Exercise 1

A simple beam with a square cross-section (side a, length L) is put under a complex load (fig. 1). The beam is characterised by the following values: $E=16\,\mathrm{GPa},\ a=2\,\mathrm{cm},\ L=30\,\mathrm{cm}$ and $F=100\,\mathrm{N}.$

We define z=0 at the top of the beam and x=0 at the clamped end. Using the principle of superposition and the tables of the formulary, calculate the deflection $\omega(x)$. What is the deflection in x=L?

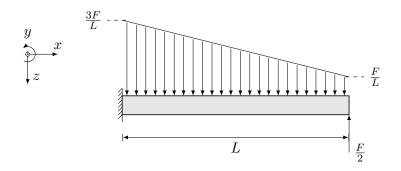


Figure 1: Schematic of the loaded bar and its cross-section.

Exercise solution 1

Given:

• Dimension of the bar: $E = 16 \,\mathrm{GPa}$, $a = 2 \,\mathrm{cm}$, $L = 30 \,\mathrm{cm}$

• Force: $F = 100 \,\text{N}$

Asked:

• Deflection $\omega(x)$, numerical value at x = L

We have a complex load that can be simplified to a sum of simple loads, for instance a constant distributed load, a linearly decreasing distributed load and a point.

The contribution from the constant distributed load is:

$$\omega_1(x) = \frac{q_1 L^4}{24EI} \left[6\left(\frac{x}{L}\right)^2 - 4\left(\frac{x}{L}\right)^3 + \left(\frac{x}{L}\right)^4 \right]$$

The contribution from the linearly decreasing distributed load is:

$$\omega_2(x) = \frac{q_2 L^4}{120EI} \left[10 \left(\frac{x}{L} \right)^2 - 10 \left(\frac{x}{L} \right)^3 + 5 \left(\frac{x}{L} \right)^4 + \left(\frac{x}{L} \right)^5 \right]$$

The contribution from the point force is:

$$\omega_3(x) = \frac{P_3 L^3}{6EI} \left[3 \left(\frac{x}{L} \right)^2 - \left(\frac{x}{L} \right)^3 \right]$$

where
$$q_1 = F/L$$
, $q_2 = 2F/L$, $P = -F/2$ and $I = a^4/12$.

The total deflection is the sum of all contributions:

$$\omega(x) = \omega_1(x) + \omega_2(x) + \omega_3(x)$$

$$= \frac{FL^3}{10Ea^4} \left[20\left(\frac{x}{L}\right)^2 - 30\left(\frac{x}{L}\right)^3 + 15\left(\frac{x}{L}\right)^4 - 2\left(\frac{x}{L}\right)^5 \right]$$

At the free end of the beam, the deflection is thus:

$$\omega(L) = 1.05 \cdot 10^{-4} \cdot (20 - 30 + 15 + 2) = 0.32mm$$

Exercise 2

A steel bar having a square cross section (50 mm \times 50 mm) and length L=2 m is compressed by axial loads that have a resultant P=60 kN acting at the midpoint of one side of the cross section (see fig. 2).

Assuming that the modulus of elasticity E is equal to 210 GPa and that the ends of the bar are pinned, calculate the maximum deflection δ and the maximum bending moment M_{max} .

Figure 2: Square cross section bar and load P

Exercise solution 2

Given:

- Dimension of the bar: $50 \,\mathrm{mm} \times 50 \,\mathrm{mm} \times 2 \,\mathrm{m}$
- Axial load $P = 60 \,\mathrm{kN}$
- Young's modulus of the bar $E = 210 \,\text{GPa}$

Asked:

- Maximum deflection δ
- Maximum bending moment M_{max}

Relevant relationships:

- For a bar with the square cross section and side equals to $b: I = \frac{b^4}{12}$
- Maximum deflection $\delta = e \left[\sec \left(\frac{L}{2} \sqrt{\left(\frac{P}{EI} \right)} \right) 1 \right]$
- $M=p \times e$

Second moment of area for the square cross section:

$$I = \frac{b^4}{12} = 520.8 \times 10^3 \,\text{mm}^4 \tag{1}$$

so maximum deflection is given by:

$$\delta = e \left[\sec \left(\frac{L}{2} \sqrt{\left(\frac{P}{EI} \right)} \right) - 1 \right] = 8.87 \,\text{mm}$$
 (2)

and the maximum bending moment is

$$M_{\text{max}} = Pe\left[\sec\left(\frac{L}{2}\sqrt{\left(\frac{P}{EI}\right)}\right) - 1 + 1\right] = Pe\left[\sec\left(\frac{L}{2}\sqrt{\left(\frac{P}{EI}\right)}\right)\right] = 2.03 \,\text{kN m}$$
(3)

+1 in the bending moment formula is because the load acts on $e+\delta$ so e should be added to the total deflection.

Exercise 3

The truss ABC (fig. 3) supports a vertical load W at joint B. Each member is a slender circular steel pipe ($E=200\,\mathrm{GPa}$) with outside diameter $100\,\mathrm{mm}$ and wall thickness $6\,\mathrm{mm}$. The distance between supports is $7\,\mathrm{m}$. Joint B is restrained against displacement perpendicular to the plane of the truss. Determine the critical value W_{cr} of the load.

Hint: Second moment of area for the pipe of outer and inner diameter d_o and d_i respectively, is $I = \frac{\pi}{64} (d_o^4 - d_i^4)$.

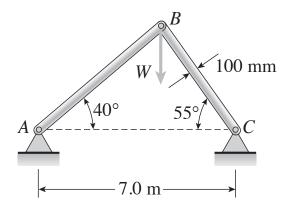


Figure 3: Truss structure under load

Exercise solution 3

Given:

- Pipes' material Young's modulus $E=200\,\mathrm{GPa}$
- Distance between pin supports $L=7\,\mathrm{m}$
- Outer pipe diameter $d_o = 100 \,\mathrm{mm}$
- Pipe wall thickness $t = 6 \,\mathrm{mm}$

Asked:

• Critical value of the load W_{cr} , for truss not to buckle

Relevant relationships:

- Second moment of area for the pipe $I = \frac{\pi}{64} \left(d_o^4 d_i^4 \right)$
- writing the equilibrium equation for the forces on each axis $\sum F_h = 0$ and $\sum F_v = 0$
- Euler's formula for critical buckling force

$$P_{cr} = \frac{\pi^2 EI}{L_e^2}$$

• effective length for the pinned-pinned end conditions $L_e=L$

Solution

Inner diameter of the pipe is $d_i = d_o - 2t = 88 \,\mathrm{mm}$, so second moment of area is

$$I = \frac{\pi}{64} \left(d_o^4 - d_i^4 \right) = 1.965 \times 10^6 \,\text{mm}^4 \tag{4}$$

Lengths of the pipes AB and BC can be calculated from the geometry. If we look at the figure 4. we can see that $L_1 + L_2 = h \tan(50^\circ) + h \tan(35^\circ) = L$, so we calculate the height h and then L_{AB} and L_{BC} as

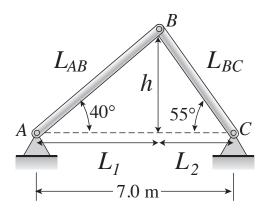


Figure 4: Truss structure under load

$$h = \frac{L}{\tan(50^{\circ}) + \tan(35^{\circ})} \tag{5}$$

$$L_{AB} = h/\cos(50^{\circ}) = \frac{L}{\tan(50^{\circ}) + \tan(35^{\circ})} \cdot \frac{1}{\cos(50^{\circ})} = 5.756 \,\mathrm{m}$$
 (6)

$$L_{BC} = h/\cos(35^{\circ}) = \frac{L}{\tan(50^{\circ}) + \tan(35^{\circ})} \cdot \frac{1}{\cos(35^{\circ})} = 4.517 \,\mathrm{m}$$
 (7)

Buckling occurs when either member reaches its critical load:

$$P_{AB}^{cr} = \frac{\pi^2 EI}{L_{AB}^2} = 117.1 \,\text{kN}$$
 (8)

$$P_{BC}^{cr} = \frac{\pi^2 EI}{L_{BC}^2} = 190.1 \,\text{kN}$$
 (9)

If we look at the truss sketch, presented on the figure 5. and write equilibrium equations for all horizontal and vertical forces we have

$$\sum F_{horiz} = 0 \Rightarrow F_{AB} \sin(50^{\circ}) - F_{BC} \sin(35^{\circ}) = 0$$
 (10)

$$\sum F_{vert} = 0 \Rightarrow F_{AB}\cos(50^{\circ}) + F_{BC}\cos(35^{\circ}) - W = 0$$
 (11)

Solving the equations we get

$$W = 1.7386 \cdot F_{AB} \tag{12}$$

$$W = 1.3004 \cdot F_{BC} \tag{13}$$

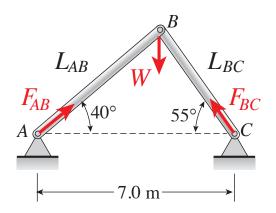


Figure 5: Truss structure under load

Critical value of the load W based on the member AB is

$$W_{AB}^{cr} = 1.7386 \cdot P_{AB}^{cr} = 203 \,\text{kN}$$
 (14)

Critical value of the load W based on the member BC is

$$W_{BC}^{cr} = 1.3004 \cdot P_{BC}^{cr} = 247 \,\text{kN}$$
 (15)

So, the truss will buckle at the $W_{cr}=min(W_{AB}^{cr},W_{BC}^{cr})=203\,\mathrm{kN},$ when member AB buckles.