Structural Mechanics Exercises week 9 Prof. G. Fantner

Exercise 1
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Figure 1: The state of stress on an element of a structure

A 2D stress element is subjected to the normal stresses o, = 50 MPa, oy, =
10 MPa and shear stress 7,, = —20 MPa shown in the drawing in figure 1. We
know that the material of the element has a weak axis rotated 30° counter
clockwise.

a) What are the normal and shear stresses along that axis? Calculate once
with the formulas we derived in class and once with matrix rotation.

As discussed in class, there exists for every stress state a set of directions in
which the normal stresses are maximum and minimum, and the shear stresses
are equal to zero. These axes are called the principal axes, and the corresponding
stresses are called the principal stresses.

b) For the stress state above, calculate the principal stresses and the principal
axes using the formulas from the formula sheet.

c¢) Calculate the principal stresses and the principal axes of the element using
the stress tensor. Hint: the principal stresses are the eigenvalues of the
stress tensor, while the principal azes are given by the eigenvectors.

Exercise solution 1
Given:
o Normal stresses: 0, = 50 MPa, oy, = 10 MPa.

o Shear stress: 7,, = —20MPa

Asked:

e Stresses when rotated 30° ccw by formulas and by matrix transformation.
e The principal stresses.

e The directions of the principal stresses.
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Relevant relationships: Stress transformations:

Opx + O Opx — O .
Op = —2 5 vy 4 2% 5 Y 0820 + Tyy sin 20
Orx + O Opp — O .
oy = ——H W 0520 — 7, 5in 20
2 2
Ouz — Oyy .
Tyry = —% sin 260 + 74, cos 20
a)

With formulas: We calculate the double angle sines (CCW is positive!) to
get:

1
sin(2-30°) = Y3 cos(2-30°) = -
2 2
And with that we can find the rotated stress states as:
0 MPa + 10 MP MPa — 10 MPa 1
5! — 50MPa+10MPa 50 MPa — 10 a'7+_20MPa'§
2 2 2 2
- (40 _ 10\/5) — 92.6MPa
50 MPa + 10MPa 50 MPa — 10MPa 1 3
ol = at a_ a a1 onpa. Y3
vy 9 9 9 9
— (20 + 10\/5) — 37.3MPa
—50MPa — 10MPa /3 1
Thy = = 2. ‘2[ +=20MPa- 5 = (~10 - 10v3) = ~27.3MPa

By matrix rotation: We first get the rotation matrix and its inverse:

VE] 1 T v3 1
-1 _ — |72 2
LA E

2
at which point we can find the rotated stress tensor from the original one:

|
‘%w\»—t

sinf  cos@

R lcosﬁ —sm@]

1
2 2

V3 17150 —20 V3
I —1 _
o =R '0'~R—[2% \%1 [_20 10]MP&[§

[v3 110953 -10 —25— 103
=12 \Qf MPa
—1 B [5-10v3  10+5V3

[ 3(25v3-10)VB+3-5v3 -2 VB+5+5(5-10v3)V3 .

a
1(-25-10v3)V3+5+3v3  Z+5V3+5(10+5V3) V3

[ 40 —10v/3  —10—10v/3

|
w‘&w\»—l
- 1

= | 10-10v3 20+ 10y3 | VP2
(226 —27.3
~|-273 373 ] MPa
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b)

According to the formula sheet, the principal stresses in 2D are:

Oxz + O Ogpy — O.
o= yy+\/( = yy)2—|—7'x2y

2 2
50+ 10 50— 10
_ ;r n \/ ( )2 4 202
= 58.3MPa

SRS N =y

_ 50 + 10 B \/(5010
2
= 1.7TMPa

)%+ 202

The principal axes are given by:

2
tan 20, = _ oy
Ozz — Oyy
27, 2-(—20)
0 = _. tan — 24— Z. tan ——— 72
b= 3 arctan Pa—— arctan 010
0,1 = —22.5°
Op2 = 67.5°

Note that both axes are orthogonal.

c)

Principal stresses: By definition, the principal stresses are the eigenvalues
of the stress tensor.

50 —20 10
detq—zo 10]_0[0 1])0

50— —20
det([—m 10—0D_0

(50 — 0)(10 — o) — (—20)(—20) = 0
02 — 600 + 100 = 0

The solutions of the equation o2 — 600 + 100 = 0 are:

o1 = 30 + 20v/2 = 58.3MPa o9 = 30 — 20v/2 = 1.7MPa

Principal axes: The principal axes are the eigenvectors of the stress tensor.




Structural Mechanics Exercises week 9 Prof. G. Fantner

The first principal axis e; corresponds to the main stress oy. It is defined by a
vector solution of the equation o - e1 = o7 - €7.

l 50 _20] : m — (30 4+ 20v/2) lx =0
y v

—-20 10
(1-V2)z—y | _
20 l—x—(l—i—x/ﬁ)y_ =0

|-

And the first principal axis is defined by the vector:

17
V2-1
1

1
e1 = [ \?—11 — B, = arctan —(v2 — 1) = —22.5°

In the same manner, es is solution of o - e2 = 09 - €9 :

50 —20 T x
% 2] f-m-maf]-
(1+\/§)w—y] 0

- vay

1
ey = l‘r] = l\/ﬂl] - Opo = arctan(\/§+ 1) =67.5°

One can notice that e; - e = —ﬁ . ﬁ 4+ 11 = 0 which shows again that
the two principal axes are orthogonal. This is not surprising as the eigenvectors
of a symmetric matrix (and o is a symmetric matrix) are always orthogonal
according to the spectral theorem.

Exercise 2

(a) Bacterial cell wall archi- (b) Very simplified model of a bacterial pep-
tecture. Scale bar is 1 pm. tidoglycan structure.

Figure 2: Gram-negative bacterium.

In a gram-negative bacterium, the peptidoglycan layer is situated between
the inner and outer lipid bi-layer. This peptidoglycan layer is believed to be
responsible for the mechanical stability and robustness of the bacterial wall.
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Figure 2a depicts the architecture of the peptidoglycan, which a recent study
has revealed!.

We simplify the shown peptidoglycan architecture and consider the model as
shown in figure 2b. The bacterium has an internal pressure p of 150kPa. The
peptidoglycan cables form an angle § = 55° with the longitudinal axis of the
cylinder. Consider only the peptidoglycan layer as the bacterial wall with a
thickness of ¢ = 50 nm, a Young’s modulus £ = 10 MPa and a Poisson ratio of
v = 0.3. The rod shaped bacterium has a radius of R = 0.5 pm. Calculate:

a) The principal stresses in an element in the cylindrical part of the bacterium.
To do so, consider a 2D element of the bacterial wall, assuming plane
stress.

b) The tensile and shear stresses in an element aligned to the peptidoglycan
cables.

¢) The longitudinal and hoop strains in the bacterium.

Hint: Use the approximations for stress in thin walled structures.

Exercise solution 2
Given:

e Geomerty: Radius R = 0.5 pm, wall thickness ¢ = 50 nm, angle of peptido-
glycan cable alignment 6 = 55°.

o Inside pressure p of 150 kPa.

e Material properties £ = 10 MPa, v = 0.3.

Asked:
e Principal stresses o1 and o».
o Shear and normal stresses along the bacterium.

e Hoop and longitudinal strains in the bacterium.

Relevant relationships:

e Hoop stress oy and longitudinal stress oy, with pressure p , thickness ¢
and radius R.
pR pR
oy = — oL = —
t 2t
"Hayhurst, Emma J., et al. "Cell wall peptidoglycan architecture in Bacillus subtilis."
Proceedings of the National Academy of Sciences 105.38 (2008): 14603-14608.
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o Transformation equations for plane stress :

Or + 0 Op —
o = Y

Ty cos(20) + 7,y sin(26)

v 2 2
= Iz ; 9y _ %= ; % c0s(20) — Tyy sin(26)
Toy = Tz ; % sin(26) + 74, cos(26)

e Strains in the plane

1
(02 —voy) €y = E (oy —voy)

| —

Figure 3: Simplified bacterial wall model with added elements.

a)

We get the principal stresses along the hoop and longitudinal dimensions, since
no additional shear loads act on the structure. Thus:

pR  150kPa - 0.5 1m pR o1
= = = 1.5MP = =— = —
t 50 nm g & 72 =L 2t 2

o1 =0g = = 750kPa

b)

Knowing that o, = 09 = 750kPa, 0y = 01 = 1.5 MPa and 7., = 0 MPa, we can
apply the transformation equations for plane stress.

Using the formulas for rotation around the angle ' = —f = —55° of the stress
we get

, _oL+og 0L —0H

o, = 5 5 cos(20') = 1.253 MPa
o, = oL -12_ on _ oL ; on cos(20') = 997 kPa
Tary = _¥ sin(20') = —352kPa
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c)
Longitudinal strain:

1

€9 =€ = E(O'L—VO'H) =30x 1073
Hoop strain:
1 -3
€1 :SH:E(UH*VO'L):128X 10

Exercise 3

Figure 4: The state of stress on an element of a structure

The state of stress on an element of a structure is illustrated in Figure 4.

a) Determine the principal stresses o1, o2 and o3.
b) Deduce from it the maximum shear stress Tax, knowing that

max (o1, 09,03) — min(oy, 02, 03)
2

Tmax =

Exercise solution 3
Given:
« normal stresses: o, = 20 MPa, oy, = —40 MPa and o, = 100 MPa

o shear stresses: 7., = —40 MPa, 7,, = 0 MPa and 7., = 0 MPa

o the maximum shear stress T, = "e2(01.02,03)—min(01,02,03)

Asked:
e the principal stresses

e the maximum shear stress
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Relevant relationships:
« the characteristic equation: ¢ — I10% 4+ Iyo — I3 = 0 with

L =0,+o0y+o0.

_ 2 2 2
Iy =0.0y+ 0.0, +0y0, — Toy — Taz — Tyz

2 2 2
I3 = 0,000, + 2TpyTuxTy — OaTyy — OyTy, — O2Tay

a)

The stress state can be written as the stress tensor:

20 —40 0
o =|—-40 —40 0 | MPa
0 0 100

Since shear stresses 7., and 7. equal 0 then we can see that the o, = 100 MPa
is already one principal stress. One way we can see this is because principal
stresses are the solutions of the equation:

det (?—A?) —0

So once we solve this equation and find all A that satisfy the equation, these will
be all the principal stresses (these are the roots of our characteristic equation
A — N2+ A —1I3 =0, only we wrote o instead of A on lectures). For the
case of our stress tensor matrix we can see that the mentioned equation can be
written as

20— A —40 0
det —40 —40- X 0 =
0 0 100 — A
20— A —40
(1OOMPa—/\)-det<l 40 _40_)\1>—O

(100 MPa — )) - det <l_2£0 :ig] - A?) —0

So we see that A = 100 MPa really satisfies the equation.

To get other principal stresses, we calculate the stress invariants 17, I and Is:
I = oy + 0y + 0, =80 MPa
Iy = 0.0y + 0,0, +0y0, — Tgy = —4400 MPa?
I3 = 0,040, — 0,72, = —240 000 MPa?

Further out I will omit writing units in the characteristic equation for the sake
of easier writing.
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We can now write the characteristic equation as
0% — 8002 — 44000 + 240000 = 0

Since we know that one principal stress equals o1 = 100 MPa we can divide the
characteristic equation with ¢ — 100 to get other two principal stresses:

(0 — 100)(0? 4 200 — 2400) = 0

Solving the second order polynomial on the right we get values of other two
principal stresses:

09 = 40 MPa and o3 = —60 MPa

b)
The maximum shear force can be determined with the relation :

max (o1, 09,03) — min(o, 02, 03)

Tmax = 9

In our case, we get :

03 — 01

= 80 MPa

Tmazxz =

Exercise 4

A wire strain gauge can effectively measure strain in only one direction. To
determine the three independent components of plane strain, three linearly
independent strain measures are needed, i.e., three strain gauges positioned in a
rosette-like layout.

Figure 5: Rosette-like strain layout
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a) Determine the value of 4, €5, and €. as a function of €;, €y, Yzy, @, 5 and
~. You can derive the transformation formulas for strain in analogy to the
stress transformations.

b) For v = 30° and 8 = v = 60° (60° strain rosette configuration), you
measure the following strains : e, = 300um/m, &, = 100um/m and
gc = 10pm/m. Determine the values of ¢, €, and v,y.

Exercise solution 4

Given:
e Rosette layout

o angles : @ =30° [ =~ =60° and strain :g, = 300um/m, e, = 100um/m
and e, = 10um/m

Asked:
« value of g4, &, and ¢, as a function of e, €, Vzy, @, 8 and 7
 values of e, gy and 7,y for given measured strains e, = 300um/m,
ep = 100um/m and e. = 10um/m
Relevant relationships: &/ (6) = @ + 2257 cos(26) + 22 sin(26)
a)
The strain €(0) in direction 6 can be determined thanks to a matrix coordinate
transform. In this exercise, we are interested only in the strain €,(6) = €(0)1,1 :

sin(f)  cos(6) v gy sin(f) cos(6)

3 -1 Yy .
e(0) = lcos(e) _Sln(g)l ) lfm 2] _ [OOS(@) —Sln(@)}

e(0)11 = = ;— S ; v cos(260) + %sm(%)
(Note : this result is in the formulary)
As a consequence,

Eq = + cos(2a) + == sin(2a)

2 2 2
ep = 593;‘53/ + Ex ; Ey COS(Q(O[ + 5)) + %Sin(z(a +/3))
Ext¢€ Ex — € )
Ec = x2 Y4 ’I2 yCos(?(a‘i‘ﬁ‘f")/))+%Sln(2(a+ﬂ+’y>)

10
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b)

When a = 30° and 8 = v = 60°, the previous three equations become :

3 1 V3

4 4
ep = €y = 100 pm/m
3 1 V3
Ee = 153; + Z&y — T’Yzy = 10pm/m

And we can now deduce the strains in x and y directions, as well as 7y, :

£y = 173pm/m
gy = 100 pm/m
Yoy = 335 pm/m

11



	
	
	
	
	
	
	
	
	
	

