Structural Mechanics Exercises week 11 Prof. G. Fantner

Exercise 1

We consider a loaded beam with a cross-section in T-shape (fig. 1). The beam
is characterized by the following values: E = 20GPa, v = 0.2, t; = 2cm,

ty =

lem, wy =1cm, wg =4cm, L =21cm and F' = 100N. We define z =0

at the top of the beam.

a)

We will want to find the internal moment of the beam M (x). Which axis
should you consider for the calculation of the moment of area?

What is the distance z. between the centroid and the top of the bar 7
Calculate the moment of area at the centroid.

Determine the expression of ¢(z). Deduce V(z) and M (x) by integration.

Reminder: the formula for stress in a bent beam with a constant cross
section is given by: o,(x) = M%;z) - (z — z¢), where z. is the position of the

centroid.

What is 0,(x) as a function of F and the geometrical dimensions ? Plot
o,(x) for the top of the beam o,—gcm (), the neutral axis o,—, () and
the bottom of the beam o,—3.m, ().
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Figure 1: Schematic of the loaded bar and its cross-section.

Exercise solution 1

Given: Geometry, load.

Asked: Centroid, second moment of area I, g(n), V(n) and (M (x); plots of
02=0(x), 0=z, () and o,—3(x).

Relevant relationships:

Steiner’s Theorem

I, = Iy + Ad?




Structural Mechanics Exercises week 11 Prof. G. Fantner

Centroid Formula

o = Zz Aizc,i
CONA

Stress in bent beam

The load on the cantilever will induce a moment in the y-direction. We thus
need to find I,,.

b)

Finding the centroid is straight-forward:

i Aizei  witizen + wataze

y. = = =2cm
¢ Zl Az‘ w1t1 + w2t2

As given in the formula section, I, = [, 22dA. It is however easier to look at
the cross-section as an assembly of two rectangles and use Steiner’s Theorem.

wl(t1)3 2 4
I, = 12 = 3 cm
w2(t2)3 1 4
I, 0= 12 = 3 cm

L% = Iy1 +witi(zc — 2e1)? 4 Iyo + wata(ze — 202)?

—~

2 1
:§+1-2-(2—1)2+§+4-1-(2—2.5)2:4cm4

c)
The load function here is composed of a linearly distributed load that is 0 at
T = %L and increases linearly to % at x = %L. We write the load function as

i) =T (o) = e ) T ()
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Integration yields

The constants are determined by the boundary conditions:

F
and:
5FL

With substituted constants:

oo (8 el ) R ) 45
M(z) = / V(z)dz + Cs
~ g (o8 g (e ) g (o)

d)

To plot the stress in the x-direction, we use the calculated moment as well as
the found second moment of area and the z position at which we want to know
the stress:

UZ(CU)—]\%QJ)'(Z—%):W‘(Z—QJOQ[m])
At z = z., we find:
UZ(.%') = ][\iy((ai) ) (zc - zc) =0

We check that there is no stress in the neutral axis (which is its definition).
At z =0, we find:




(=, 0} [kPa]
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Load function Shear Bending moment
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Figure 2: Graphs of the different calculated entities

My(z)
o.(z) = ? (0 — 2c)
y
where
3F \3 3F N\ F ,\2 F  5FL
M) =~ (o= §) T e ¥) +op (e %) +gr 5

Similarly at z = 3, we find:

_ My(x)
o.(z) = ?;T (3= z)

The moment as well as the stresses as a function of x are shown in fig. 2.
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Exercise 2

a) The cross-section of an H-beam is shown in fig. 3. Find the centroid and
second moments of area I, and I, of the beam.

b) For the two cross-sections shown in fig. 4, find the second moments of area

I, and I..
Yy 0 \i»\
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Figure 3: Cross-section of an H-beam.
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Figure 4: Cross-sections of more complicated beams.

Exercise solution 2

Given: Geometry.
Asked: Centroid location, second moments of area I, and 1.

Relevant relationships:
Second moment of area of a beam with rectangular cross section

B3 - 3. h
=—"2 ="

12 N 12
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Parallel axis theorem for shifting elements with area A by a distance d

I, =I.+d*A

Second moment of area in y direction

I, = / 22dA
A
Second moment of area in z direction
I, = / y2dA
A

a)

Since the structure is symmetrical, the centroid is in the center of the structure
(intersection of both symmetry—axes).

While the second moment of area can be calculated using integration, it is much
easier to divide the cross section into rectangular elements of which the second
moment of area is known and use the parallel axis theorem.

For I, the parallel axis theorem is not even needed, as none of the elements are
displaced from the symmetry axis in z direction. We find directly for the central
crossbeam and two flanges

I _t3h+2 w3t_t3h+w3t

F12 12 12 6
In case of I, we need the parallel axis theorem, as the center of mass of each
flange does not lie on the symmetry axis in y-direcion. With the flange area

A = w -t and the center-of-mass displacement d = %(t + h) for two flanges we
get

t-h3 13 t+h\? t-h3 243 t-w-h?
I, = +2-<w+w-t-(+) =D Ay g

12 12 2 12 3 2
b)
As given in the formula section, I, = [, 22dA. Tt becomes, for the given
geometry,

h/2 c1+eaz?
I, = / 22 dydz
—h/2 J—(c1+c222)

h/2  pcitcez?
I, = 4/ / 22 dydz
0 0

h/2
I, = 4/ 22 (01 + 6222) dz
0

thE)

I,=—h
Y 6 +40
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It is the same method for I, :

h/2  pc1+tcaz?
I, = 4/ / y?dy dz
B2 (
IL—4 / (a+e?)’
3
1 1 1
I, = 675 ahT + 400 1650° + 60102h3+ c‘;’h

c)
Moments of area for the y and z directions are equal for symmetry reasons.

The cross is equivalent to a big square at 45° with a side length of a, minus 4
smaller squares with a side of 20“

X-4p-o3¢

The moment of area is, for the red square :

11—4/_/__ 22dydz

L =

12

1
The green squares have a width of b = a%ﬁ = %a. It is possible to use the

previous calculation if we replace a by b to get the ¥y moment of area of each of
the two green squares along the y axis :

1
IL=—b
2= 150
1 /79 \*
L= — (=
2T 1 (20a>
_ 2187,
27 640000

For the top and bottom green squares, we need to take into account the distance
between the centroid and the y axis. This distance is

d=a=5- =550
11 V2
d=—a>=
20 2
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The y moment of area of each of the top and bottom green square is :

1
I:7b4 d22
37 19 + d“b
21789
~ 640000

3

Finally, the moments of area of the cross are

I, =1 — 21, — 2I3

1009

I, = 4
120000
1

Lo lo09
120000

Exercise 3

Occasionally, beams are made by joining two different materials, for example
for a bimetal sensing element or actuator. Fig. 5 shows such a beam and its
corresponding cross section.

Assume the top material is aluminium with a Young’s modulus Fx; = 70 GPa
and a thickness ¢t; = 10mm. The bottom material is copper with a Young’s
modulus Fc, = 120 GPa and a thickness to = 7mm. The beam has a width
w = 20 mm.

%iﬂg ll? yk%l

L w

Figure 5: Composite beam under bending.

a) Find an expression for the neutral axis when the Young’s modulus in
z-direction is variable. Find the neutral axis of the given beam.

b) Find the equivalent flexural rigidity (ET) of the beam.

Exercise solution 3
Given:

e Geometry t; = 10mm, {5 = 7mm, w = 20 mm.

e Young’s moduli £ = 70 GPa and FE¢, = 120 GPa.
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Asked: Centroid location and equivalent flexural rigidity.

Relevant relationships:
e Second moment of area of a square

h3 . w
Iy=""5

e Normal strain due to bending

Er = KZ
o Normal stress
Oy =€z F

a)

To find the neutral axis, we can not use the centroid formula as with a uniform
beam, since different parts of the beam will cause different amounts of normal
stress in a section. However the shear strain is linear with the distance from the
neutral axis. Figure 6 shows an element of the beam.

7, My (z + dx)

ox(z, 2)
A

Figure 6: Composite beam element.

The equilibrium of forces in the x-direction tells us that

0—//Aagc(av,z)dA—/Ow/otlﬂ2 E(z)ey dzdy
:/Ow/OtE(z)/ﬁ(z—zc)dzdy:m/ow/otE(z)-(z—zc)dzdy

where we can split up the integral

O:/Ow/OtE(z)-(z—zc)dzdy:/ow/otE(z)-zdzdy—/ow/OtE(z)-zcdzdy

/Ow/OtE(z)-zdzdy:zc/ow/otE(z)dzdy

so in analogy to the normal centroid formula we get a centroid formula for
varying Young’s modulus

JJWE(2) - 2dA Y EiA - 2
e [[4E(z)dA Y EA

9
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Which gives us for the given beam (z from the top of the beam downwards)

Ear-zear-t1 + Ecy - 2¢,cu - T2

Epy -t + Ecy - t2
B 70GPa-5mm - 10mm + 120 GPa - 13.5 mm - 7mm
N 70 GPa - 10 mm + 120 GPa - 7mm

Ze =

= 9.64 mm

so slightly above the junction.

b)

With the neutral axis the equivalent flexural rigidity is simply given by the
individual components with respect to the neutral axis. In this case, using the
parallel axis theorem

Equuiv = Far- (IAI + Aar- dil) + Ecu - (ICu + ACu : d2Cu>

t3 t3

=w-|Bar- | -5 +t1 (2eal — 20) | + Bou | 22 +ta- (2 — 2e,00)?
12 12

— 737N m?

10



	
	
	
	
	
	
	
	
	

