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WALDSPURGER FORMULA OVER FUNCTION FIELDS

CHIH-YUN CHUANG AND FU-TSUN WEI

ABsTRACT. In this paper, we derive a function field version of the Waldspurger formula
for the central critical values of the Rankin-Selberg L-functions. This formula states that
the central critical L-values in question can be expressed as the “ratio” of the global toric
period integral to the product of the local toric period integrals. Consequently, this result
provides a necessary and sufficient criterion for the non-vanishing of these central critical
L-values, and supports the Gross-Prasad conjecture for SO(3) over function fields.

INTRODUCTION

In 1985, Waldspurger [I5] established a fundamental formula for the central critical value
of the Rankin-Selberg L-function associated to an automorphic cuspidal representation of
GLg over a given number field F' convolved with a Hecke character on the idele class group
of a quadratic field extension over F. This formula asserts that “global toric period integrals”
can be written as the central critical L-value in question multiplying the product of “local
toric period integrals.” From this result, these critical L-values now have been studied exten-
sively over number fields and lead to plenty of arithmetic consequences (cf. [2], [3], and [22]).
The main purpose of this paper is to derive a function field analogue of Walspurger’s formula.

Let k£ be a global function field with odd characteristic, and denote the adele ring of &
by ka. Let D be a quaternion algebra over k, and K be a separable quadratic algebra over
k with an embedding ¢ : K < D. We put Dy and K4 to be the adelization of D and K,
respectively. Let IIP be an infinite dimensional automorphic representation of D} (cuspidal if
D is the matrix algebra) with a unitary central character n. Given a unitary Hecke character
x 1 K*\K; — C*, suppose 7 - X‘kg = 1. Let PXD € HomKAx (TP, x~1) be the global toric

period integral:
PXD(f) = / f(L(CL))X(CL)an, VfelP.
KX RS\KS

The measure d*a chosen here is the Tamagawa measure (cf. Section [[2). This then gives
us a linear functional 73}2 : TP @ TP — C (where II? is the contragredient representation of
IIP) defined by:

PP(f @ f) == PP(f)- P2.(f), Yf®felP IP.

On the other hand, write II” = ®,II7, and P = ®Uﬁvp. We may assume that the
identification between II? (resp. [I”) and ®,I12 (resp. ®I17) satisfies the following equality:

_ 2L(1,11, Ad) . ~
(-, '>get = T(Q) : 1:[(, >UD 1P x IIP = C,
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where:

e the pairing (-,-)5, is induced from the Petersson inner product (with respect to the

Tamagawa measure, i.e. the total volume of D*k;\D) is 2, cf. Section [[2).

D

P is the natural duality pairing between I1Z and ﬁvp

e for each place v of k, (-, ")

e II is the automorphic cuspidal representation of GLy (k) correspoding to IIP via the
Jacquet-Langlands correspondence.

e L(s,1I,Ad) is the adjoint L-function of II.

e (i (s) is the Dedekind-Weil zeta function of k.
Write x = ®,Xxo- Then for each v, the local toric period integral 9’51) 1P ® ﬁUD — Cis
given by:
PR F) = [ IR (a) for ol ()",
Kok

Here d*a, is the Tamagawa measure on K /k (chosen in Section [[.2)), and * is a product
of “local L-factors” so that 220 (f, ® f,) =1 when v is “good” (cf. Lemma [5.1)). These local
toric period integrals induce another linear functional 27 := @27 : I @ P — C. We
now state the main theorem of this paper as follows (cf. Theorem [£5.2):

Theorem 0.1. Under the above assumptions, we have
1
P =L(5, 1 xx) - 2,
where L(s,1I x x) is the Rankin-Selberg L-function associated to I and x.

We remark that L(s,IT x x) can be identified with L(s,IIx ® x), the L-function of IIx
twisted by x, where Ik is Jacquet’s lifting of IT to GLy(Ky) (cf. [7, Theorem 20.6]).

Let <k be the quadratic Hecke character of K/k and put ¢, = gK‘kx. From the work
of Tunnell [I3] and Waldspurger [15, Lemme 10], the local toric period integral 27, is not
trivial if and only if

eo(IL X X) = 1y (=1)sK 0 (= 1)€u(D). (%)

Here €,(IT x x) is the local root number of L(s,II x x) at v and €,(D) is the Hasse invariant
of D at v. This leads us to the following consequence.

Corollary 0.2. Suppose [[, e,(I x x) = 1. Let D be the unique (up to isomorphism,)
quaternion algebra over k so that the equality (x) holds for every place v of k. Then the
non-vanishing of L(1/2,T1 x x) is equivalent to the existance of an automorphic form f € P
so that

PP = [ fa)xa@dazo
KX RS \K]

In particular, via the isomorphism PGLy 22 SO(3), Corollary[0-2supports the Gross-Prasad
conjecture for the SO(3) case over function fields (cf. [6]).

The proof of Theorem [Tl basically follows Waldspurger’s approach in [I5] for the number
field case. Suppose first that K is a quadratic field over k. Let (Vp,Qv,) be the quadratic
space (D, Nrp ), where Nrp /;, is the reduced norm from D to k. Given ¢ € II and a Schwartz
function ¢ € S(Vp(ka)), suppose ¢ and ¢ are both pure tensors. From the Rankin-Selberg
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method, we have (cf. Corollary B3 (2))
(0.1) L(2s,5x) - Z(550,0) = L(s,TIx x) - [[ 22(s; 6w, 00),

where the zeta integral Z(s; ¢, @) (resp. Z2(s; ¢y, o)) is defined in the beginning of Section[32]
(resp. Corollary (2)). Applying the Siegel-Weil formula in Theorem Bl and the seesaw
identity (cf. the diagram [@2)), we may connect L(1,¢x) - Z(1/2;¢, ) with a global toric
period integral T (¢, ¢) (cf. the equation (@3] and Proposition [£3). On the other hand, the
local zeta integral Z2(1/2; ¢, ¢,) can be rewritten as a local toric period integral T, (dv, ¢©v)
(cf. Proposition @I]). The global (resp. local) Shimizu correspondence in Theorem (resp.
Section 23, then enables us to connect T (resp. T,) with PP (resp. #7,), which completes
the proof. Note that in our approach, we always take the original Schwartz functions (i.e.
functions in S(V(ka)), cf. Section [2]), instead of using the “extended ones” (i.e. functions in
S(V(ka) x k) as in [I5, Section 3]. This simplifies the arguments.

One ingredient of the above proof is to decompose the global Shimizu correspondence as
the tensor product of local ones (cf. Section [Z.3.T]and Appendix [A]). To achieve this, we need
to verify the Siegel-Weil formula for the dual pair (SAI/JQ, O(D?)), where SL, is the metaplectic
cover of SLa, and D° consists of all the pure quaternions in D (cf. Appendix [B]).

When K = k x k, the existance of the embedding ¢ : K < D forces that D = Mats. We
may write y = x1 X x2 where x; are unitary Hecke characters on £*\kj . In this case we have

L(s,T x x) =L(s,I® x1) - L(s, I ® x2).

Note that the assumption 7 - x|kAX = 1 says that II ® x2 = I xfl. The global (resp. local)
toric period integrals can then be easily identified with the product of the special values of
the global (resp. local) zeta integrals of forms in IT ® x; and I X;* at s = 1/2. Therefore
Theorem [0T] follows immediately (cf. Appendix [C).

Identifying II? with the space {f : f € TP} via the Petersson inner product on II7, we

put |f5, = (f, )B.. (xesp. ||f,||P := (fu, fo)D). For non-zero pure tensors ¢ = ®,¢, € II
and f = ®,f, € P, from Theorem [0.1] we obtain that

D 2
(0.2) U L/2 13 Havqﬁv,fv

11 Bet I19]1per?

where

(P, fo)
D (@) fo, fo)o
— (Lv(lunvAd)|¢U”£\)/lat2> . (M‘/K e <HU ( ( ))f f > Xv(av)dxav> .

C(2) Ly(1/2,1Tx ) 1foll?

Taking suitable ¢ and f, it is possible to calculate the local quantities ., (¢y, f) in concrete
terms. Therefore the equality ([I.2]) leads us to an explicit formula of L(1/2,II x x). This will
be studied in a subsequent paper.

The content of this paper is given as follows. In Section [I} we first set up basic notations
used throughout this paper, and fix all the Haar measures in the paper to be the Tamagawa
measures. In Section 2] we recall needed properties of theta series associated to quadratic
fields and quaternion algebras, and state the Shimizu correspondence in the version used
here. In Section B] we apply the Rankin-Selberg method to show the equation (0.
Section ] we first rewrite Z2(1/2; ¢y, . ) in terms of the local toric period integral T, (¢, ©y)
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associated to ¢, and ¢, in Section Bl Applying the seesaw identity, the special value
L(1,5x) - Z(1/2; ¢, ) equals to the global toric period integral T (¢, ¢) associated to ¢ and
 in Section We thereby arrive at the main theorem in Section [Al by applying the global
and local Shimizu correspondence. In Appendix [Al we recall the decomposition of the global
Shimizu correspondence into the tensor product of local ones. In Appendix [Bl we verify the
Siegel-Weil formula for the dual pair (SAI/JQ, O(D®)), where SL, is the metaplectic cover of SLo,
and D? consists of all the pure quaternions in a division quaternion algebra D. The case when
K = k x k for Theorem [0.] is proven in Appendix

1. PRELIMILARIES

1.1. Basic settings. Give a ring R, the multiplicative group of R is denoted by R*. By
#(9) for each set S, we mean the cardinality of S.

Let k be a global function field with finite constant field IF,. Throughout this paper, we
always assume ¢ to be odd. For each place v of k, let k, be the completion of k£ at v, and O,
be the valuation ring in k,. Choose a uniformizer w, once and for all. Set F,, := O, /w,O,,
the residue field at v, and put ¢, := #(F,). The valuation on k, is denoted by ord,,, and we

normalize the absolute value | - |, on k;, by |ay|y := qv ordu (@) gor every a, € ky.

Let ks be the ring of adeles of k, i.e. ky = H; k., the restricted direct product of k, with
respect to O,,. The maximal compact subring of k, is denoted by Og. The group of ideles of k
is k,, with the maximal compact subgroup O;. For a = (a,), € k;, we put |ala =[], |av|o-

Finally, fix a non-trivial additive character ¢ : kx — C* which is trivial on k. For each
place v of k, put ¢, := 1/)|]C . Let 4, be the “conductor” of 1, i.e. 1, is trivial on w0,
but not trivial on @, %*~10,. Then >, 0 - degv = 2g;, — 2, where g, is the genus of k.

1.2. Tamagawa measures. For each place v of k, choose the self-dual Haar measure dz,
on k, with respect to the fixed additive character 1, i.e. vol(O,,dx,) = qv 3u/2  The Haar
measure dx = [[, dz, on ka is then self-dual with respect to v, and vol(k\ks,dz) = 1. For

the multiplicative group k)¢, we take the Haar measure

dx,

: —7
| v

d*zy = Co(1)

where (,(s) = (1 — ¢, *)~! is the local zeta function of k at v. Then vol(OX,d*z,) = q;(s”/2.
This gives us a Haar measure d*x = [[, d*z, on k; .

Given a separable quadratic algebra K over k, let Tg/, and Nk be the trace and norm
from K to k, respectively. Put K, := K ®j k,. The Haar measures on K, and K, are chosen
as above for each place v of k (with respect to the character 1), o Tg/;). This induces a

Haar measure d”h, on K /k), and one has vol(Of /O ,d*h,) = gy I RETON/2 here
0k € Div(k) is the discriminant divisor of K over k. Let K := K ®j ka. We then take the
Haar measure on K /k} to be d*h :=[[, d*h,. Let sk be the quadratic character of K/k,
e ¢x : k*\kg — C* is the character with the kernel precisely equal to k™ - Ny (K} ).

When K is a field, one has
VOl(K>\K S Jk),d*h) =2 L(1,ck).
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By Hilbert’s theorem 90, we may identify K*/k* with K' := {a € K* | Ng/x(a) = 1}.
Thus the chosen Haar measure d*h on K /k; can be identified with a Haar measure d*h'
on K}. In particular, for each place v of k, we have

vol(O) ,d*hl) = (ord, (0 ) + 1) - g, (C*dv(@r)+62)/2,

Given a quaternion algebra D over k, let Trp/, and Nrp ;. be the reduced trace and norm
from D to k, respectively. Put D, := D ®y k, for each place v of k. The Haar measure db,
on D, for each v is taken to be self-dual with respect to ¢, o Trp ;. For the multiplicative

group D, we choose
db,,

| NrD/k(bv)lv '
Globally, put Dy := D ®j, ka. We choose the Haar measure d*b on D) satisfying that for
each maximal compact open subgroup K = [[, K, C Dy, one has

vol(KC, d*b) := [ [ vol(K, d*by).

d*by = (1)

Via the exact sequence

15 D' 5D 5 k* -1
the chosen Haar measures d*b on Dy and d*z on k determine a Haar measure d*b; on D} .
Moreover, it is known that (cf. [2I, Theorem 3.3.1])

vol(D*k;\D),d*b) =2 and  vol(D'\D},d”b;) = 1.

2. THETA SERIES

2.1. Weil representation. Let (V,Qy) be a non-degenerate quadratic space over k with
even dimension (then dim; V' < 4). Set
<Iay>V = QV(x+y)_QV(x)_QV(y)7 anyeva

the bilinear form associated to Qy. Given an arbitrary k-algebra R, set V(R) := V ®, R. For
our purpose, the (local) Weil representation w) of (SLz x O(V))(k,) on the Schwartz space
S(V(ky)) is chosen with respect to ¢, for every place v of k. We denote by w" := ®,wY the
(global) Weil representation of (SLz x O(V))(ka) on the Schwartz space S(V (ka)).

Let GO(V) be the orthogonal similitude group of V' over k. Put
[GL2 x GO(V)] := {(g,h) € GLy x GO(V) | det(g) = v(h)}.

Here v(h) is the factor of similitude for h € GO(V). We extend w" to a representation
(still denoted by w") of [GLy x GO(V)](ks) on S(V(ks)) by the following: for every pair
(9,h) € [GL2 x GO(V)](ka) and ¢ € S(V (ka)), set

(@ (0 ) = et @V ([ ) D)), V€ Vi),

Given (g, h) € [GLa x GO(V)](ks) and ¢ € S(V(ka)), let
0V (g, hi0) = > (0¥ (g,h)p) ().

zeV (k)

For every ¢ € S(V(ka)), the theta series 6V (-, -; ¢) is invariant by [GLa x GO(V)](k) via left
multiplications.
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2.2. Quadratic theta series. Let K be a quadratic field extension of k. Given v € kX,
let (Vi),Q(y)) := (K,7 - Ng/i), where Ng . is the norm form on K/k. Then one has
GO(V(y)) =2 K* x (1k), where 7k (x) := T for every x € K = V(,)(k). We may identify
K':={h € K | Ng/g(h) = 1} with the special orthogonal group SO(V()).

Let GLEK be the image of natural projection of [GLy x GO(V(,))] into GLz. Given a unitary
Hecke character x on K*\K; and ¢ € S(V(,)(ka)), set

H;V)(g;cp) :z/ 9V<7>(g,rhg; ©)x(rhg)dr, Vg€ GLEK (ka).
KI\K}

Here hy € K[ is chosen so that Ny (hy) = det(g). Then 99)(4@ is invariant under
GLZK (k) by left multiplications, and has a central character equal to ¢k - X’k;’ where ¢x is
the quadratic Hecke character of K/k. When v = 1, we will denote by 6% (-, ;) and 65 (-; )
the quadratic theta series 8V (-, ;) and 9;1)(-; ), respectively.

2.2.1. Whittaker functions. Given v € k*, the Whittaker function (with respect to 1) at-
tached to 99)(4 p) for ¢ € S(V,(ky)) is:

W (g; ) = /k\k 6" (((1) 7;) g;sﬁ) ¥(n)dn.

1 n ——
Wy ((0 1) 9; so) =) - W(g;9), Vg€ GLy (ks) and n € ky.

It is straightforward that:

Then

Lemma 2.1. Suppose ¢ = Qup, € S(V,(ka)) is a pure tensor. Then W;Y)(';QD) is fac-
torizable. More precisely, for g = (gv)y € GLEK (Ag), choose hy = (hgy)y € K[ so that
det(g) = Niju(hg). One has Wi (g:9) = [T, Wi (gv; @u), where

V'Y
W) = [ (ol (Gurrahy)n) (1) xulrudy )i,

v

2.3. Quaternionic theta series. Let D be a quaternion algebra over k, and denote by
Nrp i, (resp. Trp/y) the reduced norm (resp. trace) on D/k. Let (Vp,Qvy) := (D,Nrpyy).
Then we have the following exact sequence:

1— k" — (D* xD*) x (rp) — GO(Vp) — 1.

Here:

e k* embeds into D* x D* diagonally;

e cvery pair (b1,b2) € D* x D* is sent to

[b1,b2] := (x = biaby ', © € D) € GO(Vp);
o mp(r) =T = Trp/(x) — x for every z € D.
Let II” be an infinite dimensional automorphic representation of D} which is cuspidal if

D = Maty. Suppose the central character of II? is unitary. Let IT be the automorphic cuspidal

representation of GLy(ky) corresponding to ITP via the Jacquet-Langlands correspondence.
Given ¢ € S(Vp(ka)) and ¢ € 11, for by, by € D) we set

0% (b1, ba; b, ) ?Z/ d(g' a(bibs ) - 0P (g a(biby "), b1, ba]; ) dg’.
SLa(k)\ SLa(ky)
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Here a(b) := 1 0 for every b € D}, and dg* is the Tamagawa measure on SL(kx )
0 NrD/k (b)

(cf. Section [LZ). It is clear that 67 (-, -; ¢, ¢) is invariant by DX x DX via left multiplications.
Put

OP(I0) = {07(, 16, ¢) | 6 € T p € S(Vp(kn))} -
The Shimizu correspondence says (cf. [I2, Theorem 1]):

Theorem 2.2. Given an infinite dimensional automorphic representation IIP of Dy (cusp-
idal if D = Maty ), suppose the central character of IIP is unitary. Then

(21) GD(H) = {fl ®f_2 : Dg X Dg - C | f17f2 € HD}Cfspan-

Here f1 ® fo (b,b') := fi(b) - f2(b') for every bt/ € DY. Consequently, let 1P be the contra-
gredient representation of IIP. Identifying IIP with the space {f | f € IIP} via the Petersson
inner product, the equality 2.)) induces an isomorphism

Sh: 0PI ~11° @ IIP.

2.3.1. Local Shimizu correspondence. We may identify II with ®,II, naturally via the Whit-
taker model of IT (with respect to ). Let v be a place of k. For ¢, € II,, and ¢, € S(Vp(k,)),
put

91?70([)1)7 b;? v, Spv)

_w® / Wy, (gaa(bubl ™)) - (wl (gha(bobl 1), by, b])0w) (1)dg,
LoLILAD) Jugepstageny 00 v AT B e BT
Here Wy, is the Whittaker function of ¢, (with respect to 1,), the map « is defined in the
above of Theorem 22 and U C SLs is the standard unipotent subgroup. Observe that when
v is “good” we have 02+°(by, b ; ¢y, py) = 1 (cf. Theorem [A23] (1)). Moreover, for pure tensors
¢ = Ry¢, €Il and p = @,¢, € S(Vp(ka)) we have (cf. Theorem [A3))

(2.2) / 67 (bby, bbos 6, )b
DXk \D}

2L(1,11, Ad) - §
= —————— || 0, °(b1,0,b2,0; Pv,00), Vb1,b2 € Dg.
Ck(2) H v ( 1, 2, d) ¥ ) 1,02 € A

v

Put
07 (L) = {67°(, 6o, 00) | 0 € Th, 00 € S(Vp(ko))}-
Then the above equality implies that (cf. Proposition [A4])
OV () = {fo® fo: DY x DY = C| fu €117, fu € T }c—span-
Here f, ® f, is viewed as a matrix coefficient:
fo ® Folbo,b,) 1= (I (ba) £o, TIY V) )7, Vb, b, € D,
where (-,-)0 : TP x ﬁUD — C is the natural duality pairing. Consequently, we have an

isomorphism Sh,, : ©P(I1,) = I1P © I17.

Remark 2.3. Let (-,)B . : TP x II? — C be the Petersson pairing. The equality (2.2)),
together with Sh and Sh,, provide us a way to indentify II? (resp. II?) with ®,II2 (resp.

®UHUD) so that for pure tensors f = ®, f, € 1P and f=®fs € II?, we have

(1. PR = 2 T 07
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3. ZETA INTEGRALS AND RANKIN-SELBERG METHOD

3.1. Siegel Eisenstein series. Let K be a quadratic field over k. Fix v € k*. Recall that
we put (Viyy, Qeyy) = (K, - Ng/i). Given ¢ € S(V(4)(ka)), the Siegel section associated to
 is defined by

Bo(g.s) = U5 (1) (V0 (1)) 0)

bl
for every g = (O b> k € GLa(ky) with a,b € kS, n € ka, k € SLa(O4), and s € C. Here
Sk is the quadratic character of K/k. The Siegel Eisenstein series associated to ¢ is
E(g.s,0):= Y, ®,(1g,5), Vg€ Gla(ka),
YEB(K)\ GL2 (k)

which converges absolutely for Re(s) > 1. It is known that E(g, s, ¢) has meromorphic con-
tinuation to the whole complex s-plane and satisfies a functional equation with the symmetry
between s and 1 — s. Note that E(g, s, ¢) is always holomorphic at the central critical point
s =1/2, and the following formula holds (cf. [I7, Theorem 0.1]):

Theorem 3.1. (The Siegel-Weil formula) Fiz v € k*. Given ¢ € S(V(4(ka)), one has
1 1 ™)
Zo)=—— g
2 Y SO) L(l, <K) 1K

where 1k is the principal character on K.

N
E(g, (9.¢), Vg€ GLy (ka),

3.2. Zeta integrals. Let D be a quaternion algebra over k. Given a quadratic field extension
K over k with an embedding K < D, we write D = K + Kj where j2 = v € k* and jb = bj
for every b € K. Set (Vp, Qv ) := (D, Nrp/). Then

(Vp,Qvp) = (V(1): Q1)) & (V=) @(—))-

Let IT be an automorphic cuspidal representation of GLa(ka) with a unitary central char-
acter denoted by 1. Given a Hecke character y : K*\K;* — C*, suppose that y is unitary
and 7 x|,« = 1. For ¢ € Il and ¢ € S(Vp(ka)), we are interested in the following (global)

A

zeta integral: writing ¢ = >, ¢1,; ® w2 with 15 € S(V(1)(ka)) and @o; € S(V(_y(ka)), we
set

Z/ . $(9)0% (9, 01.4) E(g, 55 02.4)dg.
Z(kp) GLY (K \GLK(kA)

Here Z is the center of GLg, and dg is the Tamagawa measure on GLo(ka) restricting to
GLEK (ka) (cf. Section [[Z). This integral is a meromorphic function on the complex s-plane.
Moreover, one asserts:

Proposition 3.2. Given pure tensors ¢ = Q,¢, € Il and ¢ = Q,p, € S(Vp(ks)), one has
Hz bus Pu)s

where Z,(8; du, pu) 18 equal to

~/KvX </SL2(OW) Ws, ((NK/(;c(h) (1)> ,g})) : (wf(ﬁ}))%)(ﬁ) dm},) Xv(h)|NK/k(h)|i7%dXh;

and Wy, is the local Whittaker function associated to f, (with respect to 1, ).
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Proof. Without loss of generality, assume ¢ = @1 @ pa. Let B® .= Bn GLEK =17 TIK -U,
where
To= (5 ), T =Tincry, ad U= (1

1= 0 1 5 1 = 11 2 , all = 0 1 .

Put GLEK (Oa) := GL2(0Oa) N GLEK (ka). From the Iwasawa decomposition
QL (ks) = B" (ka) - GL;' (Ox).
we write the zeta integral Z(s; ¢, ¢) as
Z(s19,9)
-/ / Wt YW (b1 1) () (o) )5 @
2(0u)\ GLF (01) T (k)

det(k)~t 0

0 1
place v of k, we have the following exact sequence:

where for every £ € GL2(O4), we put k! := ( > k € SL2(O4). Note that for each

1 {:l:l} SLZ(OU) — Z(Ov)\ GLQ(OU)

Therefore when ¢ and f are pure tensors, one has
H Z/,(5; bu, 00,

where
Z(55 0, p0) / / Wo, (Lo )W, (ty; @1,0) (W (L) 2,0) (0)[¢]57Hd*t i
SL2 (O K (ky)
By Lemma 2] the local zeta integral Z!(s; ¢y, ,) becomes

55 Gu, Pu)

W, tm
w/SLg(O)/+K ¢v )
.(/Kl

(wff(ni)sm,v)(mht,v)xv(rvht,mdrv) (WS (KL )pa,0) (O) 1372 Aty

= Zv(s; (bva (pv)'

The following results are straightforward.

Corollary 3.3. (1) Suppose v is “good”, i.e. the conductor of 1, is trivial, I1, is an unramified
principal series, ¢, € IL, is spherical with Wy, (1) = 1, v is unramified in K, x, is unramified,
ordy,(v) =0, and ¢ = o1 © Y2 with p1 = Y2 = Loy, . We have

L, (8,11 x x)

Zy(85 Puy p0) = Ly(2s,¢k)

(2) Given ¢, €11, and ¢, € S(Vp(k,)), put

L,(2s,5K) .

LU(S,H X X) Zv(8;¢vu 901))'

Z2(8; oy o) =
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Then Z2(s; pu, pu) = 1 for all but finitely many v, and

L(s,IT x x

Z(S;(ba(p) = L(2S,§K)) '1:[23(8;¢v790v)

for every pure tensors ¢ € Il and p € S(Vp(ka)).
(3) The (local) zeta integral Z2(s; ¢y, py) always converges at s =1/2.
4. CENTRAL CRITICAL VALUES OF ZETA INTEGRALS

Let D, K, 11, n, and x be as in the above section. For pure tensors ¢ = ®,¢, € II and
© = Qp, € S(Vp(ka)), we shall express Z(1/2; ¢, ¢) (resp. Z,(1/2; ¢y, o)) in terms of global
(resp. local) “toric period integrals” of the pair (¢, @) (resp. (¢u, ©u))-

4.1. Local case. We may rewrite Z,(1/2; ¢y, ¢, ) for ¢, € II,, and ¢, € S(Vp(k,)) as follows:

Proposition 4.1. Given ¢, € I, and ¢, € S(Vp(ky)), we have
Ly(1,11, Ad)
G(2)
Here 0P°(-,-; ¢y, @y is defined in Section 2311

1
Zv(_;(bvv(/)v) - / Hf’o(h,u,1;¢U7(pv)xv(hv)dxhv.
2 K kX

Proof. Given h, € K and g} € SLa(k,), one has
wy (gua(ho), [ho, 1) ¢u(1) = | Nip(ho) 5" - ) (alhe) ™ ggalhe)) (hy ).
From the Iwasawa decomposition:
SLa(ky) = B (k) - (a(hy) SL2(Ou)a(hu) ™)

we may write
dg}; = | N /i (ho)lo 'dLb11; 'dR’ﬁl;'

Thus
L,(1,II,Ad)  p
————— 0, ("o, 15 9o, 0
o) ( :
a 0 a 0 d*a
= W, vz ahvni) (w?(” )/@i U) hyt)—=2dk)
Lo homwe (5 h) ot ) (25 0) sbien) 0
= LU e (e ) e R @t | vfa)ia,
kX \JsLa(0.) 0 1
Therefore the result follows immediately. O

Let 1P = ®,1P be, if exists, the automorphic representation of D) corresponding to IT
via the Jacquet-Langlands correspondence. For ¢, € I, and ¢, € S(Vp(k,)), we may view
6P°(-,+; ¢y, o) as a matrix coefficient of 117 @ I (cf. Proposition [A4]). Define the local
toric period integral of the pair (¢, ¢y) by
L,(1,sx)L, (1,11, Ad)

Ly(5: 1T x X)Gu(2)

Then the above proposition says

1
Zg(E;QSU?(p’U) = 7:)(¢’U7 SDU)

1) Toldnpn) = - / R ) e
KXk
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4.2. Global case. Put
[GO(Vin)) x GO(V(—))] == {(h1, h2) € GO(V(1)) x GO(V(_)) | v(h1) = v(h2)},

which is viewed as a subgroup of GO(Vp). Note that GO(V(,)) = K* x (7k) for every a € k>,
and we have the following exact sequence

1— kK — (D* xD*) x (rp) — GO(Vp) — 1.

Here k* embeds into D* x D* diagonally, and every pair (by,b2) € D* x D* is sent to
(x = biaby ', x € V =D) € GO(Vp). Let

[K* x K*] = {(h1,h2) € K* x K* | Ng/p(h1) = Ngp(h2)}
= K*xK*nN [GO(V(l)) X GO(V(,,Y))].

Define ¢ : [K* x K*X] < D* x D* by sending (h1, hz2) to (hih/,h') € (D* x D*)/k*, where
h' € K* such that h'/h = hy/h;. Then the following diagram commutes:

[K* x KX]C—"——s DX x D*

| |

[GO(Viy)) x GO(V[_))| > GO(Vp).

Suppose ¢ = @1 @ @2 € S(Vp(ka)), where o1 € S(V(1)(ka)) and @2 € S(V(_)(ka)). In
Section 2.1l we put

+
O (gion) = [ 00 (g rhyion(rhy)dr, Vg € GLY (k).
KI\K}
The Siegel-Weil formula in Theorem B.1] says

1 1
SRR P S— 0V (g, rhg; po)dr.
27()02) L(1,§K> w/Kl\Kl (Q,T 97902) T

Note that the following lemma is straightforward.

E(g,

Lemma 4.2. Given g € GLEK (ka) and hi,ho € K;° with det(9) = Ngp(h1) = Ngyi(he),
one has

00 (g, his 1) - 0V (g, hoypa) = 077 (g, [hah!, W]; 01 ® 02).
Here ' € K[ is chosen so that h'/h/ = ha/h1, and [hih/, k'] € (DS x DS)/ky is considered
as an element in GO(Vp)(ka).

Applying the “seesaw identity” (cf. [I0]) with respect to the following diagram

(4.2) GLy' Viay) x GO(V(_)]
diagonal\[ >< ‘[
[GLy x GLy] GO(Vp)™,

where [GLEK X GLEK] (resp. [GO(V(1)) x GO(V(_))]) is the subgroup of GLEK X GL;K (resp.
GO(V(1)) x GO(V(_,))) consisting of all pairs (g1, g2) where g; and g have the same deter-
minants (resp. the factor of similitudes), we then obtain that:
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Proposition 4.3. Given ¢ €11, and ¢ € S(Vp(ka)), we have

1 1
2:09) = o | 6P haie) (b kb,
2 L(1,¢x) K E\KS JE kK

Proof. The above discussion says that

2(5i0.9) = (9)

o

L(LCK /z(k,“ QL (k)\ GLE (k)
/ / 0V (g,r1hg; 01)07 D (g, 72hg; @2)X (P1hg )drldr2> dg
Kl\Kl Kl\Kl

. 1 N A
L(l gK) ~/SL2(’€)\SL2(/€A)¢(9 a( K/k( )))

- ( / / 0P (g 0N (), (B, 1) w)x(h)dhdh’> dg!
KX EA\KS JKCES\K ]
1 _
= 7/ / 0P (h1, ha; &, @) - x(h1hy ) dhidhs.
L(Lsk) Jr<wokr Jr<mix s
(Il

For each pair (¢, @) with ¢ € IT and ¢ € S(Vp(ka)), define the global toric period integral
by:

(43)  Tlhy) = / / 07 (ha, ho; 6 9) - x(h by VYl .
KX k\KS JK k\K

Then by Corollary B3] Proposition [£.1] and 4.3 we arrive at:

Corollary 4.4. Given pure tensors ¢ = Qu¢, € Il and ¢ = Ry, € S(Vp(ka)), we have

T(6,0) = L T ) - T To(wr 00,

v

5. WALDSPURGER FORMULA

Let IT be an automorphic cuspidal representation of GLg (ks ) with a unitary central charac-
ter 1. For a quaternion algebra D over k, let II? be, if exists, the automorphic representation
of D corresponding to II via the Jacquet-Langlands correspondence. Let K be a separable
quadratic algebra over k together with an embedding ¢ : K — D. Given a unitary Hecke
character x : K*\K; — C*, suppose 7 - X”C? = 1. For each f € IIP, put

PR = [ )X
KX\

This induces a linear functional ’P)? TP @ II? — C defined by

PP(f® f) = PP(f)- PP.(f), VfefelPolPl.

X

On the other hand, write II? = ®,II7 and P = ®Uﬁvp. For each place v of k, let
(-,*)y : TI? x II? — C be the natural duality pairing. We assume that the identification
between ITI7 (resp. I17) and ®,I17 (resp. ®,117) satisfies:

(5'1) <'u '>Pet = %{;Ad) ’ H<7 '>v7

v
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where (-, )pet @ TP x [P — C is the pairing induced from the Petersson inner product on
OP. The local toric period integral WEU :TIP @ 1P — C is defined by:

2y Lo(L,6r) Lo (1,11, Ad)
Pxlfee )= Ly (1/2,11 x X)¢u(2)

Lemma 5.1. Suppose v is “good,” i.e. the additive character 1, has trivial conductor, the

) / <HE (L(hv))fva fv>v “Xo (ho)d™ hy.
KX [k

quaternion algebra D splits at v, the local representation 117 = Tl is an unramified principal
series, the place v is unramified in K, the character ., is unramified. Take f, € IV and
fo € IP to be spherical and invariant by «(Ok,) with (f,, fo)» = 1. Then

ggv(fv ®f~v) = 1

Proof. Suppose v is inert in K. Then the choices of f, and f, satisfy

7\ Lo(1,sk) Lo (1, 11, Ad)
Pxalfo® fo) = Ly(1/2,11 x x)Cu(2) -

It is straightforward that the right hand side of the above equality equals to 1 under the

above assumptions on v.

Suppose v splits in K, i.e. K, = ky X ky. Write Xy = Xo,1 X Xo,2 00 kS X k. Then

1 1 1 1 1 = _
L”(§’H X X) = Lv(ivﬂv & X’u,l) 'Lv(ivﬂv Y X’u,2) = Lv(ganv ®Xv,1) : Lv(ianv ®XU&)-

The last equality follows from the assumption 7, - x|, x = 1, where 7, is the central character

I
of I1,,. The pairing (-, ), can be realized by

s L Cv(2) ) ay 0 ; (ay O x D 7 D
b= ey [, (6 )W (5 ) #evien?. en

where Wy, (resp. W}’; ) is the Whittaker function of f, (resp. f,) with respect to 1, (resp.
1,). We may assume the embedding « : K, — D, satisfies

tay,al,) = (cg, c?’) € Mats(ky) = Dy,  V(ay,al) € ky X ky.

Then

= 1 a, 0
D _ v X
9){7’0(]["1 ® f'U) - (Lv(1/2,]:[v ® Xfuﬁl) ‘/k;z,< qu ( O 1) Xv7l(a’v)d av)

1 ay, 0
) _ w7 “ay)d ay | .
<LU(1/27HU ®X;i) ~/I€§ fo (0 1) Xv,l(a )d*a )

Therefore when f, and f, are spherical and invariant by 1(Ok,) with (f,, fv>v =1, we get
'ng(fv@)fv):l' u

Set c@f = Ry 3”}21) TP @ TIP — C. We finally arrive at:

Theorem 5.2. The linear functionals Pf and 3”5 on TP @ IIP satisfy

X

1
PP = L(5,TTx x) PP
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Proof. The case when K = k X k is proven in Appendix Suppose K is a quadratic field
over k. Take pure tensors ¢ = ®,¢, € Il and ¢ = Q,p, € S(Vp(ka)). Applying the global
and local Shimizu correspondence (cf. Theorem and Section 2:3.]), Corollary 44l implies

PY(Sh(67(.56,9)) = T(d,¢)
= L(%,HXX)'H%(Q/)U;@U)

= L) [T 22, (Sh(0P(, 560, 00))

1
= L(§7HXX)'@)?(9D(77¢7QP))
Therefore the result holds. O

5.1. Non-vanishing criterion. For each place v of k, we have:

Lemma 5.3. (cf. [13]) The space Hom (P, x,; 1) is at most one dimensional. Moreover,
Hom, x (TP x; 1) # 0 if and only if

(52) EU(HU X Xv) = XU(_1)§K,U(_1) : GU(D)'

Here €,(I1, X xy) 1s the local root number of L,(s,11 x x), and €,(D) is the Hasse invariant
of D at v.

It is clear that 227, lies in Hom ;. x M7, ;1) ® Hom . x (IT?, x»). Moreover, following
Waldspurger [15, Lemme 10] one gets

Lemma 5.4. 27 is a generator of the C-vector space Hom . x (2, X;1)®Hovax (M2, xy).

Consequently, 3”}3 generates the space Hom . x (II”, x 1) ® Hom . (ﬁD, X), in which 735
A A
lies. Therefore Theorem implies:

Corollary 5.5. Let IT be an automorphic cuspidal representation of GLa(ka) with a unitary

central character n. Given a separable quadratic algebra K over k and a unitary Hecke

character x : K*\K; — C* with n - X|kX =1, assume [], €x(Il, X xv) = 1. Let D be the
A

quaternion algebra over k satisfying [(5.2) for every place v of k, and IIP be the automorphic
representation of Dy corresponding to II via the Jacquet-Langlands correspondence. Choose
an embedding 1 : K < D. Then the non-vanishing of the central critical value L(1/2,T1 x x)
is equivalent to the existence of f € IIP so that

PR = [ fem)min£o.
KX ES\K [

APPENDIX A. LOCAL SHIMIZU CORRESPONDENCES
Recall the Shimizu correspondence stated in Theorem

Theorem A.1. Given an infinite dimensional automorphic representation IIP of D which
is cuspidal if D = Maty, suppose the central character of IP is unitary. Then

OP(M) = {fi® fo: D x DS = C| f1, f2 € TP }c—span-

Here f1 ® fy is viewed as the function ((b,b') — f1(b) - fo(V')). Consequently, let P be the
contragredient representation of IIP. Identifying IIP with the space {f | f € IIP} via the

Petersson inner product, the equality 2] induces an isomorphism

Sh: ©P(1) = 11” @ 7.



WALDSPURGER FORMULA OVER FUNCTION FIELDS 15

Recall that for ¢, € I, and ¢, € S(Vp(ky)), we define 62:°(b,, b ; bu, py) for by, bl € DX
in Section 2.3.1] by

91?70(17117 b;; Gus (Pv)

CU(Q) / 1 /—1 Dy 1 —1 ’ 1
T /117 A W v \ G & bvbv Wy (G bvb’u ; bvvbv Po 1 dg'u
Lo(LTLAD)  Juge, )\ Statrn) (g0 )) - (e oo, b)) ()

Lemma A.2. Suppose v is “good,” i.e. ¥, has trivial conductor, the representation II, is

0 1
quaternion algebra D, = Mata(k,), and the Schwartz function @, = Iniat,(0,)- One has

ovp)o(bvab{u; ¢va SO'U) =1, be,b; S GLQ(OU)

10
an unramified principle series, the vector ¢, € Il, is spherical with Wy, ( ) =1, the

Proof. From the Iwasawa decomposition SLz(k,) = B*(k,) - SL2(O,), the above assumptions
imply that for b,, b, € GL2(O, ), we have

D,o /. - Cv(2) . / Ay 0 x
91} (bv,byagbvv(/)v) — Lv(l,l_[—, Ad) k1>}< Wd;u O a71 ].OU (a'u)d (075}

=1

The aim of this section is to show:

Theorem A.3. Given pure tensors ¢ = Qu,d, € II and ¢ = R, € S(Vp(ka)), we have

2L(1,11, Ad
W . H91?7O(bl,vub2,v;¢v7(p’u)7 Vby,be € Dy
k v

The proof of the above theorem is given in Section [A.I]when D = Mats, and in Section [A2]

/ ep(bblubb27¢7 go)dxb:
D* kX \D}

when D is division.
Via the Petersson pairing (-, )5, : 1P x ﬁf, the representation II” @ 17 is isomorphic to
the space of the matriz coefficients of IIP ® IIP:
fofemu; Vfofel? <P,
where
Mg 7(b,0) = (TP (b) £, TP (V) f)per, Wb, b € A%,

On the other hand, for each place v of k, we may also identify 11 ® ﬁUD with the space of
matrix coefficients, i.e. for f, € II” and f,, € IIZ, the matrix coefficient m f.@f, associated to
M oF, 18 defined by

Mg o7, (00, 0)) = (07 (00) fo, T (0,) o)y Wbo, b, € DY
Here (-,-)P : TID x ﬁUD — C is the natural duality pairing. Put
07 (L) = {0775 v, 90) | 60 € T, o0 € S(V(ko))}-
Proposition A.4. We have the following equality:
OP (L) = {m; o7 | fo €1, fu € D} span-

This induces an isomorphism Sh,, : ©P(I1,) = 1IP @ ﬁUD
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Proof. Pick ¢° = ®,¢9 € Il and ¢° = ®,¢9 € S(Vp(ka)) so that
C@ )= [ P )b A0,
DXk \D)f

Then for each place vy of k, the space of matrix coefficients of HUDU can be generated by
Moo (Dug s Pug ) fOr ¢y € Iy, and ., € S(Vp(ky)), where muy, (¢, 9o, ) is defined by:

M10(Suns 9o ) (bug Bl ) = / 07 (bbb, 3 6, )b, by B, € DL,
DXEX\DX

where ¢ = du, Ruzv, ¢y € I and ¢ = pu, e, 5 € S(Vp(ka)). By Theorem [AJ we may
assume that the chosen ¢° and ¢° satisfy

C(6%,¢°) = 00°(1, 1560, , ¢5)-

Then
Jovssrp 0P (Bbuy, b0, 5 6, )b
Mg (¢v07§0v0)(bv07b;0) = —t O((bov (/70) ! C(¢ P )
0D70 b’U 5b/ a Vo v
A UL LN -C(¢°,¢°)  (by Theorem [A.3])

00 (1,159, ¢5,)
= 01?070(()’00 ’ bi)oa ¢’an 901)0)-
O

A.1. Proof of Theorem [A.3] when D = Mats. Given ¢ € IT and ¢ € S(Vp(ky)), consider
the Whittaker function associated to ¢ and ¢:

W¢,<p(b17 b2)
1 290 ) s st
E\ky JE\kp 0 1 0 1

Then:

Proposition A.5. When ¢ and ¢ are both pure tensors, we have
Weo,o = H Wo,o.0-
v

Here for by, b € GLa(ky), let

_ _ ~ (1
Wiealbrb) = [ W (o) (wPla ot i) (o ) o'
U(kv)\ SLa(kv)
and

e (00 = [ e (&) wmar por e, € stk

Proof. Let V; := {( )} c Vp, Vo = {(2 ;)} C Vp, and Q; := QD}V_ fori=1,2.
Then (Vp,Qp) = (V1,Q1) ® (V2,Q2). For ¢o € S(Va(ky)) and g € SLa(ky), it is observed

that
~ (0 b 0o ¥
Vo 1 v
(w"(g")p2) (C 0>—902 (C, 0>,

where (¢/,b') = (c,b) - g*. Thus for ¢ € S(Vp(ka)), by Poisson summation formula we may
write

HVD (gla(blbgl)v [bla b2]7 <P) = HYD (gla(blbgl)a [blv b2]a 90) + 9¥D (gla(blbgl)v [bla b2]7 w)a
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where
_ _ ~fa 1
077 (g"a(brby 1), [br, ba; ) = > (WP v ebiby ), b1, b2])) (O d) ,
v€EU(k)\ SLa (k) a,d€k
and

08 (o). B talig) = X (Pl ) onstae) ().
a,dek

Since for uq, us € kp one has

() B A R e R R

we get
v, 1 1 1 Uq 1 u2
0" | g a(brby ), by, ba| ¢ ) Y(uz — ur)dusdusy
s S 0 1 0 1
D1 1 ~(1 1
= > (WP (vg'albiby ), [b1, ba])p) 0 1)
Y€EU(K)\ SL2(k)
Therefore
_ _ ~ (1 1
We,o(b1,b2) = / d(g'a(biby ")) - (WP (vg'abiby ), [b1, bo])e) (0 1>d91
U(k)\ SL2(ka)

_ _ ~ (1 1
-/ Wola'albuty ) (Pg'alhatz). b)) (5 1) o
U(ka)\ SLa(ka)

= J]Wowlbroban).

The space consisting of all the Wy , ., is actually the Whittaker model of II, ® ﬁv. More-
over, the following straightforward lemma connects the local Whittaker function Wy ., with

evD,o(., ) ¢va SDU):

Lemma A.6. For by,by € GLa(k,), one gets

Cv(2) (075} 0 Ay 0 % o D,o .
L Lad) Jo Ve Lo 1) o 1) b)) @ a0 = (D)6 bai b 00).

Recall that for pure tensors f;, fo € IIP = II, we have

Mats __ 2. L(LHvAd)

<f17f2>Pet Ck(2) : <f1,v7f2,v>vMat2a

where

¢u(2) a, 0 ay 0Y
GO LmAd) S Ve lo 1) Wre (o )T

and (f1 4, fan)» = 1 when v is “good.” Therefore by Proposition [A.5] and Lemma [A.6 the
Shimizu correspondence in Theorem implies that:

<f1,'u7 f?,v>yMat2 =

Proposition A.7. Theorem [A.3] holds when D = Mats.
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A.2. Proof of Theorem [A.3] when D is division. Given g' € SLa(ky), we set
(g s,0) = Y alyg it D] (WP (1Y) (x), Ve € S(Vp(ka)-
vEB! (k)\ SLa (k) zek

Here a(g') = a € k) is chosen so that g' can be written as

gt = (g a:) k! with k' € SL2(On).

This series converges absolutely when Re(s) > 3/2, and has meromorphic continuation to the
whole complex s-plane. Given pure tensors ¢ = ®,¢, € Il and ¢ = ®,¢p, € S(Vp(ka)), one
has

JP(si¢,) = g% (g", s, ¢)dg*

/SLg(k)\ SLa (ka)

- / B(gM)]alg" - (WP (gY)e) (1)dg!
U(k)\ SL2(ka)

HJ 81 v, Pu),

where
TP (s 00.i) = [ We (61) (@D (6)e) (1)lalg): M dg"
(ku)\ SLa (ky)
It is clear that:

Lemma A.8. The local integral JP(s; ¢y, ¢.) always converges when Re(s) > 1. Moreover,
when v is “good,” one has

Ly(s, 11, Ad
IP (8300, 00) = ﬁ
In particular, we obtain that
L(s,II, Ad o
JD(S7 ¢7 SD) = (Ci) ' H J;}D’ (87 ¢’U7 SDU)7
o .
where
o Cv(2s
JP0(s5 00, 00) 1= ﬁ I (85w, Pu)-

For b1,b2 € D, one has
0,7 (b1, bos b, 00) = I (1; 6y, 41),
where ¢! :=TI,(a(b1by 1)) d, and ¢/, := wP(a(biby '), [b1,ba])p,. Thus we obtain that:
Proposition A.9. Theorem [A3] holds when D is division.
Proof. From the equality (B) in Remark [B.2) we get that for by, by € DY,

/ 67 (b1, bba; 6, 0)db = 20P (136,
DXEX\DX
2 1 H Ad
— HJDO /)

1,11, Ad )
_ (@W 62010, b2,05 60, 00)-
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Note that the equality (B) follows from a “metaplectic type” Siegel-Weil formula, which
is verified in the next section.

APPENDIX B. SIEGEL-WEIL FORMULA FOR THE METAPLECTIC EISENSTEIN SERIES

B.1. Metaplectic groups. For each place v, the Kubota 2-cocycle o, is defined by (cf. [9,
Section 3]):

o,(91,92) == (Ig;f;)a x:i?;j?)y’ Vg1, 92 € SLa(ky).

<a b> ¢, ife#0,
T =
c d d, ifec=0;

and (-, ), is the Hilbert quadratic symbol at v. Define a map s, : SLa(ky) — {£1} by setting

Here

(a b) {(c, d),, if ord,(c) is odd and d # 0,
Sy =
c d 1

, otherwise.

Let o, be the 2-cocycle defined by

ou(g1,92) == 0l,(g1, 92)50(91) 50 (92)50(g192) ", Vg1, 92 € SLa(ky).

It is known that (cf. [4l Section 2.3]) oy, (k1, k2) = 1 VK1, k2 € SLa(O,). Hence o, induces a
central extension SLa(k,) of SLa(k,) by {£1} which splits on the subgroup SL2(O,,). More

precisely, the extension SLa(k,) is identified with SLa(k,) x {£1} (as sets) with the following
group law:

(91,&1) - (92, &2) = (9192, &1&200(91, 92))-

Globally, we define a 2-cocycle o on SLa(ks) by setting o := ®,0,, and let SAI/JQ (ka) be the
corresponding central extension of SLy(ka) by {£1}. The section

SLQ(kA) — §f42(kA)
K — (K, 1)

becomes a group homomorphism when restricting to SL2(Op), which embeds SL2(O4) into
SLy(ka) as a subgroup. Moreover, for every v € SLa(k), the value s(y) = [[, sv(7) is
well-defined, and the embedding

SLa(k) —> SLo(ka)
v — (7,5(9))

preserves the group law. Thus we may view SLy(k) as a discrete subgroup of SL, (ka)-

B.2. Weil representation. Let D be a division quaternion algebra over k. We first write
D as Vi © V3, where Vi = k and V3 := {b € D : Trp;(b) = 0}. Put Qv, := Nrpy |v..
Then the quadratic space (V;, Qv;) is anisotropic with dimension 4, and SO(V3) = D* /k*.
Let w"i = ®,wY" be the Weil representation of the metaplectic group é\/LQ(kA) x O(V;) on the
Schwartz space S(V;(ks)), where for each place v, w)' is defined as follows (cf. [4, Section
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2.3)):
(1) W¥(Wo) = 6(h'z). he OV
@) WY(1LO0) =& ola), € € [£1);
@ (5 1)) o) = vuu@u@)otw). we b
a i ei(ay, «
4) w) (((;J aol) ,1) (x) = |ay| (av, av)o :%((1)) - Paym), a, € kS
® (0 §)1) e =t
Here:

EKi (ay) = Uy (ayQv, (2))do,x, Va, € k),
Ly

where L, is a sufficiently large O,-lattice in V;(k,), and the Haar measure d,, x is
self-dual with respect to the pairing

(x,y) = Yo(av - Trp p(y)),  Va,y € Vi(ky);
e &() is the Fourier transform of ¢:
3@ i= [ o) (Tepuan)dy,
Vi(kv)

For a = (ay), € k', we put €¥i(a) := [], eV (ay).

v v

B.3. Siegel-Eisenstein series. Recall that B! denotes the standard Borel subgroup of SLo,
and let B' be the preimage of B! in SL; (ka).
For each ¢ € S(V3(ky)), the Siegel section associated to ¢ is defined by:

eVa(a s+ ~ _ ar
Py(g,5)=¢- €T8 : |a|k:2 (W (k1)) (0), for g € SLa(ka),

a *

where a € k) and ' € SLa(Oa) so that § = <(0 B
a

1) ,5) - k'. The Siegel-Eisenstein

series associated to ¢ is then defined by

E@s,¢) = Y = P5(19:9),

yeB!(k)\ SL2(k)

which converges absolutely for Re(s) > 3/2 and has meromorphic continuation to the whole
complex s-plane. In this section, we shall verify that:

Theorem B.1. Given ¢ € S(V3(ka)), we have

N 1 - R
E(g,1,¢)2513(g,¢), VQESLQ(kA)v
where

I*(g,¢) = /DW/DX( > wVS(g,b)gb(x))db.
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Remark B.2. Write (Vp,Qvy) = (V1,Qv,) & (V5,Qv,). Given ¢ € S(Vp(ka)), suppose
¢ = ¢1 @ ¢3 where ¢1 € S(Vi(ka)) and ¢3 € S(V3(ka)). Then

I%(g,5,0) = 0°((9,1),61) - E((9:1),5,03), Vg € SLa(ka),
where 6%((g,1),¢1) :== 3.1 (w"(9)¢1)(z). On the other hand,
O (9. 1).00) - (g Do) = [ 0% (g, (bbb
D*ky /Dy

Therefore

1
IP(g,1,¢) = 5 /DW/DX 0V? (g, [b,b]; p)db, Vg € SLa(ka) and ¢ € S(Vp(ka)).
A A

In particular, for ¢ € II we have

JP(1;0,0) = ?(9)I"(g,1,¢)dg

/SLz(k)\ SL2(ka)

2 Jpxp\py

Proof of Theorem B.1. The proof of the above theorem basically follows the approach in [16]
for the even dimensional case. Here we recall the strategy as follows: For each 5 € k, the
B-th Fourier coefficient of a given metaplectic form f is:

= [ (5 5)1)7) vt-smn

Given ¢ € S(Va(ka)), we verify that:
(1) The equality holds for the “constant terms,” i.e.

E3(3,1,6) = (@ (5)0)(0) = 3 - 13°(3,0).

In particular, this says that E(§,1,¢) — 1/2-I3(, ¢) is a cusp form on SLa(ks).

(2) It is straightforward that E(-, s, ®) is orthogonal to all the cuspidal metaplectic forms
on ﬁz(kA) with respect to the Petersson inner product.

(3) The theta integral I3(-,¢) is orthogonal to all the cuspidal metaplectic forms on
SLy (k). Indeed, adapting the proof of [16, Theorem A.4], there exists a constant C
so that

I5"(3.0) = C- E;(§,1,9). VB#0.
In particular, the function I'(-, @) := I3(-,¢) — C - E(-, 1, ¢) satisfies

1’((((1) 1{),1)9,(;5)_[’(@,@, Yu € k.

Thus I'(-, ¢) is orthogonal to all the cuspidal metaplectic forms, and so is I?(-, ¢) by
(2).
Since a cusp form orthogonal to itself must be zero, we get E(g,1,¢) = 1/2-13(g, ¢) for every
§ € SLa(ka). O



22 CHIH-YUN CHUANG AND FU-TSUN WEI

APPENDIX C. THE CASE WHEN K =k x k

When K = k x k, we have L(s,sx) = (r(s). Moreover, the existance of an embedding
¢+ K = D implies that D = Maty(k), and II? = II. We may write the given Hecke character
X as X1 X X2, where y; is a unitary Hecke character on k*\kj for ¢ = 1,2. The assumption
n'X‘k,i — 1says that II®ys = II®@x7 *. Thus we have L(s, IIx x) = L(s, 1@ x1)- L(s, [I® x2).

Without lose of generality, suppose ¢(a,b) = (g b> for every a,b € k. Then for f € II
and f € ﬁ,
- 1 1 -
PR(fef) = Z(§;f7X1)'Z(§§faX11),
where

zer= [ () i ey

~ ~ 0 s—
wd 2oy [P D)l ey
kx\k;f

are entire functions on the complex s-plane. Note that for a pure tensor f = ®, f, € II, one
has (cf. [1, the equality (5.31) in Chapter 3 and Proposition 3.5.3|)

(C1) Z(s;fx1) = L(s,T@xa) - [[ 2(s: forx1),
where for each place v of k, put
1 Y 0 -1
Zg(s; vy v) ‘= ' w N v\Yv ) Yv . /2d>< v
1}(87f X1, ) LU(S,H®X1) ‘/k;< fo (O 1) X1, (y )ly |v Y

Here Wy, is the Whittaker function associated to f, with respect to the chosen ,. Similarly,
for a pure tensor f = ®f, € II we have

(C2) Z(sifoxi') = Lis,Texy") HZO  fon XT0),
where

~ 1 Yy O

Z3(s3 for X1 =~—-/ W (” )vav yoly 2 d% g,
( 1, ) LU(S,H®X1_1) k;( jv O 1 1 ( )|

Here we take WJ"~ to be the Whittaker function associated to fv with respect to v,. Note that

the validity of Ramanujan bounds for II and II implies that Z9(s; fv, x1,0) and Z2(s; o, X1_11,)
both converge absolutely at s = 1/2.
Recall that we may choose (-, -)Matz : T, x II, — C by:

F \Maty .__ Cv(2) . (Y [y O X
(for Fuo'™* = Co(1) Lo (L, I, Ad) /k Wr, (0 )W <0 1>d Y

Indeed, by the Rankin-Selberg method these local pairings satisfy:

wty  2L(1,T1,Ad s
(Y ber ZW'H@%M :

v

Therefore we get
- o1
'@)?v(f’l)@fv)zzy(i;fm)(l,v)' ( fvquv)
From the equation (Cl) and (C.2)), we arrive at:
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Theorem C.1. Theorem [Tl holds for the case when K = k X k.
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