
Structural Mechanics Exercises week 13 Prof. G. Fantner

Exercise 1
We consider a loaded beam with a cross-section in T-shape (fig. 1). The beam
is characterized by the following values: E = 20 GPa, ν = 0.2, t1 = 2 cm,
t2 = 1 cm, ω1 = 1 cm, ω2 = 4 cm, L = 21 cm and F = 100 N. We define z = 0
at the top of the beam.

a) Find the moment of area (Iy) at the centroid. Hint: you may quite literally
find this result in the exercises of a previous week.

b) Determine the expression of q(x).

c) Calculate the bending line ω(x) of the beam. Hint: a good engineer should
be both smart and lazy. You can save yourself a lot of time and troubles
here: re-use results from the previous exercises and apply the superposition
principle.
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Figure 1: Schematic of the loaded bar and its cross-section.

Exercise solution 1
Given: Geometry, load.

Asked: Second moment of area Iy, q(x) and ω(x).

Relevant relationships:

Steiner’s Theorem

Ia = Icg +Ad2

Centroid Formula

zc =
∑

iAizc,i∑
iAi
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Deflection formula

d2ωy(x)
dx2 = − 1

EI
M(x)

a)

Finding the centroid is straight-forward:

zc =
∑

iAizc,i∑
iAi

= w1t1zc,1 + w2t2zc,2
w1t1 + w2t2

= 2 cm

As given in the formula section, Iy =
∫

A z
2dA. It is however easier to look at

the cross-section as an assembly of two rectangles and use Steiner’s Theorem.

Iy,1 = w1(t1)3

12 = 2
3 cm4

Iy,2 = w2(t2)3

12 = 1
3 cm4

Iz=zc
y = Iy,1 + w1t1(zc − zc,1)2 + Iy,2 + w2t2(zc − zc,2)2

= 2
3 + 1 · 2 · (2− 1)2 + 1

3 + 4 · 1 · (2− 2.5)2 = 4 cm4

b)

The load function here is composed of a linearly distributed load that is 0 at
x = 1

3L and increases linearly to F
L at x = 2

3L. Additionally, there is a point
load at the end of the cantilever that we will ignore for now. It’s contribution
will be added later through superposition.

We write the load function as

q(x) = 3F
L2

〈
x− L

3

〉1
− 3F
L2

〈
x− 2L

3

〉1
− F

L

〈
x− 2L

3

〉0

Note that even if we considered the point force, we would not need to add it in
the load equation as it would be a boundary condition.

c)

Contribution of distributed load Integration and boundary conditions
yield:
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V (x) = −
∫
q(x) dx+ C1

= − 3F
2L2

〈
x− L

3

〉2
+ 3F

2L2

〈
x− 2L

3

〉2
+ F

L

〈
x− 2L

3

〉1
+ F

6
M(x) =

∫
V (x) dx+ C2

= − 3F
6L2

〈
x− L

3

〉3
+ 3F

6L2

〈
x− 2L

3

〉3
+ F

2L
〈
x− 2L

3

〉2
+ F

6 x−
5FL
54

This was a result in a previous exercise session. From there, we integrate twice
more and apply the boundary conditions of θ(0) = 0 and ω(0) = 0.

θ(x) = 1
EI

( ∫
M(x) dx+ C3

)
= 1
EI

[
− 3F

24L2

〈
x− L

3

〉4
+ 3F

24L2

〈
x− 2L

3

〉4

+ F

6L
〈
x− 2L

3

〉3
+ F

12x
2 − 5FL

54 x
]

ω(x) = −
∫
θ(x) dx+ C4 = 1

EI

[ F

40L2

〈
x− L

3

〉5
− F

40L2

〈
x− 2L

3

〉5

− F

24L
〈
x− 2L

3

〉4
− F

36x
3 + 5FL

108 x
2
]

Contribution of point load A look into the formulary yields:

ω2(x) = FL3

60EI
[
3
(x
L

)2
−
(x
L

)3]

Superposition Now all we have to do is add up the two contributions:

ωtot(x) = ω2(x) + ω(x) = FL3

60EI
[
3
(x
L

)2
−
(x
L

)3]
+ 1
EI

[ F

40L2

〈
x− L

3

〉5
− F

40L2

〈
x− 2L

3

〉5
− F

24L
〈
x− 2L

3

〉4
− F

36x
3 + 5FL

108 x
2
]

= F

EI

[ 1
40L2

( 〈
x− L

3

〉5
−
〈
x− 2L

3

〉5 )
− 1

24L
〈
x− 2L

3

〉4
− 2

45x
3 + 13L

135 x
2
]

The total deflection of the beam, as well as the contributions of the two separate
loads is shown in fig. 2).
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Figure 2: Beam deflection graphs

Exercise 2
The two beams in figure 3 are identically loaded with two forces and bend
under that load. The beams have the same bending stiffness EI. Calculate
the bending line of the beams with the help of singularity functions. You can
neglect the effect of any axial forces (forces in x-direction).

a)

L L L

2F

Fz

y
x

b)

L L L

2F

Fz

y
x

Figure 3: Double-supported beam under load.

Exercise solution 2
Given: Geometry, Force F , Bending stiffness EI.

Asked: Bending line of the loaded beam.
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Relevant relationships: Bending equation

EI · w(4)(x) = EI · ∂
4w(x)
∂x4 = q(x)

with distributed load q(x).

Since the two beams have the same distributed load function, we only have
to calculate the beam equation once. We will then find find a different set of
integration constants for each case.

We have point loads at x = L and x = 2L. So we get a distributed load of:

q(x) = F · 〈x− L〉−1 − 2F · 〈x− 2L〉−1

Putting the bending equation and the distributed load together we get:

EI · w(4)(x) = F · 〈x− L〉−1 − 2F · 〈x− 2L〉−1

By simple integration we get

EI · w(4)(x) = F · 〈x− L〉−1 − 2F · 〈x− 2L〉−1 = q(x) (1)
EI · w(3)(x) = F · 〈x− L〉0 − 2F · 〈x− 2L〉0 + C1 = −V (x) (2)
EI · w(2)(x) = F · 〈x− L〉1 − 2F · 〈x− 2L〉1 + C1x+ C2 = −M(x) (3)
EI · w(1)(x) = 1

2F · 〈x− L〉
2 − F · 〈x− 2L〉2 + 1

2C1x
2 + C2x+ C3 (4)

= −EI · θ(x) (5)
EI · w(x) = 1

6F · 〈x− L〉
3 − 1

3F · 〈x− 2L〉3 (6)
+ 1

6C1x
3 + 1

2C2x
2 + C3x+ C4 (7)

a)

For finding boundary conditions we consider the physical system. We don’t
know any angles in the system. We also don’t have endpoints where no forces
act (both ends clamped). However the two rotating angles at the start and end
of the beam will not extort any moments on the beam, thus we get:

M(0) = 0 M(3L) = 0

However, they will restrict the vertical deflection of the beam in both points, so
we get:

w(0) = 0 w(3L) = 0

which are the four conditions necessary to fully define a fourth order differential
equation such as the bending equation.

Using the boundary conditions we can determine values for C1−4. By using
M(x = 0) = 0 in (3) we get:

F · 〈−L〉1 − 2F · 〈−2L〉1 + C1 · 0 + C2 = C2 = 0
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and by using M(x = 3L) = 0 again in the simplified equation (3):

F · 〈3L−L〉1−2F · 〈3L−2L〉1 +C1 ·3L = F ·2L−2F ·L+C1 ·3L = C1 = 0

So we already know C1 = 0 and C2 = 0. Using w(x = 0) = 0 in (7) we get:

EI · 0 = 1
6F · 〈−L〉

3 − 1
3F · 〈−2L〉3 + C3 · 0 + C4 = C4 = 0

Finally by applying w(x = 3L) = 0 in (7), we find:

EI · 0 = 1
6F · 〈2L〉

3 − 1
3F · 〈L〉

3 + C3 · 3L
= 1

6F · (2L)3 − 1
3F · (L)3 + C3 · 3L = −FL3 + 3LC3 = 0

→ C3 = −1
3FL

2

We can write the complete bending line formula as:

w(x) = 1
EI

[
1
6F · 〈x− L〉

3 − 1
3F · 〈x− 2L〉3 − 1

3FL
2x
]

where the fact that all units within the bracket are N m3 with x[m], L[m] and
F [N] is an easy check for integration mistakes.

b)

For the case where both sides are clamped, the system is overconstrained. How-
ever, we can use the same method here too.

The boundary conditions in this case are w(0) = w(3L) = θ(0) = θ(3L) = 0,
since both walls can support a moment and a reactive shear force.
Using the functions (1)–(7) we first use θ(0) = 0 to get C3 = 0 and w(0) = 0 to
get C4 = 0.

The condition θ(3L) = 0 gives:

−EI · 0 = 1
2F · 〈2L〉

2 − F · 〈L〉2 + 1
2C1 (3L)2 + 3L · C2

0 = 2FL2 − FL2 + 9
2C1L

2 + 3C2L = FL2 + 9
2C1L

2 + 3C2

With w(3L) = 0:

EI · 0 = 1
6F · 〈2L〉

3 − 1
3F · 〈L〉

3 + 1
6C1 (3L)3 + 1

2C2 (3L)2

0 = 4
3FL

3 − 1
3FL

3 + 9
2C1L

3 + 9
2C2L

2 = FL3 + 9
2C1L

3 + 9
2C2L

2

where one sees immediately (difference between the two evaluated functions)
that C2 = 0, which gives C1 = −2

9F . So the final bend line function is given by:

w(x) = 1
EI

[
1
6F · 〈x− L〉

3 − 1
3F · 〈x− 2L〉3 − 1

27Fx
3
]

Exercise 3
For the beam with bending stiffness EI in figure 4, calculate the bending line
with singularity functions. The distributed force q0(x) is linearly decreasing
from 2F

L at point C to point D where it becomes zero.

6



Structural Mechanics Exercises week 13 Prof. G. Fantner
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Figure 4: Single clamped beam under complex bending loads.

Exercise solution 3
Given: Geometry, Distributed Force, Moment M , Bending stiffness EI.

Asked: Bending line of the loaded beam.

Relevant relationships: Bending equation

EI · w(4)(x) = EI · ∂
4w(x)
∂x4 = q(x)

with distributed load q(x).

We need to find the distributed load q(x) by summing up all the parts of the
distributed loads. The moment in B can be modelled as the first derivative of a
Dirac delta (one infinitesimal force acting up, immediately followed by another
infinitesimal force acting down). The distributed load is modelled with 〈x〉1
functions and a step for the offset at C (see figure 5). The force F at the end
does not need to be modelled, it is a boundary condition!

z

x

Figure 5: By adding up singularity functions we can model an arbitrary isolated
distributed load in the middle of the beam.
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All in all we get:

q(x) = M · 〈x− L〉−2︸ ︷︷ ︸
Point Moment

+2F
L · 〈x− 2L〉0 − 2F

L2 · 〈x− 2L〉1 + 2F
L2 · 〈x− 3L〉1︸ ︷︷ ︸

Distributed linear force

For boundary conditions we find that at the end of the beam we have force
constraints:

V (x = 4L) = −F4 M(x = 4L) = 0

At the beginning of the beam there are deflection constraints:

w(x = 0) = 0 θ(x = 0) = 0

So we can start integrating to find the beam deflection equation:

EI · w(4)(x) = M · 〈x− L〉−2 (8)
+ 2F

L · 〈x− 2L〉0 − 2F
L2 · 〈x− 2L〉1 + 2F

L2 · 〈x− 3L〉1

EI · w(3)(x) = M · 〈x− L〉−1 + C1 + 2F
L · 〈x− 2L〉1 (9)

− F
L2 · 〈x− 2L〉2 + F

L2 · 〈x− 3L〉2 = −V (x)
EI · w(2)(x) = M · 〈x− L〉0 + C1x+ C2 + F

L · 〈x− 2L〉2 (10)
− F

3L2 · 〈x− 2L〉3 + F
3L2 · 〈x− 3L〉3 = −M(x)

EI · w(1)(x) = M · 〈x− L〉1 + 1
2C1x

2 + C2x+ C3 + F
3L · 〈x− 2L〉3 (11)

− F
12L2 · 〈x− 2L〉4 + F

12L2 · 〈x− 3L〉4 = −θ(x)
EI · w(x) = 1

2M · 〈x− L〉
2 + 1

6C1x
3 + 1

2C2x
2 + C3x+ C4 (12)

+ F
12L · 〈x− 2L〉4 − F

60L2 · 〈x− 2L〉5 + F
60L2 · 〈x− 3L〉5

From where we just have to determine the unknown constants C1−4. From
w(x = 0) = 0 we directly get C4 = 0 because everything other than C4
is dependent on x! Analogous we get C3 = 0 for θ(x = 0) = 0. From
V (x = 4L) = −F

4 in (9) we get:

������
M · 〈3L〉−1 + C1 + 2F

L · 〈2L〉
1 − F

L2 · 〈2L〉2 + F
L2 · 〈L〉2 = +1

4F

→ C1 = −3
4F

The last constant we get from M(x = 4L) = 0, so we use (10) to get:

0 = M · 〈3L〉0 − 3
4F · 4L+ C2 + F

L · 〈2L〉
2 − F

3L2 · 〈2L〉3 + F
3L2 · 〈L〉3

C2 = 4
3FL−M

So we can combine C1−4 into (12) to get the full bending equation:

w(x) = 1
EI
·
[

1
2M · 〈x− L〉

2 − 1
8F · x

3 + (2
3FL−

1
2M) · x2

+ F
12L · 〈x− 2L〉4 − F

60L2 · 〈x− 2L〉5 + F
60L2 · 〈x− 3L〉5

]
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Figure 6: Solved beam line for the given loads if M = F · L.

Exercise 4
The supported beam shown in figure 7 is loaded by a uniform load between
its two supports and a point force at point C. Using the singularity function
method, find the bending moment M(x) and shear force V (x), the bend angle
θ(x) and the deflection w(x) as a function of F .

L L

F

2F
L

A B C

z

y
x

Figure 7: Supported beam with a distributed load and a pointload.

Exercise solution 4
Given: Geometry, loads.

Asked: Shear force and bending moment diagrams.

Relevant relationships:
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Singularity function: constant load

q(x) = q0 〈x− x0〉0

Singularity function: point load

q(x) = F0 〈x− x0〉−1

relationship between load q(x), shear force V(x) and bending moment M(x)

dV

dx
= −q(x), dM

dx
= V

Integration constants method We show two slightly different ways for
solving this problem. The first makes use of integration constants, which are
determined in the end, using the boundary conditions. This has the advantage
that it also works for over-constrained systems.
The boundary reactions can be neglected, but the center support has to be
replaced with an (unknown) force RB. The load function becomes:

q(x) = 2F
L

(
1− 〈x− L〉0

)
−RB 〈x− L〉−1

Going through the chain of integrations gives:

−V = EIw(3) = 2F
L

(
x− 〈x− L〉1

)
−RB 〈x− L〉0 + C1

−M = EIw(2) = F

L

(
x2 − 〈x− L〉2

)
−RB 〈x− L〉1 + C1x+ C2

−EIθ = EIw′ = F

3L
(
x3 − 〈x− L〉3

)
− RB

2 〈x− L〉
2 + C1

2 x2 + C2x+ C3

EIw = F

12L
(
x4 − 〈x− L〉4

)
− RB

6 〈x− L〉
3 + C1

6 x3 + C2
2 x2

+ C3x+ C4

where we immediately get C2 = 0 becauseM(0) = 0 and C4 = 0 due to w(0) = 0.
Evaluating the free end with force gives the boundaries V (2L) = F andM(2L) =
0:

F = −2F +RB − C1

0 = 3FL−RBL+ 2C1L

which solves to C1 = 0 and RB = 3F . Finally we use w(L) = 0 (pin support in
the middle) to get:

0 = F

12L
3 + C3L → C3 = −FL

2

12
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So finally:

V = −2F
L

(
x− 〈x− L〉1

)
+ 3F 〈x− L〉0

M = −F
L

(
x2 − 〈x− L〉2

)
+ 3F 〈x− L〉1

θ = 1
EI

[
F

3L
(
x3 − 〈x− L〉3

)
− 3F

2 〈x− L〉
2 + FL

12

]
w = 1

EI

[
F

12L
(
x4 − 〈x− L〉4

)
− F

2 〈x− L〉
3 − FL2

12 x

]

-2FL

L 2L

M(x)

x

F

-2F

L 2L

V(x)

x

Figure 8: Shear force and bending moment profiles.

Predetermined reactions method Alternatively, we can first calculate all
reaction forces/moments and add them as point loads/moments in the load
equation.

First we need to find all forces including reaction forces at points A and B. In
order to find RA and RB, we write the force equilibrium in the bar and also
moment equilibrium at point A. We substitute the uniform load profile from 0
to L with its equivalent point fore 2F at L

2 .

RA RB

2F F

L L

L/2

x
z

Figure 9: Equivalent forces acting on the beam.
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Force equilibrum

ΣFz = 0
2F
L
· L+ F −RA −RB = 0 → RA +RB = 3F

Moment equilibrium at point A

ΣMA = 0

2F × L

2 −RB · L+ F × 2L = 0 → RB = 3F

RA +RB = 3F → RA = 0

Now we can write the load q(x) along the bar using singularity functions:

q(x) = 2F
L
〈x〉0 − 2F

L
〈x− L〉0 −RA〈x〉−1 −RB〈x− L〉−1

→ q(x) = 2F
L
〈x〉0 − 2F

L
〈x− L〉0 − 3F 〈x− L〉−1

We don’t need any integration constants for the shear force and moment, since
all the reactions are already modeled in the distributed load. By integrating
q(x) we find V (x):

V (x) = −2F
L
〈x〉1 + 2F

L
〈x− L〉1 + 3F 〈x− L〉0

Now we find the bending moment M(x) by taking the integration from shear
force V (x):

M(x) = −2F
L
· 1

2〈x〉
2 + 2F

L
· 1

2〈x− L〉
2 + 3F 〈x− L〉1

= −F
L
〈x〉2 + F

L
〈x− L〉2 + 3F 〈x− L〉1

Integrating this twice more gives the bending angle and the bend line (deflection)
respectively. Note that here integration constants are required!

EIθ(x) = − F

3L〈x〉
3 + F

3L〈x− L〉
3 + 3F

2 〈x− L〉
2 + C1

EIw(x) = F

12L〈x〉
4 − F

12L〈x− L〉
4 − F

2 〈x− L〉
3 − C1x+ C2

Where C2 = 0 because w(0) = 0. The last constant we get with w(L) = 0 (no
deflection at the central support):

0 = FL3

12 − C1L → C1 = FL2

12
And we finally get

θ(x) = 1
EI

[
− F

3L〈x〉
3 + F

3L〈x− L〉
3 + 3F

2 〈x− L〉
2 + FL2

12

]

w(x) = 1
EI

[
F

12L〈x〉
4 − F

12L〈x− L〉
4 − F

2 〈x− L〉
3 − FL2

12 · x
]
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