
Structural Mechanics Exercises week 14 Prof. G. Fantner

Exercise 1
A simple beam with a square cross-section (side a, length L) is put under
a complex load (fig. 1). The beam is characterised by the following values:
E = 16 GPa, a = 2 cm, L = 30 cm and F = 100 N.

We define z = 0 at the top of the beam and x = 0 at the clamped end. Using
the principle of superposition and the tables of the formulary, calculate the
deflection ω(x). What is the deflection in x = L?
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Figure 1: Schematic of the loaded bar and its cross-section.

Exercise solution 1
Given:

• Dimension of the bar: E = 16 GPa, a = 2 cm, L = 30 cm

• Force: F = 100 N

Asked:

• Deflection ω(x), numerical value at x = L

We have a complex load that can be simplified to a sum of simple loads, for
instance a constant distributed load, a linearly decreasing distributed load and
a point.

The contribution from the constant distributed load is:

ω1(x) = q1L
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The contribution from the linearly decreasing distributed load is:

ω2(x) = q2L
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The contribution from the point force is:

ω3(x) = P3L
3
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where q1 = F/L, q2 = 2F/L, P = −F/2 and I = a4/12.

The total deflection is the sum of all contributions:

ω(x) = ω1(x) + ω2(x) + ω3(x)

= FL3
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At the free end of the beam, the deflection is thus:

ω(L) = 1.05 · 10−4 ·
(
20− 30 + 15 + 2

)
= 0.32mm

Exercise 2
A steel bar having a square cross section (50 mm× 50 mm) and length L = 2 m
is compressed by axial loads that have a resultant P = 60 kN acting at the
midpoint of one side of the cross section (see fig. 2).
Assuming that the modulus of elasticity E is equal to 210 GPa and that the ends
of the bar are pinned, calculate the maximum deflection δ and the maximum
bending moment Mmax.

Figure 2: Square cross section bar and load P

Exercise solution 2
Given:
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• Dimension of the bar: 50 mm× 50 mm× 2 m

• Axial load P = 60 kN

• Young’s modulus of the bar E = 210 GPa

Asked:

• Maximum deflection δ

• Maximum bending moment Mmax

Relevant relationships:

• For a bar with the square cross section and side equals to b : I = b4

12

• Maximum deflection δ=e
[
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]
• M=p× e

Second moment of area for the square cross section:

I = b4

12 = 520.8× 103 mm4 (1)

so maximum deflection is given by:

δ = e
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= 8.87 mm (2)

and the maximum bending moment is

Mmax = Pe
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= 2.03 kN m

(3)

+1 in the bending moment formula is because the load acts on e+ δ so e should
be added to the total deflection.

Exercise 3
The truss ABC (fig. 3) supports a vertical load W at joint B. Each member is
a slender circular steel pipe (E = 200 GPa) with outside diameter 100 mm and
wall thickness 6 mm. The distance between supports is 7 m. Joint B is restrained
against displacement perpendicular to the plane of the truss. Determine the
critical value Wcr of the load.

Hint: Second moment of area for the pipe of outer and inner diameter do and
di respectively, is I = π
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Figure 3: Truss structure under load

Exercise solution 3
Given:

• Pipes’ material Young’s modulus E = 200 GPa

• Distance between pin supports L = 7 m

• Outer pipe diameter do = 100 mm

• Pipe wall thickness t = 6 mm

Asked:

• Critical value of the load Wcr, for truss not to buckle

Relevant relationships:

• Second moment of area for the pipe I = π
64
(
d4
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)
• writing the equilibrium equation for the forces on each axis ∑Fh = 0 and∑

Fv = 0

• Euler’s formula for critical buckling force

Pcr = π2EI

L2
e

• effective length for the pinned-pinned end conditions Le = L

Solution
Inner diameter of the pipe is di = do − 2t = 88 mm, so second moment of area
is

I = π
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)
= 1.965× 106 mm4 (4)
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Lengths of the pipes AB and BC can be calculated from the geometry. If we
look at the figure 4. we can see that L1 + L2 = h tan(50o) + h tan(35o) = L, so
we calculate the height h and then LAB and LBC as
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Figure 4: Truss structure under load

h = L

tan(50o) + tan(35o) (5)

LAB = h/ cos(50o) = L

tan(50o) + tan(35o) ·
1

cos(50o) = 5.756 m (6)

LBC = h/ cos(35o) = L

tan(50o) + tan(35o) ·
1

cos(35o) = 4.517 m (7)

Buckling occurs when either member reaches its critical load:

P crAB = π2EI

L2
AB

= 117.1 kN (8)

P crBC = π2EI

L2
BC

= 190.1 kN (9)

If we look at the truss sketch, presented on the figure 5. and write equilibrium
equations for all horizontal and vertical forces we have∑

Fhoriz = 0⇒ FAB sin(50o)− FBC sin(35o) = 0 (10)∑
Fvert = 0⇒ FAB cos(50o) + FBC cos(35o)−W = 0 (11)

Solving the equations we get

W = 1.7386 · FAB (12)
W = 1.3004 · FBC (13)
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Figure 5: Truss structure under load

Critical value of the load W based on the member AB is

W cr
AB = 1.7386 · P crAB = 203 kN (14)

Critical value of the load W based on the member BC is

W cr
BC = 1.3004 · P crBC = 247 kN (15)

So, the truss will buckle at theWcr = min(W cr
AB,W

cr
BC) = 203 kN, when member

AB buckles.
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