
Structural Mechanics Exercises week 11 Prof. G. Fantner

Exercise 1
We consider a loaded beam with a cross-section in T-shape (fig. 1). The beam
is characterized by the following values: E = 20 GPa, ν = 0.2, t1 = 2 cm,
t2 = 1 cm, ω1 = 1 cm, ω2 = 4 cm, L = 21 cm and F = 100 N. We define z = 0
at the top of the beam.

a) We will want to find the internal moment of the beam M(x). Which axis
should you consider for the calculation of the moment of area?

b) What is the distance zc between the centroid and the top of the bar ?
Calculate the moment of area at the centroid.

c) Determine the expression of q(x). Deduce V (x) and M(x) by integration.

d) Reminder: the formula for stress in a bent beam with a constant cross
section is given by: σz(x) = My(x)

Iy
· (z− zc), where zc is the position of the

centroid.
What is σz(x) as a function of F and the geometrical dimensions ? Plot
σz(x) for the top of the beam σz=0cm(x), the neutral axis σz=zc(x) and
the bottom of the beam σz=3cm(x).

z

y
x

L
3

L
3

L
3

F
L

z

x
y

t1

t2

w1

w2

Figure 1: Schematic of the loaded bar and its cross-section.

Exercise solution 1
Given: Geometry, load.

Asked: Centroid, second moment of area Iy, q(n), V (n) and (M(x); plots of
σz=0(x), σz=zc(x) and σz=3(x).

Relevant relationships:

Steiner’s Theorem

Ia = Icg +Ad2

1



Structural Mechanics Exercises week 11 Prof. G. Fantner

Centroid Formula

zc =
∑

iAizc,i∑
iAi

Stress in bent beam

σx(z) = My(x)
Iy(x) · (z − zc)

a)

The load on the cantilever will induce a moment in the y-direction. We thus
need to find Iy.

b)

Finding the centroid is straight-forward:

zc =
∑

iAizc,i∑
iAi

= w1t1zc,1 + w2t2zc,2
w1t1 + w2t2

= 2 cm

As given in the formula section, Iy =
∫

A z
2dA. It is however easier to look at

the cross-section as an assembly of two rectangles and use Steiner’s Theorem.

Iy,1 = w1(t1)3

12 = 2
3 cm4

Iy,2 = w2(t2)3

12 = 1
3 cm4

Iz=zc
y = Iy,1 + w1t1(zc − zc,1)2 + Iy,2 + w2t2(zc − zc,2)2

= 2
3 + 1 · 2 · (2− 1)2 + 1

3 + 4 · 1 · (2− 2.5)2 = 4 cm4

c)

The load function here is composed of a linearly distributed load that is 0 at
x = 1

3L and increases linearly to F
L at x = 2

3L. We write the load function as

q(x) = 3F
L2

〈
x− L

3

〉1
− 3F
L2

〈
x− 2L

3

〉1
− F

L

〈
x− 2L

3

〉0
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Integration yields

V (x) = −
∫
q(x) dx+ C1

= − 3F
2L2

〈
x− L

3

〉2
+ 3F

2L2

〈
x− 2L

3

〉2
+ F

L

〈
x− 2L

3

〉1
+ C1

M(x) =
∫
V (x) dx+ C2

= − 3F
6L2

〈
x− L

3

〉3
+ 3F

6L2

〈
x− 2L

3

〉3
+ F

2L
〈
x− 2L

3

〉2
+ C1x+ C2

The constants are determined by the boundary conditions:

V (L) = 0→ C1 = F

6

and:

M(L) = 0 → C2 = −5FL
54

With substituted constants:

V (x) = −
∫
q(x) dx+ C1

= − 3F
2L2

〈
x− L

3

〉2
+ 3F

2L2

〈
x− 2L

3

〉2
+ F

L

〈
x− 2L

3

〉1
+ F

6
M(x) =

∫
V (x) dx+ C2

= − 3F
6L2

〈
x− L

3

〉3
+ 3F

6L2

〈
x− 2L

3

〉3
+ F

2L
〈
x− 2L

3

〉2
+ F

6 x−
5FL
54

d)

To plot the stress in the x-direction, we use the calculated moment as well as
the found second moment of area and the z position at which we want to know
the stress:

σz(x) = My(x)
Iy

· (z − zc) = My(x) [Nm]
4 · 10−8 [m4] · (z − 2 · 10−2 [m])

At z = zc, we find:

σz(x) = My(x)
Iy(x) · (zc − zc) = 0

We check that there is no stress in the neutral axis (which is its definition).
At z = 0, we find:
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Figure 2: Graphs of the different calculated entities

σz(x) = My(x)
Iy

· (0− zc)

where

My(x) = − 3F
6L2

〈
x− L

3

〉3
+ 3F

6L2

〈
x− 2L

3

〉3
+ F

2L
〈
x− 2L

3

〉2
+ F

6 x−
5FL
54

Similarly at z = 3, we find:

σz(x) = My(x)
Iy

· (3− zc)

The moment as well as the stresses as a function of x are shown in fig. 2.
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Exercise 2
a) The cross-section of an H-beam is shown in fig. 3. Find the centroid and

second moments of area Iy and Iz of the beam.

b) For the two cross-sections shown in fig. 4, find the second moments of area
Iy and Iz.
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Figure 3: Cross-section of an H-beam.
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Figure 4: Cross-sections of more complicated beams.

Exercise solution 2
Given: Geometry.

Asked: Centroid location, second moments of area Iy and Iz.

Relevant relationships:
Second moment of area of a beam with rectangular cross section

Iy = h3 · w
12 Iz = w3 · h

12
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Parallel axis theorem for shifting elements with area A by a distance d

Ia = Ia,c + d2A

Second moment of area in y direction

Iy =
∫

A
z2dA

Second moment of area in z direction

Iz =
∫

A
y2dA

a)

Since the structure is symmetrical, the centroid is in the center of the structure
(intersection of both symmetry–axes).

While the second moment of area can be calculated using integration, it is much
easier to divide the cross section into rectangular elements of which the second
moment of area is known and use the parallel axis theorem.

For Iz the parallel axis theorem is not even needed, as none of the elements are
displaced from the symmetry axis in z direction. We find directly for the central
crossbeam and two flanges

Iz = t3h

12 + 2 · w
3t

12 = t3h

12 + w3t

6
In case of Iy we need the parallel axis theorem, as the center of mass of each
flange does not lie on the symmetry axis in y-direcion. With the flange area
A = w · t and the center–of–mass displacement d = 1

2(t+ h) for two flanges we
get

Iy = t · h3

12 +2 ·
(
t3w

12 + w · t ·
(
t+ h

2

)2)
= t · h3

12 + 2t3w
3 + t2w ·h+ t · w · h2

2

b)

As given in the formula section, Iy =
∫

A z
2dA. It becomes, for the given

geometry,

Iy =
∫ h/2

−h/2

∫ c1+c2z2

−(c1+c2z2)
z2 dy dz

Iy = 4
∫ h/2

0

∫ c1+c2z2

0
z2 dy dz

Iy = 4
∫ h/2

0
z2
(
c1 + c2z

2
)

dz

Iy = c1
6 h

3 + c2
40h

5
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It is the same method for Iz :

Iz = 4
∫ h/2

0

∫ c1+c2z2

0
y2 dy dz

Iz = 4
∫ h/2

0

(
c1 + c2z

2)3
3 dz

Iz = 1
672c

3
2h

7 + 1
40c1c

2
2h

5 + 1
6c

2
1c2h

3 + 2
3c

3
1h

c)

Moments of area for the y and z directions are equal for symmetry reasons.
The cross is equivalent to a big square at 45o with a side length of a, minus 4
smaller squares with a side of 9

20a.

The moment of area is, for the red square :

I1 = 4
∫ a

√
2

2

0

∫ a
√

2
2 −z

0
z2 dy dz

I1 = 1
12a

4

The green squares have a width of b = a− 1
10 a

2 = 9
20a. It is possible to use the

previous calculation if we replace a by b to get the y moment of area of each of
the two green squares along the y axis :

I2 = 1
12b

4

I2 = 1
12

( 9
20a

)4

I2 = 2187
640000a

4

For the top and bottom green squares, we need to take into account the distance
between the centroid and the y axis. This distance is

d = a

√
2

2 −
9
20a
√

2
2

d = 11
20a
√

2
2
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The y moment of area of each of the top and bottom green square is :

I3 = 1
12b

4 + d2b2

I3 = 21789
640000a

4

Finally, the moments of area of the cross are

Iy = I1 − 2I2 − 2I3

Iy = 1009
120000a

4

Iz = 1009
120000a

4

Exercise 3
Occasionally, beams are made by joining two different materials, for example
for a bimetal sensing element or actuator. Fig. 5 shows such a beam and its
corresponding cross section.
Assume the top material is aluminium with a Young’s modulus EAl = 70 GPa
and a thickness t1 = 10 mm. The bottom material is copper with a Young’s
modulus ECu = 120 GPa and a thickness t2 = 7 mm. The beam has a width
w = 20 mm.

L
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w

Figure 5: Composite beam under bending.

a) Find an expression for the neutral axis when the Young’s modulus in
z-direction is variable. Find the neutral axis of the given beam.

b) Find the equivalent flexural rigidity (EI) of the beam.

Exercise solution 3
Given:

• Geometry t1 = 10 mm, t2 = 7 mm, w = 20 mm.

• Young’s moduli EAl = 70 GPa and ECu = 120 GPa.
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Asked: Centroid location and equivalent flexural rigidity.

Relevant relationships:

• Second moment of area of a square

Iy = h3 · w
12

• Normal strain due to bending

εx = κz

• Normal stress

σx = εx · E

a)

To find the neutral axis, we can not use the centroid formula as with a uniform
beam, since different parts of the beam will cause different amounts of normal
stress in a section. However the shear strain is linear with the distance from the
neutral axis. Figure 6 shows an element of the beam.

σx(x, z) My(x+ dx)

Figure 6: Composite beam element.

The equilibrium of forces in the x-direction tells us that

0 =
∫∫

A
σx(x, z) dA =

∫ w

0

∫ t1+t2

0
E(z)εx dz dy

=
∫ w

0

∫ t

0
E(z)κ(z − zc) dz dy = κ

∫ w

0

∫ t

0
E(z) · (z − zc) dz dy

where we can split up the integral

0 =
∫ w

0

∫ t

0
E(z) · (z − zc) dz dy =

∫ w

0

∫ t

0
E(z) · z dz dy −

∫ w

0

∫ t

0
E(z) · zc dz dy∫ w

0

∫ t

0
E(z) · z dz dy = zc

∫ w

0

∫ t

0
E(z) dz dy

so in analogy to the normal centroid formula we get a centroid formula for
varying Young’s modulus

zc =
∫∫

AE(z) · z dA∫∫
AE(z) dA =

∑
iEiAi · zc,i∑

EiAi
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Which gives us for the given beam (z from the top of the beam downwards)

zc = EAl · zc,Al · t1 + ECu · zc,Cu · t2
EAl · t1 + ECu · t2

= 70 GPa · 5 mm · 10 mm + 120 GPa · 13.5 mm · 7 mm
70 GPa · 10 mm + 120 GPa · 7 mm = 9.64 mm

so slightly above the junction.

b)

With the neutral axis the equivalent flexural rigidity is simply given by the
individual components with respect to the neutral axis. In this case, using the
parallel axis theorem

EIequiv = EAl ·
(
IAl +AAl · d2

Al

)
+ ECu ·

(
ICu +ACu · d2

Cu

)
= w ·

(
EAl ·

(
t31
12 + t1 · (zc,Al − zc)2

)
+ ECu ·

(
t32
12 + t2 · (zc − zc,Cu)2

))
= 737 N m2
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