
Structural Mechanics Exercises week 2 Prof. G. Fantner

Exercise 1
Goals of the exercise: (1) understand the difference between macroscopic and
microscopic strain, (2) understand qualitatively the relationship between the local
deformation u(x) and the local strain ε(x).

a) We consider the bar in figure 1 before and after applying a force in the
longitudinal axis. Use a ruler to measure the distances on the figure and
answer the following questions.

x

F

Figure 1: Longitudinal deformation of a rectangular bar

1. What is the value of the macroscopic strain ?
2. Represent on the figure the vector ~u for the third drawn point. What

is the displacement u(x) of each of the drawn points ? Plot u(x) on
a graph (you can do a linear interpolation between the points).

3. Determine the value of the strain in each individual block (between
two points) using the definition of strain (ε = ∆L

L ) and plot it. Show
that you get the same answer as with the formula ε(x) = du

dx(x)
demonstrated during the class.

4. What is the relationship between the macroscopic strain and the
microscopic strain ?

b) Same questions for the object in figure 2. Conclusion : what are the links
and differences between ε, u, the macroscopic strain and the object’s total
elongation?

x

F

Figure 2: Longitudinal deformation of a free form object
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Exercise solution 1
Warning : for the measurement of the distances, you might not get the exact
same numerical values as in the solution depending on your printing parameters.
But the values you get must be proportional to the ones given in the solution.

Given: Pictures of an object before and after applying a force.

Asked: Macroscopic strain, microscopic strain, local and total deformation;
relationships between them
Note : for the measurement of the distances, you might not get the exact same
numerical values as in the solution depending on your printing parameters.
However the values you get must be proportional to the ones given in the
solution.

a)

The macroscopic strain is defined by εmacro = L−L0
L0

= 48mm−36mm
36mm = 0.33.

The positions of every point are measured with a ruler on the image and
given in the following tab. An example of a displacement vector is given in
figure 3. The local deformation u is easily deduced from the position values as
ui = xi,final − xi,initial.

x

Fu3

Figure 3: Displacement of the third point

point number 1 2 3 4 5
initial position (mm) 0 9 18 27 36
final position (mm) 0 12 24 36 48

u (mm) 0 3 6 9 12

We now want to determine the value of the strain in each individual blocks
between two consecutive points. By definition, the strain of the block i between
the points i and i+ 1 is εi = Li,final−Li,initial

Li,initial
.

block number 1 2 3 4
initial length of the block (mm) 9 9 9 9
final length of the block (mm) 12 12 12 12

strain ε 0.33 0.33 0.33 0.33
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Figure 4: Displacement and strain within the bar

We see that for a homogeneous bar of constant section, the strain is uniform in
the bar. It is also the same value as the macroscopic strain in the whole bar. It
is something you should be able to prove in the general case with the method of
sections.
During the class, you proved that ε(x) = du

dx(x). Let’s see if we find the same
values with this formula. We just need to use, for dx, the distance between two
consecutive points, and for du, the difference between two consecutive values of
u given in the previous tab.

point number 2 3 4 5
dx (mm) 9 9 9 9
du (mm) 3 3 3 3
strain ε 0.33 0.33 0.33 0.33

We find the same value of strain (0.33) as previously.

b)

We use the same method as in the previous question to measure the position of
the points, their displacement, and deduce the strain in the object.

x

F
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Figure 5: Displacement of the third point

point number 1 2 3 4 5 6 7
initial position (mm) 0 7 14 20 26 33 40
final position (mm) 0 8 18 26 33 42 50

u (mm) 0 1 4 6 7 9 10
ε 0.14 0.42 0.33 0.17 0.29 0.14
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This time, the object is no longer a homogeneous bar with a constant section.
Therefore, some parts of the bar (the thinner parts) elongate more than the
thicker ones. The strain is therefore higher in these areas. The macroscopic
strain is εmacro = 50−40

40 = 0.25, which is not equal to the strain in every point
of the bar. The macroscopic strain describes the behavior of the whole object,
whereas the microscopic strain describes the strain in every point of the object.
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Figure 6: Displacement and strain within the object

Exercise 2
The crane structure shown in figure 7 is built with individual bars on rotating
hinges (white dots). Vertical and horizontal bars are of length L, diagonal ones
of length

√
2L. The crane is supported in point A with a fixed hinge (supports

forces in x and in y direction) and in point B with a sliding hinge (supports
forces in y direction only). The force ~FC = (1,−3) · Fc is acting on the point C.
We will neglect the weight of the crane.

a) Cut the system free (replace the hinges in A and B with replacement
forces).

b) Calculate the reaction forces in A and B as function of FC .

c) Calculate the internal reaction forces in the beams 2–4, 12 and 13.

Exercise solution 2
Given: Truss structure, Force ~FC .

Asked: a) Replacement reaction forces for the base hinges. b) Values of the
reaction forces at the base. c) Internal forces acting in the beams 12,13 and 2–4.

a)

See figure 8.
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Figure 7: Crane structure with individual bars on rotating hinges .
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Figure 8: Crane with reaction forces.
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b)

Reaction forces can be obtained with equilibrium of forces and moments.∑
Fx = 0 → FA,x + FC,x = 0 → FA,x = −FC,x

The rest of the forces is determined by equilibrium in y direction together with
the equilibrium of moments in A. The easiest way to calculate the moment is
using the vector version (cross product)

~M = ~r × ~F

and since only the z component is used, simplifies to

Mz = rx · Fy − ry · Fx

so the system of equations becomes∑
Fy = 0 → FA,y + FB,y − 3FC = 0∑
Mz = 0 → �L · FB, y + 2�L · (−3FC)− 2�L · FC = 0

which is solves to

FB,y = 8FC FA,y = −5FC

c)

By cutting the structure apart, making sure to cut through the beams of interest,
we can obtain the inner forces with equilibriums of forces and moments from
the external forces. For the forces inside the bars 12 and 13 the equilibrium of

13
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Figure 9: Virtual cuts at the nose and at the base

forces is sufficient:

∑
Fx = 0 → −F13 −

F12/
√

2︷ ︸︸ ︷
F12,x +FC = 0∑

Fy = 0 → −3FC + F12,y︸ ︷︷ ︸
F12/

√
2

= 0

→ F12 = 3
√

2FC F13 = −2FC
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For the base we need both equilibriums of forces and moments (in A):

∑
Fx = 0 → FAx + F3√

2
= 0 → F3 =

√
2FC∑

Fy = 0 → F2 + F4 + FA,y + FB,y + F3√
2

= 0∑
Mz = 0 → �L · FB,y + �L · F4 = 0

→ F2 = −FA,y −
F3√

2
= 4FC F4 = −8FC

Exercise 3
A force P = 1 kN is applied on a human femur bone (see figure 10(a)). The
bone is modeled as a hollow tube with circular cross section and a constant wall
thickness of 0.5 cm. The shape of the shaft of the bone is approximated by the
quadratic function

y = x2

100 cm + 2 cm

where the origin of x is in the middle of the bone (see figure 10(b)).
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Figure 10: Illustration of human femur bone. a) Sketch of real bone, showing
the compact bone wall. b) Sketch of the simplified model of the bone.

For the simplified model, find:

a) The stress in the cross–section A.

b) The stress in the cross–section B.

c) Where is the highest stress in the bone and what is its value ? If the load
is increased, at which position will the bone break ?
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Exercise solution 3
Given: Geometry, force P = 1 kN acting onto the bone.

Asked: Stresses in cross–sections A and B, point of failure and stress at that
point.

Relevant relationships:
Definition of stress

σ = P

A

Area of a circle

A = πr2

a) The stress on any part of the femur can be expressed by the formula

σ = P

A
= P

π ·
(
r2

out − r2
in
) = P

πt · (2rout − t)
where t is the wall thickness of the compact bone.

ra,out

ra,in

rb,out

rb,in

A B

Figure 11: Ring cross-sections A and B.

This gives us for the cross-section A

σa = 1 kN
π · 0.5 cm · (8.5 cm− 0.5 cm) = 0.8 MPa

b) The second cross–section is similar, except that we first have to calculate
the outer radius

rb,out = x2

100 cm + 2 cm = 64 (cm)2

100 cm + 2 cm = 2.64 cm

which we find
σb = 1.3 MPa

c) The bone will break at the point of the maximum stress, which is at the
point where the cross section area of the compact bone layer is minimal.
This is the case in the middle of the bone (x = 0). At this cross section
we have rout = 2 cm and we find in analogy to the above

σmax = 1.8 MPa
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Exercise 4
We write the year 1723 and a young soldier who lost his right leg in battle a few
months ago is now sitting in front of you. You are the physician who is charged
with designing a wooden leg in order to help him walk around again. Or hobble
around, that is. As you don’t have much experience with prosthetics, you will
just have to try what you think is best.

z

Figure 12: Illustration of the unfortunate soldier with his wooden leg.

a) Your first design is to attach a simple wooden stick to his leg (see figure 12).
He weighs m2 = 80 kg but used to weigh m1 = 88 kg before his injury. He
is still s = 1.75 m tall. The diameter of the stick is d = 2 cm. Calculate
the stress σz in the contact area between the leg and the stick.

b) A few hours later, your patient comes back because he feels pain in the
area where the prosthesis is attached to his knee. You realize then that
the skin can only bear a compressive stress of σskin = 100 kPa without
pain. What is the diameter of the minimum contact area between the leg
and the wooden prosthesis that you should use?

c) The wood you chose is of superior quality and can withstand a maximum
compressive stress of σwood = 1.5 MPa. Knowing this, draw a wooden leg
that will be both comfortable and light-weight.

Exercise solution 4
Given: Geometry: d = 2 cm, mass of the soldier before and after his injury:
m1 = 88 kg, m2 = 80 kg, σskin = 100 kPa, σwood = 1.5 MPa.

Asked: Stress exerted by the wooden leg on the patient’s knee; minimum
contact area; comfortable and light-weight design of a wooden leg.
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Relevant relationships:
Definition of stress

σ = P

A

Area of a circle

A = πr2

a) To calculate the stress between leg and knee, we need to know the cross-
sectional area of the leg as well as the force applied on it by the knee. The
cross section A is given by

A = πr2 = π
d2

4 = 3.14 cm2

Since above the knee, the patient is symmetrical, we can assume that his
weight is distributed equally on both knees. The force on one knee is thus
given by

Fknee = meq. · g
2 = 72 kg · 9.81 m s−2

2 = 353.2 N

wheremeq. is the mass of the man that is supported by the two legs (one real,
one wooden). It is obtained by subtracting the mass of the good leg from
the total mass of the soldier: meq. = m2−mleg = m2− (m1−m2) = 72 kg.
Finally we can calculate the stress

σz = Fknee

A
= 1125 kPa

b) The obtained stress is about 10 times larger than the bearable value. The
minimum contact area between the leg and the wooden leg can be found

Amin,knee = P

σskin
= 353.2 N

100 kPa = 35.3 cm2

This corresponds to a diameter of

dmin,knee =
√
Amin,knee

4
π

= 6.7 cm

c) Since we know the maximum stress that can be put on the wood, we can
calculate the minimum diameter of the prosthesis:

Amin,wood = P

σwood
= 353.2 N

1.5 MPa = 2.35 cm2

This corresponds to a diameter of

dmin,wood =
√
Amin,wood

4
π

= 1.73 cm

With this, we can design a simple wooden leg (see figure 13).
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d > dmin,knee

d > dmin,wood

z

Figure 13: Illustration of a simple wooden leg, with minimum dimensions.

Exercise 5
A force P is acting at the free end of a micro bar and we are measuring the
resulting elongation of the bar caused by this force using a resistive strain gauge
sensor in a Wheatstone bridge configuration, (see figure 14). The Wheatstone
bridge consists of four resistors R1 = R2 = R3 = R4 = 600 Ω. The strain gauge
R1 is placed on the micro bar and its resistance varies with strain. The micro
bar is made out of silicon and has an initial length of L = 20 µm (with no force
applied). The strain gauge is made of doped silicon and has a gauge factor of
GF = 30.

A constant voltage,Vcc = 4.000 V, is applied to the bridge. The voltage measured
on the output of the Wheatstone bridge before and after applying the force is
Vout = 0.000 V and Vout = 0.005 V respectively.

Calculate the length of the cantilever when the force is acting.

hint:

Vout =
(

R3
R3 +R4

− R2
R1 +R2

)
· Vcc

The weight of the microbar is very small compared to the force P and the strain
gauge is very thin compared to the microbar.

Exercise solution 5
Given: Change in Voltage, length of beam L = 20 µm, gauge factor G = 30,
bridge voltage Vcc = 4V , Values of the resistances of the bridge at rest R = 600Ω

Asked: Length of the cantilever when the force is acting.
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p

Figure 14: Microbar with strain gauge sensor to measure elongation.

Relevant relationships:

Wheatstone Bridge formula (given)

Vout =
(

R3
R3 +R4

− R2
R1 +R2

)
· Vcc

Definition of gauge factor

GF = ∆R
R

(∆L
L

)−1

Using the formula of the Wheatstone Bridge with a single active leg, R1, we
note the value of R1 after deformation R′1 where (R′1 = R1 + ∆R1)
The resistance of the remaining 3 legs remains unchanged (R2 = R3 = R4 =
R = 600Ω)

Vout =
(
R

2R −
R

R′1 +R

)
· Vcc

finding R′1

R′1 = R · Vcc + 2Vout

Vcc − 2Vout

and so
∆R1
R1

= Vcc + 2Vout

Vcc − 2Vout
− 1

from the gauge factor equation we know that

∆L =
L · ∆R1

R1

GF

Where
∆R1
R1

12
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is now known.

The new length after the force is applied is given by

L′ = L+ ∆L = L+
L · ∆R1

R1

GF

After the numerical application, we find that L′ = 20.003 µm
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