Structural Mechanics Exercises week 14 Prof. G. Fantner

Exercise 1

A simple beam with a square cross-section (side a, length L) is put under
a complex load (fig. 1). The beam is characterised by the following values:
E=16GPa, a =2cm, L = 30cm and F = 100 N.

We define z = 0 at the top of the beam and x = 0 at the clamped end. Using
the principle of superposition and the tables of the formulary, calculate the
deflection w(z). What is the deflection in x = L?
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Figure 1: Schematic of the loaded bar and its cross-section.

Exercise solution 1
Given:
e Dimension of the bar: £ =16GPa, a =2cm, L = 30cm

e Force: FF = 100N

Asked:
o Deflection w(x), numerical value at z = L

We have a complex load that can be simplified to a sum of simple loads, for
instance a constant distributed load, a linearly decreasing distributed load and
a point.

The contribution from the constant distributed load is:

@) = B[ a(2) 4 (3)]

C 24EILU\L
The contribution from the linearly decreasing distributed load is:

A N2 N3 x4 T\°
waz) = 1(;20EI[10(Z) ~10(z) +5(z) + (1) ]
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The contribution from the point force is:

PL? A T\3
an@) = 57 3(Z) — (7))

where ¢y = F/L, ¢g = 2F/L, P = —F/2 and I = a*/12.

The total deflection is the sum of all contributions:
w(x) = wi(z) + wa(z) + ws(x)
FIL3 T2 T\3 z\4 AN
= omar 20(7) —30(3) +15(7) —2(7) |
At the free end of the beam, the deflection is thus:

w(L) =1.05-10"*- (20 — 30 + 15 + 2) = 0.32mm

Exercise 2

A steel bar having a square cross section (50 mm x 50 mm) and length L = 2m
is compressed by axial loads that have a resultant P = 60kN acting at the

midpoint of one side of the cross section (see fig. 2).

Assuming that the modulus of elasticity F is equal to 210 GPa and that the ends
of the bar are pinned, calculate the maximum deflection  and the maximum

bending moment M4

Figure 2: Square cross section bar and load P

Exercise solution 2

Given:
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e Dimension of the bar: 50mm x 50 mm X 2m
e Axial load P = 60 kN

e Young’s modulus of the bar £ = 210 GPa

Asked:
e Maximum deflection §

e Maximum bending moment M.«

Relevant relationships:

e For a bar with the square cross section and side equals to b : I = %
e Maximum deflection d=e [sec (g (5)) — 1]
e M=pxe
Second moment of area for the square cross section:
I= [1); =520.8 x 10> mm* (1)

so maximum deflection is given by:

d=e lsec <12; <l]'73])> - 1] = 8.87mm (2)

and the maximum bending moment is

Mpax = Pe [sec (g (;)) -1+ 1] = Pe lsec <§ <EP}>>1 = 2.03kNm
3)

+1 in the bending moment formula is because the load acts on e 4+ § so e should
be added to the total deflection.

Exercise 3

The truss ABC' (fig. 3) supports a vertical load W at joint B. Each member is
a slender circular steel pipe (E = 200 GPa) with outside diameter 100 mm and
wall thickness 6 mm. The distance between supports is 7m. Joint B is restrained
against displacement perpendicular to the plane of the truss. Determine the
critical value W, of the load.

Hint: Second moment of area for the pipe of outer and inner diameter d, and
d; respectively, is I = & (dg — df).
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< 70 m >

Figure 3: Truss structure under load

Exercise solution 3

Given:
e Pipes’ material Young’s modulus £ = 200 GPa
e Distance between pin supports L = 7m
¢ Outer pipe diameter d, = 100 mm

e Pipe wall thickness t = 6 mm

Asked:

o Critical value of the load W, for truss not to buckle

Relevant relationships:
« Second moment of area for the pipe I = & (dj — d})

e writing the equilibrium equation for the forces on each axis ) Fy = 0 and
Z F,=0
o FEuler’s formula for critical buckling force

w2 EI
Pcr - L2
[

o effective length for the pinned-pinned end conditions L, = L

Solution
Inner diameter of the pipe is d; = d, — 2t = 88 mm, so second moment of area
is

o

I
64

(d5 — d}) = 1.965 x 100 mm* (4)

4
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Lengths of the pipes AB and BC' can be calculated from the geometry. If we
look at the figure 4. we can see that L; + Lo = htan(50°) + htan(35°) = L, so

we calculate the height h and then Lap and Lpc as

Figure 4: Truss structure under load

b L
~ tan(50°) + tan(35°)

L 1
Lap =h o) = : = 5.
A = h/ cos(30) = e an(35)  cos(50%) >0
L 1
Lpc = h/cos(35°%) = =4.517Tm

~ tan(50°) + tan(35°)  cos(35°)

Buckling occurs when either member reaches its critical load:

2ET

= WLT = 117.1kN
AB
2EI

o = WLT = 190.1kN
BC

(8)
(9)

If we look at the truss sketch, presented on the figure 5. and write equilibrium

equations for all horizontal and vertical forces we have
> Fhoriz = 0 = Fapsin(50°) — Fpesin(35°) =

0
> Fyert = 0= Fapcos(50°) + Fpccos(35°) — W =0

Solving the equations we get

W =1.7386 - Fup
W =1.3004 - Fpc
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Figure 5: Truss structure under load

Critical value of the load W based on the member AB is

Wip = 1.7386 - Piz = 203kN (14)
Critical value of the load W based on the member BC' is

Wge = 1.3004 - Pg = 247kN (15)

So, the truss will buckle at the W, = min(W {5, W) = 203 kN, when member
AB buckles.




