Exercise 1

We consider a loaded beam with a cross-section in T-shape (fig. 1). The beam is characterized by the following values: $E=20\,\mathrm{GPa},\ \nu=0.2,\ t_1=2\,\mathrm{cm},\ t_2=1\,\mathrm{cm},\ \omega_1=1\,\mathrm{cm},\ \omega_2=4\,\mathrm{cm},\ L=21\,\mathrm{cm}$ and $F=100\,\mathrm{N}$. We define z=0 at the top of the beam.

- a) We will want to find the internal moment of the beam M(x). Which axis should you consider for the calculation of the moment of area?
- b) What is the distance z_c between the centroid and the top of the bar? Calculate the moment of area at the centroid.
- c) Determine the expression of q(x). Deduce V(x) and M(x) by integration.
- d) Reminder: the formula for stress in a bent beam with a constant cross section is given by: $\sigma_z(x) = \frac{M_y(x)}{I_y} \cdot (z z_c)$, where z_c is the position of the centroid

What is $\sigma_z(x)$ as a function of F and the geometrical dimensions? Plot $\sigma_z(x)$ for the top of the beam $\sigma_{z=0cm}(x)$, the neutral axis $\sigma_{z=z_c}(x)$ and the bottom of the beam $\sigma_{z=3cm}(x)$.

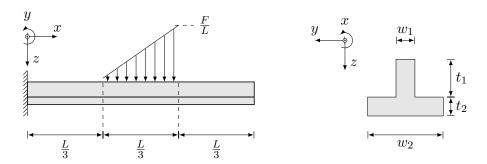


Figure 1: Schematic of the loaded bar and its cross-section.

Exercise 2

- a) The cross-section of an H-beam is shown in fig. 2. Find the centroid and second moments of area I_y and I_z of the beam.
- b) For the two cross-sections shown in fig. 3, find the second moments of area I_y and I_z .

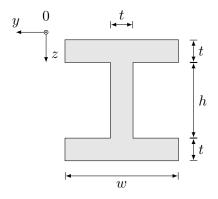


Figure 2: Cross-section of an H-beam.

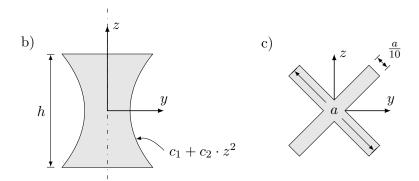


Figure 3: Cross-sections of more complicated beams.

Exercise 3

Occasionally, beams are made by joining two different materials, for example for a bimetal sensing element or actuator. Fig. 4 shows such a beam and its corresponding cross section.

Assume the top material is aluminium with a Young's modulus $E_{\rm Al} = 70\,{\rm GPa}$ and a thickness $t_1 = 10\,{\rm mm}$. The bottom material is copper with a Young's modulus $E_{\rm Cu} = 120\,{\rm GPa}$ and a thickness $t_2 = 7\,{\rm mm}$. The beam has a width $w = 20\,{\rm mm}$.

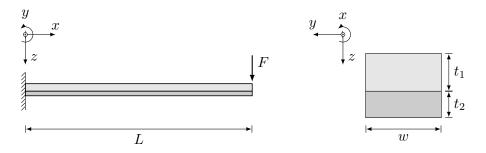


Figure 4: Composite beam under bending.

- a) Find an expression for the neutral axis when the Young's modulus in z-direction is variable. Find the neutral axis of the given beam.
- b) Find the equivalent flexural rigidity (EI) of the beam.