Exercise 1

In a titanium structure you have identified the critical point where you know that your part will start to fail. You have calculated the local stress state to be

You know that the titanium you are using has a yield strength of 180 MPa. Use the von Mises stress criterion to determine if your part will fail, and if not how big your safety factor is.

Exercise 2

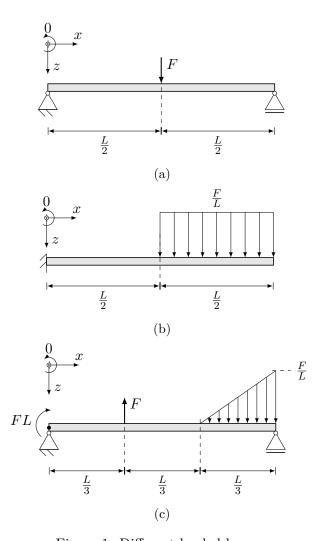


Figure 1: Different loaded beams.

The three beams as shown in figure 1 are subjected to different loads and supports. For each beam shown:

- Find the distributed load function q(x).
- Determine the boundary conditions for the shear force and the moment function.
- Calculate and sketch the shear force V(x) and the internal moment M(x).

Exercise 3

A uniform beam is supported and loaded according to the figure 2.

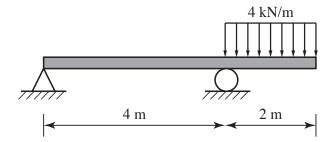


Figure 2: A supported beam under the distributed load

- a) Sketch the free body diagram
- b) Find reaction forces at the supports
- c) Draw the shear force and moment diagram