C2 we get:

u(0) = 0→ C2 = 0

For C1 we have:

N(L) = 0→ u′(L) = 0.

AE · ∂u(L)
∂x

= −q0
L2

2L − q1L+ C1 = 0 → C1 = q0L

2 + q1L

Thus we finally obtain our solution:

u(x) = 1
AE

(
− q0

x3

6L −
q1
2 x

2 + (q0L

2 + q1L)x
)

4. Internal force N(x) Let’s now determine the internal force N(x).

From eqn. (1) we get:

N(x) = AEε(x) = AEu′(x)

By integrating eqn. (2) once, we can determine u′(x). Here we integrate from L
to x because we know the boundary condition at x = L:

u′(x)− u′(L) =
∫ x

L

−q(x)
AE

dx

u′(x) =
∫ x

L

−q(x)
AE

dx+ u′(L)

N(x) = AEu′(x) =
∫ L

x
q(x)dx+N(L)

From our boundary conditions, we know that N(L) = 0, and we thus get our
solution:

N(x) =
∫ L

x
q(x)dx =

[
q0
x2

2L + q1x
]L
x

= −q0
x2

2L − q1x+ q0L

2 + q1L

–
Note : this is equivalent to writing u′(x) =

∫ −q(x)
AE dx+ C without specifying the

boundaries of the integral and determining the value of C with the boundary
condition (as we did in the previous question)
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