
Structural Mechanics Exercises week 9 Prof. G. Fantner

Exercise 1
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Figure 1: The state of stress on an element of a structure

A 2D stress element is subjected to the normal stresses σxx = 50 MPa, σyy =
10 MPa and shear stress τxy = −20 MPa shown in the drawing in figure 1. We
know that the material of the element has a weak axis rotated 30° counter
clockwise.

a) What are the normal and shear stresses along that axis? Calculate once
with the formulas we derived in class and once with matrix rotation.

As discussed in class, there exists for every stress state a set of directions in
which the normal stresses are maximum and minimum, and the shear stresses
are equal to zero. These axes are called the principal axes, and the corresponding
stresses are called the principal stresses.

b) For the stress state above, calculate the principal stresses and the principal
axes using the formulas from the formula sheet.

c) Calculate the principal stresses and the principal axes of the element using
the stress tensor. Hint: the principal stresses are the eigenvalues of the
stress tensor, while the principal axes are given by the eigenvectors.

Exercise solution 1
Given:

• Normal stresses: σxx = 50 MPa, σyy = 10 MPa.

• Shear stress: τxy = −20 MPa

Asked:

• Stresses when rotated 30° ccw by formulas and by matrix transformation.

• The principal stresses.

• The directions of the principal stresses.
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Structural Mechanics Exercises week 9 Prof. G. Fantner

Relevant relationships: Stress transformations:

σx′ = σxx + σyy
2 + σxx − σyy

2 cos 2θ + τxy sin 2θ

σy′ = σxx + σyy
2 − σxx − σyy

2 cos 2θ − τxy sin 2θ

τx′y′ = −σxx − σyy2 sin 2θ + τxy cos 2θ

a)

With formulas: We calculate the double angle sines (ccw is positive!) to
get:

sin(2 · 30°) =
√

3
2 cos(2 · 30°) = 1

2
And with that we can find the rotated stress states as:

σ′xx = 50 MPa + 10 MPa
2 + 50 MPa− 10 MPa

2 · 1
2 +−20 MPa ·

√
3

2
=
(
40− 10

√
3
)

= 22.6MPa

σ′yy = 50 MPa + 10 MPa
2 − 50 MPa− 10 MPa

2 · 1
2 −−20 MPa ·

√
3

2
=
(
20 + 10

√
3
)

= 37.3MPa

τ ′xy = −50 MPa− 10 MPa
2 ·

√
3

2 +−20 MPa · 1
2 =

(
−10− 10

√
3
)

= −27.3MPa

By matrix rotation: We first get the rotation matrix and its inverse:

R =
[
cos θ − sin θ
sin θ cos θ

]
=
[√

3
2 −1

2
1
2

√
3

2

]
R−1 = RT =

[√
3

2
1
2

−1
2

√
3

2

]

at which point we can find the rotated stress tensor from the original one:

σ′ = R−1 · σ ·R =
[√

3
2

1
2

−1
2

√
3

2

] [
50 −20
−20 10

]
MPa

[√
3

2 −1
2

1
2

√
3

2

]

=
[√

3
2

1
2

−1
2

√
3

2

] [
25
√

3− 10 −25− 10
√

3
5− 10

√
3 10 + 5

√
3

]
MPa

=

 1
2

(
25
√

3− 10
)√

3 + 5
2 − 5

√
3 −25

2
√

3 + 5 + 1
2

(
5− 10

√
3
)√

3
1
2

(
−25− 10

√
3
)√

3 + 5 + 5
2
√

3 25
2 + 5

√
3 + 1

2

(
10 + 5

√
3
)√

3

MPa

=
[

40− 10
√

3 −10− 10
√

3
−10− 10

√
3 20 + 10

√
3

]
MPa

=
[

22.6 −27.3
−27.3 37.3

]
MPa
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b)

According to the formula sheet, the principal stresses in 2D are:

σ1 = σxx + σyy
2 +

√
(σxx − σyy2 )2 + τ2

xy

= 50 + 10
2 +

√
(50− 10

2 )2 + 202

= 58.3MPa

σ2 = σxx + σyy
2 −

√
(σxx − σyy2 )2 + τ2

xy

= 50 + 10
2 −

√
(50− 10

2 )2 + 202

= 1.7MPa

The principal axes are given by:

tan 2θp = 2τxy
σxx − σyy

θp = 1
2 · arctan 2τxy

σxx − σyy
= 1

2 · arctan 2 · (−20)
50− 10

θp,1 = −22.5°
θp,2 = 67.5°

Note that both axes are orthogonal.

c)

Principal stresses: By definition, the principal stresses are the eigenvalues
of the stress tensor.

det

([
50 −20
−20 10

]
− σ

[
1 0
0 1

])
= 0

det

([
50− σ −20
−20 10− σ

])
= 0

(50− σ)(10− σ)− (−20)(−20) = 0
σ2 − 60σ + 100 = 0

The solutions of the equation σ2 − 60σ + 100 = 0 are:

σ1 = 30 + 20
√

2 = 58.3MPa σ2 = 30− 20
√

2 = 1.7MPa

Principal axes: The principal axes are the eigenvectors of the stress tensor.
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The first principal axis e1 corresponds to the main stress σ1. It is defined by a
vector solution of the equation σ · e1 = σ1 · e1.[

50 −20
−20 10

]
·
[
x
y

]
− (30 + 20

√
2)
[
x
y

]
= 0

20
[

(1−
√

2)x− y
−x− (1 +

√
2)y

]
= 0[

x
y

]
=
[
− 1√

2−1
1

]

And the first principal axis is defined by the vector:

e1 =
[
− 1√

2−1
1

]
→ θp,1 = arctan−(

√
2− 1) = −22.5°

In the same manner, e2 is solution of σ · e2 = σ2 · e2 :[
50 −20
−20 10

]
·
[
x
y

]
− (30− 20

√
2)
[
x
y

]
= 0

20
[

(1 +
√

2)x− y
−x− (1−

√
2)y

]
= 0

e2 =
[
x
y

]
=
[ 1√

2+1
1

]
→ θp,2 = arctan (

√
2 + 1) = 67.5°

One can notice that e1 · e2 = − 1√
2−1 ·

1√
2+1 + 1 · 1 = 0 which shows again that

the two principal axes are orthogonal. This is not surprising as the eigenvectors
of a symmetric matrix (and σ is a symmetric matrix) are always orthogonal
according to the spectral theorem.

Exercise 2

(a) Bacterial cell wall archi-
tecture. Scale bar is 1 µm.

θR

(b) Very simplified model of a bacterial pep-
tidoglycan structure.

Figure 2: Gram-negative bacterium.

In a gram-negative bacterium, the peptidoglycan layer is situated between
the inner and outer lipid bi-layer. This peptidoglycan layer is believed to be
responsible for the mechanical stability and robustness of the bacterial wall.
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Figure 2a depicts the architecture of the peptidoglycan, which a recent study
has revealed1.
We simplify the shown peptidoglycan architecture and consider the model as
shown in figure 2b. The bacterium has an internal pressure p of 150 kPa. The
peptidoglycan cables form an angle θ = 55° with the longitudinal axis of the
cylinder. Consider only the peptidoglycan layer as the bacterial wall with a
thickness of t = 50 nm, a Young’s modulus E = 10 MPa and a Poisson ratio of
ν = 0.3. The rod shaped bacterium has a radius of R = 0.5 µm. Calculate:

a) The principal stresses in an element in the cylindrical part of the bacterium.
To do so, consider a 2D element of the bacterial wall, assuming plane
stress.

b) The tensile and shear stresses in an element aligned to the peptidoglycan
cables.

c) The longitudinal and hoop strains in the bacterium.

Hint: Use the approximations for stress in thin walled structures.

Exercise solution 2
Given:

• Geomerty: Radius R = 0.5 µm, wall thickness t = 50 nm, angle of peptido-
glycan cable alignment θ = 55°.

• Inside pressure p of 150 kPa.

• Material properties E = 10 MPa, ν = 0.3.

Asked:

• Principal stresses σ1 and σ2.

• Shear and normal stresses along the bacterium.

• Hoop and longitudinal strains in the bacterium.

Relevant relationships:

• Hoop stress σH and longitudinal stress σL with pressure p , thickness t
and radius R.

σH = pR

t
σL = pR

2t
1Hayhurst, Emma J., et al. "Cell wall peptidoglycan architecture in Bacillus subtilis."

Proceedings of the National Academy of Sciences 105.38 (2008): 14603-14608.
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• Transformation equations for plane stress :

σ′x = σx + σy
2 + σx − σy

2 cos(2θ) + τxy sin(2θ)

σ′y = σx + σy
2 − σx − σy

2 cos(2θ)− τxy sin(2θ)

τ ′xy = −σx − σy2 sin(2θ) + τxy cos(2θ)

• Strains in the plane

εx = 1
E

(σx − νσy) εy = 1
E

(σy − νσx)

R
A

σH

σL B

σ′y

σ′x
τ ′

Figure 3: Simplified bacterial wall model with added elements.

a)

We get the principal stresses along the hoop and longitudinal dimensions, since
no additional shear loads act on the structure. Thus:

σ1 = σH = pR

t
= 150 kPa · 0.5 µm

50 nm = 1.5 MPa σ2 = σL = pR

2t = σ1
2 = 750 kPa

b)

Knowing that σx = σ2 = 750 kPa, σy = σ1 = 1.5 MPa and τxy = 0 MPa, we can
apply the transformation equations for plane stress.
Using the formulas for rotation around the angle θ′ = −θ = −55° of the stress
we get

σ′x = σL + σH
2 + σL − σH

2 cos(2θ′) = 1.253 MPa

σ′y = σL + σH
2 − σL − σH

2 cos(2θ′) = 997 kPa

τx′y′ = −σL − σH2 sin(2θ′) = −352 kPa
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c)

Longitudinal strain:

ε2 = εL = 1
E

(σL − νσH) = 30× 10−3

Hoop strain:

ε1 = εH = 1
E

(σH − νσL) = 128× 10−3

Exercise 3

Figure 4: The state of stress on an element of a structure

The state of stress on an element of a structure is illustrated in Figure 4.

a) Determine the principal stresses σ1, σ2 and σ3.

b) Deduce from it the maximum shear stress τmax, knowing that

τmax = max(σ1, σ2, σ3)−min(σ1, σ2, σ3)
2

Exercise solution 3
Given:

• normal stresses: σx = 20 MPa, σy = −40 MPa and σz = 100 MPa

• shear stresses: τxy = −40 MPa, τyz = 0 MPa and τxz = 0 MPa

• the maximum shear stress τmax = max(σ1,σ2,σ3)−min(σ1,σ2,σ3)
2

Asked:

• the principal stresses

• the maximum shear stress
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Relevant relationships:

• the characteristic equation: σ3 − I1σ
2 + I2σ − I3 = 0 with

I1 = σx + σy + σz

I2 = σxσy + σxσz + σyσz − τ2
xy − τ2

xz − τ2
yz

I3 = σxσyσz + 2τxyτxzτyz − σxτ2
yz − σyτ2

xz − σzτ2
xy

a)

The stress state can be written as the stress tensor:

←→σ =

 20 −40 0
−40 −40 0

0 0 100

MPa

Since shear stresses τxz and τyz equal 0 then we can see that the σz = 100 MPa
is already one principal stress. One way we can see this is because principal
stresses are the solutions of the equation:

det
(←→σ − λ←→E ) = 0

So once we solve this equation and find all λ that satisfy the equation, these will
be all the principal stresses (these are the roots of our characteristic equation
λ3 − I1λ

2 + I2λ − I3 = 0, only we wrote σ instead of λ on lectures). For the
case of our stress tensor matrix we can see that the mentioned equation can be
written as

det


20− λ −40 0
−40 −40− λ 0

0 0 100− λ


 =

(100 MPa− λ) · det
([

20− λ −40
−40 −40− λ

])
= 0

(100 MPa− λ) · det
([

20 −40
−40 −40

]
− λ
←→
E

)
= 0

So we see that λ = 100 MPa really satisfies the equation.

To get other principal stresses, we calculate the stress invariants I1, I2 and I3:

I1 = σx + σy + σz = 80 MPa

I2 = σxσy + σxσz + σyσz − τ2
xy = −4400 MPa2

I3 = σxσyσz − σzτ2
xy = −240 000 MPa3

Further out I will omit writing units in the characteristic equation for the sake
of easier writing.
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We can now write the characteristic equation as

σ3 − 80σ2 − 4400σ + 240000 = 0

Since we know that one principal stress equals σ1 = 100 MPa we can divide the
characteristic equation with σ − 100 to get other two principal stresses:

(σ − 100)(σ2 + 20σ − 2400) = 0

Solving the second order polynomial on the right we get values of other two
principal stresses:

σ2 = 40 MPa and σ3 = −60 MPa

b)

The maximum shear force can be determined with the relation :

τmax = max(σ1, σ2, σ3)−min(σ1, σ2, σ3)
2

In our case, we get :

τmax = σ3 − σ1
2 = 80 MPa

Exercise 4
A wire strain gauge can effectively measure strain in only one direction. To
determine the three independent components of plane strain, three linearly
independent strain measures are needed, i.e., three strain gauges positioned in a
rosette-like layout.

Figure 5: Rosette-like strain layout
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a) Determine the value of εa, εb and εc as a function of εx, εy, γxy, α, β and
γ. You can derive the transformation formulas for strain in analogy to the
stress transformations.

b) For α = 30o and β = γ = 60o (60o strain rosette configuration), you
measure the following strains : εa = 300µm/m, εb = 100µm/m and
εc = 10µm/m. Determine the values of εx, εy and γxy.

Exercise solution 4
Given:

• Rosette layout

• angles : α = 30o, β = γ = 60o and strain :εa = 300µm/m, εb = 100µm/m
and εc = 10µm/m

Asked:

• value of εa, εb and εc as a function of εx, εy, γxy, α, β and γ

• values of εx, εy and γxy for given measured strains εa = 300µm/m,
εb = 100µm/m and εc = 10µm/m

Relevant relationships: ε′x(θ) = εx+εy

2 + εx−εy

2 cos(2θ) + γxy

2 sin(2θ)

a)

The strain ε(θ) in direction θ can be determined thanks to a matrix coordinate
transform. In this exercise, we are interested only in the strain εx(θ) = ε(θ)1,1 :

ε(θ) =
[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]−1

·
[
εx

γxy

2
γxy

2 εy

]
·
[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]

ε(θ)1,1 = εx + εy
2 + εx − εy

2 cos(2θ) + γxy
2 sin(2θ)

(Note : this result is in the formulary)
As a consequence,

εa = εx + εy
2 + εx − εy

2 cos(2α) + γxy
2 sin(2α)

εb = εx + εy
2 + εx − εy

2 cos(2(α+ β)) + γxy
2 sin(2(α+ β))

εc = εx + εy
2 + εx − εy

2 cos(2(α+ β + γ)) + γxy
2 sin(2(α+ β + γ))
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b)

When α = 30o and β = γ = 60o, the previous three equations become :

εa = 3
4εx + 1

4εy +
√

3
4 γxy = 300 µm/m

εb = εy = 100 µm/m

εc = 3
4εx + 1

4εy −
√

3
4 γxy = 10 µm/m

And we can now deduce the strains in x and y directions, as well as γxy :

εx = 173 µm/m
εy = 100 µm/m
γxy = 335 µm/m
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