Structural Mechanics Exercises week 3 Prof. G. Fantner

Exercise 1

A bar of unstretched length Iy with uniform mass density p is hung from a rigid
ceiling. The bar has a cross-sectional area A(y) which varies along the length of
the bar and has a value Aj at the bottom (see figure 1).

a) What is the equation that describes A(y) if the bar is to have uniform
stress ¢ in the horizontal plane along its length?

b) What is the total elongation of the bar in this case?

Figure 1: Structure with nonuniform cross—section supported on ceiling.

Exercise solution 1

Given: Unstretched length [y, mass density p, cross section area of the bottom
Ap, and uniform stress o.

Asked: Find the equation to describe A(y) and the total elongation of the
bar.

Relevant relationships:

Sum of forces

ZFZ-:O 1EX,Y, 2
i

Definition of stress
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a)
Variation 1 Start with a horizontal section at point y from the bottom. Use h

as the variable for the coordinate in the section. We can find W (y) by integrating
over h from 0 to y:

W(y) = /Oy gpA(h) dh = pg /Oy A(h) dh

A 0

w(y)

Figure 2: Forces on the structure.

from the equilibrium of forces:

Y Fy=0 — P(y)—W(y) =0, P(y)=W(y)

where
Yy
P(y) = py /0 A(h)dh

Since the stress over the structure is supposed to be constant (o(y) = o) we find

_P(y) 5 — P9Jd Alh)dh
A(y) A(y)

cAw) =pg [ A dn A =22 ["Am)an

g

This is the integral form of a common equation. To convert it into a more
familiar form, we can differentiate both sides with respect to y

dﬁ;y) _ jy <;;g /oyA(h) dh) = ’:ij (/OyA(h) dh)

From the fundamental theorem of calculus we get

4
dy

dA(y)

[ aman=aw) — SH =2 ag)
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which is a first order ordinary differential equation. We use the Ansatz A(y) =
cek¥ where ¢ and k are constants to be determined.
This gives us

ck:-eky:@c-eky - k==
o o

Using the boundary condition A(0) = Ay we get
A0)=cefP=¢ — =4

which finally gives us

Aly) = Age <,£;gy)

Variation 2 Alternatively, we can resolve this problem by solving the micro-
scopic equilibrium equation as seen in the course. In this case, we consider a
slice of height dy:

an(y)
NO) +=~dy

\ B,A()dy [1 o

Aly)

N(y)

Figure 3: Forces on the structure.

Since the stress over the structure is supposed to be constant (o(y) = o), the
kinematic equation becomes:

du(y)
dy

=e(y) = % = const

The force acting at the bottom of the slice is:

From the force equilibrium in the y-direction, we obtain:

dN(y)
dy

+ N(y) — pgA(y) — N(y) =0

Upon substitution of N(y), we get:
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dC;A(y)U = pgA(y)

Which simplifies to the formula we solved in variation 1:

dA(y) _ pyg
dy = ;A(y)

b)

We can calculate the elongation using Hooke’s Law (0 = E¢) and € = §/lp,
therefore

) oly
frd E— —_ —
o=k 0=

since o is a constant, as is [y and E, we are done.

Exercise 2

You want to calculate the deformation of a Y shaped trabecula section in the
trabecular bone of a vertebra as shown in figure 4. To simplify the calculation,
we model the Y-shaped trabecula as shown in figure 5. Assume that the hori-
zontal beam is both infinitely thin and stiff and that it does not bend.

Cortical

Cancellous

Figure 4: Schematics of a trabecular bone.

1. A force of F'1 = 0.5N is applied to the trabecular bone substructure.
Calculate the total elongation of the substructure, given the lengths
L; = 1.5mm, Ly = 0.8mm and the diameter d = 200pm. Young’s
modulus of the trabecular bone can be assumed to be F = 22 GPa.

2. There is now an extra force F2 = 0.2N applied to the bone as shown
in figure 5. State the superposition principle and calculate the total
elongation.
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Figure 5: Simplification of the bone for calculations.

Exercise solution 2

Given: Forces F'1 and F2, Young’s modulus F, diameter and lengths of the
substructures

Asked: Total elongation & in two different cases

Relevant relationships:

Hook’s law for normal stress o =FE ¢

AL ¢
N [ st =" =
ormal stress ¢ 7 7
P
N, [ strai =—
ormal strain o = —

1. In the first question, there is only one force, Fi. The total elongation of
the structure is the sum of the elongations from each substructure.
The elongation d can be expressed as a function of the applied force P

by using Hooke’s law and the definitions of the normal stress o and the
Istraine: 6= Le =12 = 22

normal strain £ : § = Le = L— = —

For the lower part, the length of the segment is Lo, and the applied force

Fy is distributed on the area A = 7(d/2)2. The same force Fy is acting

on the upper part of the structure (think about the methods of section

if you are not convinced), only that the force is distributed on the total

area of the two segments (with the length L;). Therefore, the area is

2A = 27(d/2)2.

As indicated, we neglect the interconnection structure and the mass of
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each segment. The Young’s modulus F is the same for all segments.

6‘50(’, 1= ﬂ Loty
" E-2A FEA
_ 1.5-1072-0.5 0.8-107%-0.5
221092 (2210702 T2 00 m(021072)2
=112x10 °m

The total elongation of the structure is therefore approximately 1.12 x 10~%m.

2. There are now two forces applied to the system, F; and Fy. The superpo-
sition principle states that, for all linear systems, the response to several
stimuli (forces in our case) is the sum of all the responses that would have
been caused by each individual stimulus. As a consequence, the elongation
of the system is the sum of the elongation ;0,1 caused by F; alone and
the elongation ;02 caused by F5 alone. We already determined d;,1 in
the previous question. Only the top part of the bone will be deformed
due to Fy (think about the methods of section if you are not convinced).
Since the F is pointing upwards, its effect is actually a contraction of the
beams. The total deformation due to F5 alone is thus :

L1 F5
) = —
tot,2 594 +0

1.5-1073.0.2
22109 . 2. (2210722
= 434%x10""m

Finally, according to the superposition principle, the total elongation due
to both Fy and Fb is 0ot = Stot,1 + Otor,2 = (1.12 — 0.43)10~"m = 0.69 pm.

Exercise 3

q(z)

L

Figure 6: Beam with a distributed load.

The bar in figure 6 is loaded with a force that is distributed over the length of
the beam. The load is described as

() .
xr) = . —
q QOL q1

and we want to calculate the internal forces N(z) and the displacement field
u(x) along the beam.
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1. Find the differential equation that describes the displacement field of
the beam u(x) as a function of E, A and ¢(x), by considering the three
essential equations of structural mechanics:

- constitutive equation : ¥ =

8U( )

- kinematic equation : 5(3:) =

- equilibrium equation : —|— Z )+ B, A(z) =

2. Find the boundary conditions for the bar and deduce boundary conditions
for u (or its derivatives).

3. Solve the equations for u(x). Deduce the expression of the internal force
in the beam N (z).

Exercise solution 3

Given: Geometry, A, E. Distributed load ¢(z) = qo- ¥ +¢1

Asked: Governing differential equation, boundary conditions, internal force
N(z) and displacement field u(z).
Relevant relationships:

Equz’libm’um equation

+Z ) + By A(z) =0

Constitutive equation (Hooke’s law)

=2
g

Kinematic equation

Ou(x)
Ox

e(x) =

1. Differential equation that links v and ¢ Since B, = 0, the equilibrium

];f) +q(z) = 0.

equation becomes, in our case,

Comment : this can also be demonstrated as during the class by considering
an infinitesimla element. From the equilibrium of forces in x-direction on a
differential element (figure 7) and using the linear approzimation N(x + dz) =

N(z)+ 8](;(;) -dx, we get the same result :
ON
—N(z)+ N(z) +dN(z) 4+ ¢(z) -de =0 — 856) +q(z) =0
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. q(x)
q(z) L ‘ N(z) " N(z) + dN(z)
» 7 Y > \<d—x>\

Figure 7: Beam with distributed load and differential element.

From Hooke’s law we get:

where E and A are constant.

By substituting this into the equilibrium equation we get:

ON(z) OAE-e(x)
oxr Ox = @)

Finally we can add in the kinematic equation:

% (AE- 62;:6)) = —q(z)

Since A and E are constant, we can rewrite this as:

AEu"(x) = —q(x) (2)

2. Boundary conditions The bar is clamped at * = 0 so there is no
displacement at that point: u(0) = 0. The free end can not support any force,
so the second boundary condition is N(L)0, which becomes AEu/'(L) = 0 by
using the kinematic equation.

3. Displacement field u(x) We are now looking to solve our differential
equation for the displacement field.

Eqn. (2) becomes, if we replace ¢(z) by its explicit expression :

. 0u(zx)

X
AFE W = _QOZ_QI

We have to integrate twice to find our solution:
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ou 2
AFE - 9 (:L') = —qu —qz+ Cy

1 a3
u(e) = = (—q06L - %%2 + Oz + 02>

where C7 and Cs are coefficients to be determined with the boundary conditions.

For C5 we get:
u(0)=0—-Cy=0

For C7 we have:
N(L)=0— /(L) = 0.

du(L) % gL
AE - — g0 — 1L -0 - Pt L
O Gy ~nb+C1=0 Gi="%+a

Thus we finally obtain our solution:

1 z? q1 o qoL
u(z) = E( — gy ~ 5% + (7 —i—qlL)m)

4. Internal force N(x) Let’s now determine the internal force N(x).
From eqn. (1) we get:
N(x) = AFe(z) = AEY ()

By integrating eqn. (2) once, we can determine u'(x). Here we integrate from L
to x because we know the boundary condition at x = L:

q(z)
Vo dx

() — (L) = /Lx

v (z) = /Lw _Z%U)dx +u/(L)

L
N(z) = AEW (z) = / ¢(z)dz + N(L)

x
From our boundary conditions, we know that N (L) = 0, and we thus get our
solution:

2 2

L x L T qoL
N(z) = / q(z)dx = [q()ﬁ + q1xL =~y — @@+ -+ qL
xT

Note : this is equivalent to writing u'(z) = [ %%)dx + C without specifying the
boundaries of the integral and determining the value of C with the boundary
condition (as we did in the previous question)




	
	

