
Structural Mechanics Exercises week 4 Prof. G. Fantner

Exercise 1
The mechanical properties of a healed femur bone are being investigated. In
the place where the break healed, a thickening of the bone has occurred. A
simplified sketch of the structure can be seen in figure 1. The bone has a uniform
Young’s modulus of E1 = 60 GPa in the unbroken part and E2 = 40 GPa = 2

3E1
in the healed part, a segment length of L = 20 cm and a cross sectional area of
A = 5 cm2.

If the bone is clamped at both ends and stressed by a force F = 11 kN at the
thickened part, calculate the external reaction forces and displacements. Use
the displacement stiffness method.

Figure 1: Simplified structure of a bone with a fortification in the middle that
is being loaded.

Exercise solution 1
What is given:

• Young’s Moduli E1 = 60 GPa and E2 = 40 GPa = 2
3E1

• Cross–sectional area A = 5 cm2

• Segment length L = 20 cm

• Loading force F = 11 kN

What is asked:

• Displacements u2, u3

• Reaction forces F1, F4

Applicable formulas:

• Hooke’s Law Eε = σ

1. As we have two boundaries and two discontinuities we find four nodes.
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Figure 2: Sectioned system with local displacements and local forces indicated.

2. We cut the system into pieces at the discontinuities to get three individual
segments that can be treated locally (see figure 2).

3. We find the local force stiffness relations of the system as

f 1
1 = k1 · (u1 − u2) f 2

2 = k2 · (u2 − u3) f 3
3 = k3 · (u3 − u4)

f 1
2 = k1 · (u2 − u1) f 2

3 = k2 · (u3 − u2) f 3
4 = k3 · (u4 − u3)

which we can rewrite in matrix form as{
f 1

1
f 1

2

}
= k1

[
1 −1
−1 1

]
︸ ︷︷ ︸

k 1

{
u1
u2

} {
f 2

2
f 2

3

}
= k 2

{
u2
u3

} {
f 3

3
f 3

4

}
= k 3

{
u3
u4

}

(1)

where the stiffness k is given by Hooke’s law as

k1 = E1A

L
k2 =

E · 4
3A

L
= 4

3
E1A

L
k3 = E1A

L

4. The formulas in (1) represent local stiffness relations which can be expanded
to the global form by filling the matrices appropriately with zeroes

f 1
1
f 1

2
0
0

 = E1A

L


1 −1 0 0
−1 1 0 0
0 0 0 0
0 0 0 0

 ·

u1
u2
u3
u4


0
f 2

2
f 2

3
0

 = 4
3
E1A

L


0 0 0 0
0 1 −1 0
0 −1 1 0
0 0 0 0

 ·

u1
u2
u3
u4


0
0
f 3

3
f 3

4

 = E1A

L


0 0 0 0
0 0 0 0
0 0 1 −1
0 0 −1 1

 ·

u1
u2
u3
u4


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and finally superimposing the three subproblems to get the full displace-
ment stiffness equation for the system as

F1
F2
F3
F4

 =


f 1

1
f 1

2 + f 2
2

f 2
3 + f 3

3
f 3

4

 = E1A

L


1 −1 0 0
−1 7

3 −4
3 0

0 −4
3

7
3 −1

0 0 −1 1

 ·

u1
u2
u3
u4

 (2)

5. To solve this we use the boundary conditions that the system is clamped
at both ends (u1 = u4 = 0) as well as that we know the external forces
around the thicker part (F2 = F , F3 = 0 (no external force at the node
3!)) which results in the reduced system{

F
0

}
= E1A

L
·
[

7
3 −4

3
−4

3
7
3

] {
u2
u3

}

6. The reduced system can be solved either with substitution or by matrix
inversion to get the nodal displacements

u2 = 7
11

FL

E1A
, u3 = 4

11
FL

E1A

7. Putting this back into the matrix equation (2) we get the reaction forces
F1 = − 7

11F and F4 = − 4
11F .

Finally we calculate u2 = 46.6 µm, u3 = 36.7 µm, F1 = −7 kN and F4 =
−4 kN as numerical values.

Exercise 2
A force F acts at point B on a structure (see Fig. 3). The structure is clamped
on both sides and the maximum diameter of the structure is dA while the small
diameter is dB. The structure has a Young’s modulus E and a length 2L.

a) Define the nodes in the system. Deduce the displacement-stiffness equation
for the system. You will use k1 as the stiffness of the left part of the
system (between points A and B) and k2 as the stiffness of the right part
of the system (between points B and C), without trying to find their value
yet.

b) For this question and the next one, we consider that dA = 2d and dB = d.
Determine k1 and k2 as a function of E, L and d.

c) Deduce the reaction forces RA and RC , as well as the displacement uB , as
a function of E, L, d and F . Draw the reaction forces on the schematics
and respect the sign convention.
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Figure 3: Force F acting on the structure.

Exercise solution 2
Given:

Young’s Modulus E
Diameters dA and dB

Segments lengths L
Force F at point B

Asked:

Displacement at point B
Reaction forces at points A and C

Relevant relationships:

Hooke’s Law Eε = σ

Kinematic equation ε(x) = ∂u
∂x(x)

Equilibrium equation ∂N
∂x (x) = 0 when there are no distributed forces.

a)

First we cut the system into pieces at the discontinuities to get two individual
segments that can be treated locally (see figure 4). There are 3 nodes : at A,B
and C.
We find the local force stiffness relations of the system in the matrix form as[

f 1
1
f 1

2

]
=

[
k1 −k1
−k1 k1

]
·
[
u1
u2

]
[
f 2

1
f 2

2

]
=

[
k2 −k2
−k2 k2

]
·
[
u2
u3

]
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Figure 4: Sectioned system with local displacements and local forces indicated.

where k1 and k2 are the stiffnesses of the two sections in the system. Now we
can get the full displacement stiffness equation for the system asF1

F2
F3

 =

 f 1
1

f 1
2 + f 2

1
f 2

2

 =

 k1 −k1 0
−k1 k1 + k2 −k2

0 −k2 k2

 ·
u1
u2
u3


b)

We have to find k1 and k2. We already know the formula for the stiffness of a
bar :

k2 = A2 · E
L

= πd2E

4L = Eπd2

4L
k1 needs to be calculated manually as it does not have a constant section area.
By definition, k1 = N

∆L1
= N

uB−uA
where N is the normal internal force within

the object. Because there are no distributed loads, we can already notice that
N is constant (cf. equilibrium equation) and does not depend on x.
Let’s determine the elongation ∆L1 = uB − uA :

uB − uA =
∫ B

A
ε(x)dx

= 1
E

∫ B

A
σ(x)dx Hooke’s law

= N

E

∫ B

A

1
A(x)dx σ(x) = N/A(x) and N is constant

= N

Eπ

∫ B

A
r−2(x)dx

As a consequence,

k1 = N

uB − uA
= Eπ∫ B

A r−2(x)dx

We need to find the radius of the bar as a function of length (see figure 5).

5



Structural Mechanics Exercises week 4 Prof. G. Fantner
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Figure 5: Radius of structure as a function of length.

Finally,

k1 = Eπ
1∫ L

0 ( d
2Lx+ d

2)−2dx

= Eπd2

4
1∫ L

0 (1 + x
L)−2

dx

= Eπd2

4
1

[−L(1 + x/L)−1]L0

k1 = Eπd2

2L

c)

Now we can put k1 and k2 in the full stiffness matrix. We also use the boundary
conditions that the system is clamped at both sides u1 = u3 = 0 as well as that
we know the force in point B (F2 = F ).RA

F
RC

 = Eπd2

4L

 2 −2 0
−2 3 −1
0 −1 1

 ·
 0
u2
0


d)

Now we can calculate displacement u2 and reaction forces RA and RC as:

u2 = uB = 4LF
3πEd2

RA = −πEd
2

2L · u2 = −πEd
2

2L · 4LF
3πEd2 = −2

3F

RC = −πEd
2

4L · u2 = −πEd
2

4L · 4LF
3πEd2 = −1

3F

And the sum of the external forces applied to the system RA, RC and F is equal
to zero as the system is at equilibrium.
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Exercise 3
A prosthesis part made out of an aluminum alloy has the geometry as depicted
in figure 6. The widths are b = 60 mm, c = 30 mm, d = 5 mm and the thickness
is t = 5 mm. The fillets have a radius of R = 8 mm. The ultimate strength of
the aluminum alloy is σU = 410 MPa. The fillets and the hole are spaced by
80mm.
For both questions, you can use figures 7 and 8 to determine the stress-
concentration factor K.

a) If a factor of safety of SF=2.5 is required, what is the maximum allowable
tensile load Pa?

b) (difficult question, won’t be asked at the exam) Find the hole diameter
dmax at which the two segments of the bar have the same tensile load
carrying capacity.

Figure 6: A prosthesis part with a hole.

Exercise solution 3
What is given:

• Force P

• Dimensions of parts

• Graphs of stress-concentration factors K

What is asked:

• Maximum tensile load Pmax

• Maximum hole diameter dmax

Applicable formulas:
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Figure 7: Stress-concentration factor K for flat bars with a circular hole.

Figure 8: Stress-concentration factor K for flat bars with shoulder fillets.

8



Structural Mechanics Exercises week 4 Prof. G. Fantner

• Stress concentration factor:

K = σmax
σnom

• Normal stress:

σnom = P

ct

a)

First, let’s determine the value of the maximum stress allowed in the structure.
It is given by the ultimate strength of the material and the safety factor :

σmax = σU

SF

We divide now the prosthesis part into two segments, the left segment containing
the hole, and the right segment with the fillets. The two segments can be
considered independently according to the Saint-Venant principle, as they are
spaced by 80mm, which is more than the size of the hole / fillet area. Next, we
need to calculate, for each segment, the force P which would would create a
stress σmax in that particular segment.

Left segment The stress-concentration factor links the actual maximum stress
in the structure σmax and the stress calculated assuming no stress concentration
σnom : σmax = K1 · σnom. The stress concentration factor is read out from the
graph : d/b = 5/60 = 0.08→ K1 = 2.8.
Let’s determine the nominal stress. It is the ratio between the force and the
smallest area on which the force is applied : A = (b− d)t. So σnom = P

(b−d)t (i.e.
the maximum stress we would have if there was no stress concentration).
Finally, the maximum stress in the left segment is

σmax = K1
P

(b− d)t = σU

SF

As a consequence, the maximum force that can be applied to the left segment is

P1 = σU

SF

(b− d)t
K1

= 410 · 106

2.5
(60− 5) · 5 · 10−6

2.8
= 16.1kN

Right segment It is the same method for the right segment : R/c = 8/30 = 0.27
and b/c = 60/30 = 2 so K2 = 1.8 according to the graph for stress concentration.
σnom = P/(ct) and, finally,

P2 = σU

SF

ct

K2

= 410 · 106

2.5
30 · 5 · 10−6

1.8
= 13.7kN

9



Structural Mechanics Exercises week 4 Prof. G. Fantner

Maximal allowable tensile force The left segment is reaching its limit for
P1 = 16.1kN and the right segment for P2 = 13.7kN . PA has to be lower or
equal to both the limits of the left and the right segment. As a consequence,
PA = min(P1, P2) = P2 = 13.7kN .

b)

We want to determine the value of the diameter d of the hole in order to have
PA = P1 = P2 = 13.7kN . It means we can increase the diameter of the hole.
The diameter of the hole in the left segment of the prosthesis bar has an impact
on two values for the left segment :

• the nominal stress : σnom = P
(b−d)t

• the stress concentration factor : K determined on the graph as a function
of d/b

Let’s express K1 as a function of d/b.

P1 = P2

σU

SF

(b− d)t
K1

= P2

K1 = σUbt

SF · P2
(1− d

b
)

K1 = 410 · 106 · 60 · 10−3 · 5 · 10−3

2.5 · 13.7 · 103 · (1− d

b
)

K1 = 3.59 · (1− d

b
)

The value of K1 will be at the intersection of the red curve K1 = f(d/b) and
the blue line defined by the equation K1 = 3.59 · (1− d

b ), as described figure 9.
Finally, d/b = 0.35, so the diameter of the hole is dmax = 0.35 · 60 = 21mm.
Let’s check our calculation. We now have

P1 = σU

SF

(b− d)t
K1

= 410 · 106

2.5
(60− 21) · 5 · 10−6

2.3
= 13.9kN
≈ 13.7kN = P2 OK given the measurement approximations

and the two elements effectively have the same tensile load carrying capacity for
dmax = 21mm.

10
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Figure 9: Determination of the value of d/b to get a given stress in the left
segment

Exercise 4
We consider heated bars in different configurations.

a) A simple aluminum bar (Young’s Modulus EAl = 69GPa, linear tempera-
ture expansion coefficient αAl = 24·10−6K−1) with a square-cross section
is clamped at one end (fig. 10a). At room temperature Troom = 22°C, its
length is L = 30cm and its width w = 5cm.
Calculate the elongation of the bar if the air conditioning fails and the
temperature increases to Tsummer = 37°C.

b) The bar is back at room temperature Troom = 22°C. A force P is applied
at the open end (fig. 10b).
Give an expression for the total shortening of the bar as a function of P .

c) The bar is now clamped on both sides.
Calculate the stress in the bar and the reaction forces at both ends when
the temperature increases to Tsummer = 37°C.

d) The aluminum bar is replaced by a bi-material model. While the external
dimensions are the same, it consists of two half-bars of length L/2, one of
aluminum and the other of copper (ECu = 117GPa, αCu = 16·10−6K−1).
Find the displacement of the aluminum-copper intersection as well as the
stress in the bar when the ambiant temperature increases by ∆T = 15°C.

11
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L

w

x

(a) Dimensions of the aluminum bar.

P

(b) A compressive force P is applied at the open end.

(c) The bar is clamped on both sides.

x

L / 2

Al Cu

L / 2

(d) Dimensions of the Aluminum-Copper bar.

Figure 10: Schematics of the bars.

Exercise solution 4
Given:

Temperature change ∆T = 15K
Dimensions of the bar L = 30cm and w = 5cm
Thermal coefficients of aluminum αAl = 24 · 10−6K−1 and copper αCu = 16 · 10−6K−1

Young’s modulus of aluminum EAl = 69GPa and copper ECu = 117GPa

Asked: Total elongation (a), total shortening as a function of P (b), stress
and reaction forces (c), stress and displacement of the intersection (d).

Relevant relationships:

Thermal strain : εT = α∆T
Hooke’s law : σ = Eε

12
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RR

(a) The bar’s thermal expansion is compensated by
the reaction forces.

Al Cu
𝑓"" 𝑓"#𝑓#" 𝑓##𝐹%,'( 𝐹%,)*𝐹%,'( 𝐹%,)*

𝑢" 𝑢# 𝑢, 𝑢-
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(b) Elements and nodes for the displacement-stiffness method.

Figure 11: Schematics of the bars.

Extended displacement stiffness matrix equation : ~F = k · ~u+ ~q

a) This is a simple application of the thermal expansion of materials. We are
interested in the total elongation of the bar in the x-direction:

∆LT = εT · L = ∆T · αAl · L

∆LT = 15[K] · 24 · 10−6[K−1] · 0.3[m] = 0.11 · 10−3m

b) Here we can directly apply Hooke’s law to find the total shortening:

∆LP = P

kbar
= P · L
A · E

= P · L
w2 · EAl

∆LP = P · 30 · 10−2[m]
25 · 10−4[m2] · 69 · 109[N/m2] = P · 1.79 · 10−9m

c) The bar is now clamped at both ends, then the temperature increases. We
will have two effects: the bar will elongate due to the thermal expansion
(∆LT ), but since the bar is constrained, the reaction forces at both ends
will shorten (∆LP ) the bar to its initial length.
We could use a displacement stiffness method to solve this, but we can
also simply use the results from parts (a) and (b). The total elongation
must be zero, and we will rename the force P as R (fig. 11a):

∆LT −∆LR = 0→ ∆LT = ∆T · α · L = ∆LR = R · L
w2 · EAl

13
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R = ∆T · αAl · w2 · EAl

R = 15[K] · 24 · 10−6[K−1] · 25 · 10−4[m2] · 69 · 109[N/m2] = 62.1kN

The stress in the bar is thus given by:

σAl = − R

w2 = − 62.1 · 103[N ]
25 · 10−4[m2] = −24.8MPa

d) To solve this part, we have two approaches.
Approach 1
Probably the more intuitive approach. Similarly to what we did in point
(c) above, we will first calculate the length that the bar would have after
the temperature change, if it were not constrained. This will be a new
initial length L∗ (after temperature change). Since in reality the bar is
constrained, it cannot be longer than L. We can now use the displacement-
stiffness method (fig. 11b), choosing the boundary condition at the right as
u4 = L− L∗. In other words the reaction force must be such as to induce
a displacement u4 that will exactly compensate the thermal expansion of
the bar.

Boundary conditions First we calculate L∗, the length each bar would
have if not constrained:

L∗
Al = L

2 (1 + αAl∆T )

L∗
Cu = L

2 (1 + αCu∆T )

We can find our boundary condition for the displacement stiffness method:

u4 = L− (L∗
Al + L∗

Cu) = L− L

2 (1 + αAl∆T )− L

2 (1 + αCu∆T )

= −L2 ∆T (αAl + αCu)

Displacement-stiffness matrix We now use the normal displacement-
stiffness matrix formula ~F = k · ~u. Knowing that u2 = u3, we obtain:

F1
F2
F3

 =

 f1
1

f1
2 + f2

1
f2

2


F1
F2
F3

 =

 kAl −kAl 0
−kAl kAl + kCu −kCu

0 −kCu kCu

 ·
u1
u2
u4


14



Structural Mechanics Exercises week 4 Prof. G. Fantner

Boundary conditions The system is clamped on both sides : u1 =
0 and u4 = L − L∗. No external force acts at the aluminum-copper
intersection, therefore F2 = 0. F1 and F3 are the reaction forces of the
clamping.

u1
u2
u4

 =

 0
u2

L− L∗


F1
F2
F3

 =

RAl

0
RCu


Solution To solve the system, we insert the boundary conditions into
the previous equation, which becomes :RAl

0
RCu

 = 2A
L

 EAl −EAl 0
−EAl EAl + ECu −ECu

0 −ECu ECu

 ·
 0

u2
−L

2 ∆T (αAl + αCu)



From the second line, one can determine the value of u2:

0 = 2A
L

(EAl + ECu) · u2 + ∆T ·A · ECu · (αAl + αCu)

u2 = −∆T · L2 · (αAl + αCu) ECu
EAl + ECu

u2 = −56.6µm

The displacement of the intersection is thus given by:

d2 = L

2 ·∆T · αAl + u2 = 54− 56.6 = −2.6µm

To find the stress in the bar, we need to find the reaction forces of the
clamping. From the first line, if we put back the value of u2 into the
equation, we get RAl and thus the stress σ:

RAl = −2A
L
· EAl · u2 = A ·∆T · (αAl + αCu) EAl · ECu

EAl + ECu

σ = −RAl
A

= −∆T EAl · ECu

EAl + ECu
(αAl + αCu)

σ = −26.0MPa

Approach 2
Alternatively we can directly use the displacement-stiffness method, with
an added term for the thermal forces. Note that these thermal forces only

15



Structural Mechanics Exercises week 4 Prof. G. Fantner

exist if an element is constrained; indeed a free element that experiences a
change of temperature will be strained but not stressed! The forces are
drawn in fig. 11b. First, we have our local stiffness matrixes:

[
f1

1
f1

2

]
= AAlEAl

L/2

[
1 −1
−1 1

]
·
[
u1
u2

]
[
f2

1
f2

2

]
= ACuECu

L/2

[
1 −1
−1 1

]
·
[
u3
u4

]

We need to add in the thermal forces. To determine them, we assume that
the bar experiences thermal strain but is constrained:

FT = A · σT = A · EεT = A · E · α ·∆T

FT,Al = AAl · EAl · αAl ·∆T

FT,Cu = ACu · ECu · αCu ·∆T

Displacement-stiffness matrix Instead of the normal displacement-
stiffness matrix formula ~F = k·~u, we use the extended equation ~F = k·~u+~q
where ~q is a vector containing the thermal forces. Determining the signs
according to fig. 11b and knowing that u2 = u3, we obtain:

F1
F2
F3

 =

 f1
1

f1
2 + f2

1
f2

2


F1
F2
F3

 =

 kAl −kAl 0
−kAl kAl + kCu −kCu

0 −kCu kCu

 ·
u1
u2
u4

 +

 FT,Al
−FT,Al + FT,Cu
−FT,Cu


Boundary conditions The system is clamped on both sides : u1 =
u4 = 0. No external force acts at the aluminum-copper intersection,
therefore F2 = 0. F1 and F3 are the reaction forces of the clamping.

u1
u2
u4

 =

 0
u2
0


F1
F2
F3

 =

RAl

0
RCu


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Solution To solve the system, we insert the boundary conditions into
the previous equation, which becomes :RAl

0
RCu

 = 2A
L

 EAl −EAl 0
−EAl EAl + ECu −ECu

0 −ECu ECu

 ·
 0
u2
0


+ ∆T · A ·

 EAl αAl

−EAlαAl + ECuαCu

−ECuαCu


From the second line, one can determine the value of u2 which is equivalent
to the displacement of the intersection:

0 = 2A
L

(EAl + ECu) · u2 + ∆T ·A · (−EAlαAl + ECuαCu)

u2 = ∆T · L2 ·
EAlαAl − ECuαCu

EAl + ECu
d2 = u2 = −2.6µm

To find the stress in the bar, we need to find the reaction forces of the
clamping. From the first line, if we put back the value of u2 into the
equation, we get RAl and thus the stress σ:

RAl = 2A
L

(−EAl ·∆T ·
L

2
EAlαAl − ECuαCu

EAl + ECu
) + ∆TAEAlαAl

RAl = A∆T (EAlαAl − EAl
EAlαAl − ECuαCu

EAl + ECu
)

RAl = A∆T EAlECu

EAl + ECu
(αAl + αCu)

σ = −RAl
A

= −∆T EAlECu

EAl + ECu
(αAl + αCu)

σ = −26.0MPa
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