Structural Mechanics Exercises week 4 Prof. G. Fantner

Exercise 1

The mechanical properties of a healed femur bone are being investigated. In
the place where the break healed, a thickening of the bone has occurred. A
simplified sketch of the structure can be seen in figure 1. The bone has a uniform
Young’s modulus of £; = 60 GPa in the unbroken part and Fo = 40 GPa = %El
in the healed part, a segment length of L = 20 cm and a cross sectional area of
A =5cm?.

If the bone is clamped at both ends and stressed by a force F = 11kN at the
thickened part, calculate the external reaction forces and displacements. Use
the displacement stiffness method.

X
—

A 2A A

Figure 1: Simplified structure of a bone with a fortification in the middle that
is being loaded.

Exercise solution 1

What is given:
« Young’s Moduli F; = 60 GPa and E; = 40 GPa = ZE;
« Cross-sectional area A = 5cm?
e Segment length L = 20 cm
e Loading force F' = 11kN
What is asked:
o Displacements ug, us
e Reaction forces Iy, Fy

Applicable formulas:

e Hooke’s Law Fe = o

1. As we have two boundaries and two discontinuities we find four nodes.




Structural Mechanics Exercises week 4 Prof. G. Fantner
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Figure 2: Sectioned system with local displacements and local forces indicated.

2. We cut the system into pieces at the discontinuities to get three individual
segments that can be treated locally (see figure 2).

3. We find the local force stiffness relations of the system as

W= k- (ug — up) B ko - (ug — u3) B ks - (uz — ua)

Y=k (w2 —w)  ff=ke (us—uz)  fP= ke (- ug)

which we can rewrite in matrix form as

R Y s R A R

K
(1)
where the stiffness k is given by Hooke’s law as
Lo A k_E.gA_zLElA L BiA
UL 7L 3L STL

4. The formulas in (1) represent local stiffness relations which can be expanded
to the global form by filling the matrices appropriately with zeroes

i 1 -1 0 0] (w
MAl_EBA|-1 1 0 0] Ju
0 L |0 0 0 0] us
0 0 0 0 0] (w
0 00 0 0] (w
CAEA0 1 -1 0] Ju
T3 L [0 -1 1 0] Jus
0 0 0 0] |ua
0 00 0 0 up
o EAjo 0 0 o0 us
TL 00 1 -1 Jus
00 -1 1 uy
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and finally superimposing the three subproblems to get the full displace-
ment stiffness equation for the system as

P i 1 -1 0 0 u
F B+ 2 _BAa - §4 —7§ 0 us @)
Fy fic 0 0 -1 1 Uy

. To solve this we use the boundary conditions that the system is clamped

at both ends (u; = ug = 0) as well as that we know the external forces
around the thicker part (F» = F, F3 = 0 (no external force at the node
3!)) which results in the reduced system

F| _EA g _g U
0 o L *% % us

. The reduced system can be solved either with substitution or by matrix

inversion to get the nodal displacements

7 FL 4 FL
Uy = —— Uy = — —
2T EA 5T 11 EA

Putting this back into the matrix equation (2) we get the reaction forces

Fy=—1%F and Fy = — % F.
Finally we calculate uo = 46.6 ym, ug = 36.7 um, F; = —7kN and Fy =

—4 kN as numerical values.

Exercise 2

A force F' acts at point B on a structure (see Fig. 3). The structure is clamped
on both sides and the maximum diameter of the structure is d4 while the small
diameter is dg. The structure has a Young’s modulus E and a length 2L.

2)

Define the nodes in the system. Deduce the displacement-stiffness equation
for the system. You will use k; as the stiffness of the left part of the
system (between points A and B) and ko as the stiffness of the right part
of the system (between points B and C), without trying to find their value
yet.

For this question and the next one, we consider that d4 = 2d and dg = d.
Determine k1 and ko as a function of F, L and d.

Deduce the reaction forces R4 and R, as well as the displacement upg, as
a function of E, L, d and F. Draw the reaction forces on the schematics
and respect the sign convention.
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Figure 3: Force F' acting on the structure.

Exercise solution 2

Given:

Young’s Modulus E
Diameters d4 and dp
Segments lengths L
Force F' at point B

Asked:

Displacement at point B

Reaction forces at points A and C

Relevant relationships:

Hooke’s Law FEe =0

Kinematic equation e(x) = %(x}

Equilibrium equation 8—];[@) = 0 when there are no distributed forces.

a)
First we cut the system into pieces at the discontinuities to get two individual
segments that can be treated locally (see figure 4). There are 3 nodes : at A,B

and C.
We find the local force stiffness relations of the system in the matrix form as

il |k —k |w
f o —]ﬁ kl u9g
i _ | ke k2| |u2
f —ky ko u3
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Figure 4: Sectioned system with local displacements and local forces indicated.

where k1 and ko are the stiffnesses of the two sections in the system. Now we
can get the full displacement stiffness equation for the system as

R fin k1 —k1 0 uy
B = [fB+ M =~k ki+k —ko| - |u
F3 f 0 —ky ko us

b)

We have to find k1 and ko. We already know the formula for the stiffness of a
bar :

_Ay-E  nd*E  End®

& L 4L AL

k1 needs to be calculated manually as it does not have a constant section area.
By definition, k1 = ALLl = UBJX ™ where N is the normal internal force within
the object. Because there are no distributed loads, we can already notice that
N is constant (cf. equilibrium equation) and does not depend on x.

Let’s determine the elongation AL = up — u4 :

B
up —ug = / e(x)dx
A

1 B
= E/A o(x)dz Hooke’s law
N/Bl d () = N/A(x) and N is constant
- = 11 1 11 11
E L. A0 x o(x x) a s consta
N 2

= EW/ABT_ (x)dx

As a consequence,

N Er

up—ua  [Fr2(a)de

ki =

We need to find the radius of the bar as a function of length (see figure 5).
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r(x)=((d,-d, )/2L)x+d, /2
A

d /2
A I fd2

Figure 5: Radius of structure as a function of length.

Finally,
1
kl =Fn
fOL(%x + %)_2d:v
End? 1
= T = _zdas
Jo 1+ %)
B End? 1
4 [-LO+a2/D)7 1§
End?
M==7

c)

Now we can put k; and ko in the full stiffness matrix. We also use the boundary
conditions that the system is clamped at both sides u; = uz = 0 as well as that
we know the force in point B (Fy = F).

Ra Erd? 2 -2 0 0
F = iL —2 3 -1 - (%)
Re 0 -1 1 0
d)
Now we can calculate displacement us and reaction forces R4 and R¢ as:
4LF
U =UR = ———
2T P T 3nEd
rEd? mEd> ALF 2
RA=— CUg = — L 2
2L 2L  3nEd? 3
nEd? mEd> ALF 1
Ro = — Uy = — Bt
4L AL  3wEd? 3

And the sum of the external forces applied to the system R4, Rc and F' is equal
to zero as the system is at equilibrium.
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Exercise 3

A prosthesis part made out of an aluminum alloy has the geometry as depicted
in figure 6. The widths are b = 60 mm, ¢ = 30 mm, d = 5 mm and the thickness
is t = 5 mm. The fillets have a radius of R = 8 mm. The ultimate strength of
the aluminum alloy is oy = 410 MPa. The fillets and the hole are spaced by
80mm.

For both questions, you can use figures 7 and 8 to determine the stress-
concentration factor K.

a) If a factor of safety of SF=2.5 is required, what is the maximum allowable
tensile load P,?

b) (difficult question, won’t be asked at the exam) Find the hole diameter
dmax at which the two segments of the bar have the same tensile load
carrying capacity.

.
\ P

(|
ﬂLJ

Figure 6: A prosthesis part with a hole.

5 T |
Qﬁl

Exercise solution 3
What is given:

e Force P

e Dimensions of parts

e Graphs of stress-concentration factors K
What is asked:

e Maximum tensile load Pyax

e Maximum hole diameter dpax

Applicable formulas:
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Figure 7: Stress-concentration factor K for flat bars with a circular hole.

Figure 8: Stress-concentration factor K for flat bars with shoulder fillets.
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e Stress concentration factor:

Omax
K =

Onom

e Normal stress:
P
ct

Onom =

a)

First, let’s determine the value of the maximum stress allowed in the structure.

It is given by the ultimate strength of the material and the safety factor :
Omazx — 57F

We divide now the prosthesis part into two segments, the left segment containing

the hole, and the right segment with the fillets. The two segments can be

considered independently according to the Saint-Venant principle, as they are

spaced by 80mm, which is more than the size of the hole / fillet area. Next, we

need to calculate, for each segment, the force P which would would create a

stress o4 in that particular segment.

Left segment The stress-concentration factor links the actual maximum stress
in the structure 0,4, and the stress calculated assuming no stress concentration
Onom - Omaz = K1 - 0nom- The stress concentration factor is read out from the
graph : d/b=5/60 =0.08 - K; = 2.8.

Let’s determine the nominal stress. It is the ratio between the force and the
smallest area on which the force is applied : A = (b — d)t. So opom = ﬁ (i.e.
the maximum stress we would have if there was no stress concentration).

Finally, the maximum stress in the left segment is

P oy
K °U
Omar =BG ")t T SF
As a consequence, the maximum force that can be applied to the left segment is
P = oU (b—d)t
SF K,
~410-10° (60— 5)-5-1076
25 2.8
= 16.1kN

Right segment It is the same method for the right segment : R/c = 8/30 = 0.27
and b/c = 60/30 = 2 so Ko = 1.8 according to the graph for stress concentration.
Onom = P/(ct) and, finally,

oy ct
P2 = SiFFQ
~410-10°30-5-1076
25 1.8
= 13.7kN
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Maximal allowable tensile force The left segment is reaching its limit for
P; = 16.1kN and the right segment for P, = 13.7kN. P4 has to be lower or
equal to both the limits of the left and the right segment. As a consequence,
PA = min(Pl, Pg) = P2 = 13.7kN.

b)

We want to determine the value of the diameter d of the hole in order to have
Py =P =P, =13.7kN. It means we can increase the diameter of the hole.
The diameter of the hole in the left segment of the prosthesis bar has an impact
on two values for the left segment :

e the nominal stress : opom = ﬁ

o the stress concentration factor : K determined on the graph as a function
of d/b

Let’s express K as a function of d/b.

P =P
b— d)t
?1]1( K, Lo p
Ky = S;U‘bg (1- %)
.106 . .10-3.5.10-3
Ki=359-(1— %)

The value of K; will be at the intersection of the red curve K; = f(d/b) and
the blue line defined by the equation K7 = 3.59 - (1 — %), as described figure 9.
Finally, d/b = 0.35, so the diameter of the hole is d;qr = 0.35 - 60 = 21mm.
Let’s check our calculation. We now have

oy (b—d)t
YT SFK
~410-10° (60 —21) - 5- 1076
25 2.3
= 13.9kN
~ 13.7TkN = P, OK given the measurement approximations

and the two elements effectively have the same tensile load carrying capacity for
Amazr = 21mm.

10
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Figure 9: Determination of the value of d/b to get a given stress in the left
segment

Exercise 4

We consider heated bars in different configurations.

a)

A simple aluminum bar (Young’s Modulus E4; = 69GPa, linear tempera-
ture expansion coefficient o4, = 24-10*6K*1) with a square-cross section
is clamped at one end (fig. 10a). At room temperature Tyoom = 22°C, its
length is L = 30cm and its width w = bcm.

Calculate the elongation of the bar if the air conditioning fails and the
temperature increases to Tsymmer = 37°C.

The bar is back at room temperature Ty0m = 22°C. A force P is applied
at the open end (fig. 10b).

Give an expression for the total shortening of the bar as a function of P.

The bar is now clamped on both sides.

Calculate the stress in the bar and the reaction forces at both ends when
the temperature increases to Tsymmer = 37°C.

The aluminum bar is replaced by a bi-material model. While the external
dimensions are the same, it consists of two half-bars of length L /2, one of
aluminum and the other of copper (Eg, = 117GPa, ac, = 16-107°K~1).

Find the displacement of the aluminum-copper intersection as well as the
stress in the bar when the ambiant temperature increases by AT = 15°C.

11
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[

(a) Dimensions of the aluminum bar.

(b) A compressive force P is applied at the open end.

(c) The bar is clamped on both sides.

L/2 L/2

v

X

+—

(d) Dimensions of the Aluminum-Copper bar.

Figure 10: Schematics of the bars.

Exercise solution 4

Given:
Temperature change AT = 15K

Dimensions of the bar L = 30cm and w = bem

Thermal coefficients of aluminum oy = 24 - 107K~ and copper ac, = 16 - 1076 K1

Young’s modulus of aluminum E,; = 69GPa and copper Ec, = 117GPa

Asked: Total elongation (a), total shortening as a function of P (b), stress
and reaction forces (c), stress and displacement of the intersection (d).

Relevant relationships:

Thermal strain : e = aAT

Hooke’s law : 0 = Ee

12
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(a) The bar’s thermal expansion is compensated by
the reaction forces.

Uy Uy Uz Uy
— — — —
1 |F F 1 2 | F F 2
fi T,Al T,Al T,Cu T,Cu
> > Al <—i> i»—» Cu <—i>

kAl kCu

(b) Elements and nodes for the displacement-stiffness method.

Figure 11: Schematics of the bars.

Extended displacement stiffness matrix equation : F=k- -d+ q

a) This is a simple application of the thermal expansion of materials. We are
interested in the total elongation of the bar in the x-direction:

ALT:€T-L:AT-04AZ-L
ALy = 15[K] - 24 - 107K 1] -0.3[m] = 0.11 - 10®m
b) Here we can directly apply Hooke’s law to find the total shortening:

P PL_ P-L

ALp = = =
F Kpar A-FE w? - Eq

B P-30-1072[m)]
©25-1074[m?] - 69 - 109[N/m?]

ALp =P-1.79-10m

¢) The bar is now clamped at both ends, then the temperature increases. We
will have two effects: the bar will elongate due to the thermal expansion
(ALt), but since the bar is constrained, the reaction forces at both ends
will shorten (ALp) the bar to its initial length.

We could use a displacement stiffness method to solve this, but we can
also simply use the results from parts (a) and (b). The total elongation
must be zero, and we will rename the force P as R (fig. 11a):

R-L

ALy —ALp=0—ALr=AT-a-L=ALgp=——
w 'EAl

13



Structural Mechanics Exercises week 4 Prof. G. Fantner

R=AT -ay -w? Ey
R=15[K]-24-1075[K~'-25-10"%[m?] - 69 - 10°|N/m?] = 62.1kN

The stress in the bar is thus given by:

R 62.1-103[N]
gAl = _ﬁ = —m = —24.8M Pa

To solve this part, we have two approaches.
Approach 1

Probably the more intuitive approach. Similarly to what we did in point
(c) above, we will first calculate the length that the bar would have after
the temperature change, if it were not constrained. This will be a new
initial length L* (after temperature change). Since in reality the bar is
constrained, it cannot be longer than L. We can now use the displacement-
stiffness method (fig. 11b), choosing the boundary condition at the right as
us = L — L*. In other words the reaction force must be such as to induce
a displacement u4 that will exactly compensate the thermal expansion of
the bar.

Boundary conditions First we calculate L*, the length each bar would
have if not constrained:

LYy = = (14 aqyAT)

~ Nl

Ly = 5 (1+ac,AT)

We can find our boundary condition for the displacement stiffness method:

L L
wp=L— (Liy+ L) = L— 5 (1+anAT) - Z(1+ac,AT)
L
= —gAT(OzAl + OéCu)

Displacement-stiffness matrix We now use the normal displacement-
stiffness matrix formula F' = k - 4. Knowing that uo = ug, we obtain:

Fy fi

B =|f3+ [}

5] i f3

F ki —ka 0 Uy
F| = |-ku ka+kocu —kcul| - |u2
_F3_ L 0 _kCu kCu Uy

14
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Boundary conditions The system is clamped on both sides : u; =
0 and ugy = L — L*. No external force acts at the aluminum-copper
intersection, therefore Fo = 0. F; and Fj are the reaction forces of the

clamping.
Uy 0 Fy Ry
Uy | = U9 Fo| =10
U4 L—L* F3 RCu

Solution To solve the system, we insert the boundary conditions into
the previous equation, which becomes :

Ra 94 Ea —FEa 0 0
0| = T —Exn Eai+ Ecu —FEcu| - U
RCu 0 _ECu ECu _%AT(O[AI + aCu)

From the second line, one can determine the value of wuo:

2A
0= - (Eal+ Ecy) -ug + AT - A+ Ecy - (a1 + acy)
L ECu
Uy = —AT - = - (@] + acy) =
2 2 (can Cu)EA1+Ecu

ug = —H6.6um

The displacement of the intersection is thus given by:

L
do = §-AT-04A1—|-U2 =54 —56.6 =—2.6um

To find the stress in the bar, we need to find the reaction forces of the
clamping. From the first line, if we put back the value of ug into the
equation, we get R 4; and thus the stress o:

24 Ear - Ecy
Ray=——— -FEpap-up=A - AT - (ap + acy) —————
Al 7 Paru (a1 + acy) RES S
R Eq - Ecy
=——=-AT——(aqy +«

o= —26.0MPa

Approach 2

Alternatively we can directly use the displacement-stiffness method, with
an added term for the thermal forces. Note that these thermal forces only

15
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exist if an element is constrained; indeed a free element that experiences a
change of temperature will be strained but not stressed! The forces are
drawn in fig. 11b. First, we have our local stiffness matrixes:

[l _AaBa |1 —1] |u
fal L/2 |-1 1 Uy
f12 _Acchu 1 -1 us
B2l L2 -1 1| |w

We need to add in the thermal forces. To determine them, we assume that
the bar experiences thermal strain but is constrained:

FT:A~O'T:A~E€T:A-E-O£-AT

Fra=Axn-Eg-ay - AT

FT7Cu = ACu : ECu cOCy - AT
Displacement-stiffness matrix Instead of the normal displacement-
stiffness matrix formula F' = k-, we use the extended equation F' = k-@+¢

where ¢ is a vector containing the thermal forces. Determining the signs
according to fig. 11b and knowing that us = us, we obtain:

Fy fi

B| = |f3+ [T

5] i f3

Fy Ea —ka 0 uy Fra

F2 = —k’Al kAl + k?C’u _kCu s lug | + _FT,AI + FT,Cu
_FS_ L 0 _kC’u kCu U4g _FT,Cu

Boundary conditions The system is clamped on both sides : u; =
uqg = 0. No external force acts at the aluminum-copper intersection,
therefore F, = 0. F1 and Fj are the reaction forces of the clamping.

uy 0 Fy R
Uzl = |U2 F: 21 = 0
Ugq 0 F3 Rew

16
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Solution To solve the system, we insert the boundary conditions into
the previous equation, which becomes :

Ra o4 | M —Ea 0 0
0 | = T —Exn1 Eai+ Ecy —Ecu| - |u2
RCu 0 _ECu ECu 0
Ea aq
+AT - A |-Eqyaa + Ecuacy
_EC’uaCu

From the second line, one can determine the value of us which is equivalent
to the displacement of the intersection:

2A
0= A (Eal+ Ecy) ~ug + AT - A+ (—Exjaa + Ecuacy)
L FE —F
Uy = AT . 2. A1CA] Cu®Cu

2 Ea+ Ecy
d2 = uz = —2.6,um

To find the stress in the bar, we need to find the reaction forces of the
clamping. From the first line, if we put back the value of us into the
equation, we get R4; and thus the stress o:

2A L Epnyaa — Ecuacu

Ra= 2(—Ex- AT - =
ar= (=B 2 Ea+ Ecu
Enan — Ecuacu

EAI + ECu

)+ ATAE yian

Ray = AAT(Egjan — Ea

EpEcy,
Ry = AAT—/——— (a4 +
Al B b ECu( Al + acy)
Ra EnEcy
DAL A ZALECu (4
A EAl+E0u( ALt acu)

o= —26.0MPa

17



	
	
	
	
	
	

