Homework

Exercise 1. Let K be a normed (non-Archimedean) field. Let $K\langle x_1, \ldots, x_n \rangle$ be a Tate algebra in n variables over K (i.e. the algebra of power series which are convergent on the closed unit disc). Define a function $|\cdot|$ from $K\langle x_1, \ldots, x_n \rangle$ to $\mathbb{R}_{>0}$ by

$$|\cdot|: K\langle x_1, \dots, x_n \rangle \to \mathbb{R}_{\geq 0}$$

$$\sum_{\mu \in \mathbb{N}^n} a_{\mu} x^{\mu} \mapsto \max_{\mu \in \mathbb{N}^n} |a_{\mu}|.$$

Show that $(K\langle x_1,\ldots,x_n\rangle,|\cdot|)$ is a normed ring.

Exercise 2. For $f \in K\langle x_1, \ldots, x_n \rangle$, is it true that $|f| = \max\{|f(c)| \mid c \in \mathbb{D}_n\}$? Maybe by putting a condition on K?

Exercise 3. Let A be a non-Archimedean topological ring, denote by A° the set of power-bounded elements, and by $A^{\circ\circ}$ the set of topologically nilpotent elements. Prove that

- (i) $A^{\circ \circ} \subseteq A^{\circ}$;
- (ii) $A^{\circ} \subseteq A$ is a subring (is it open?);
- (iii) $A^{\circ\circ} \subseteq A^{\circ}$ is an ideal.

Exercise 4. Let K be a complete normed field with valuation ring (R, \mathfrak{m}) , and take $f \in K\langle x_1, \ldots, x_n \rangle$ with |f| = 1. Then the following are equivalent:

- (i) $f \in K\langle x_1, \dots, x_n \rangle^{\times}$
- (ii) if $\overline{f} \in (R/\mathfrak{m})[x_1,\ldots,x_n]$ is the reduction of f in the residue field, then $\overline{f} \in (R/\mathfrak{m})^{\times}$.
- (iii) The only coefficient of f having norm 1 is the constant coefficient.

Exercise 5. Let K be a complete normed field and consider the Tate algebra $T := K\langle x_1, \ldots, x_n \rangle$. Let $g \in T$ be x_n —distinguished of order s, and let $f \in T$ be arbitrary. By Weierstrass division, there exist $q, r \in T$ such that f = qg + r and r is a polynomial in the x_n -variable of degree < s. Prove that q, r are unique with this property, and that $|f| = \max\{|q||g|, |r|\}$.

Exercise 6. Let K be a complete normed field. Recall that we denote by $\overline{\mathbb{D}}_n \subseteq \overline{K}^n$ the closed unit disc in \overline{K}^n . Also recall that for every $(\lambda_1, \ldots, \lambda_n) \in \overline{\mathbb{D}}_n$, we have a well-defined evaluation morphism

$$\operatorname{ev}_{(\lambda_1,\dots,\lambda_n)} \colon K\langle x_1,\dots,x_n\rangle \to \overline{K}$$

$$f \mapsto f(\lambda_1,\dots,\lambda_n).$$

Show that the map

$$\overline{\mathbb{D}}_n \to \operatorname{Specm} K\langle x_1, \dots, x_n \rangle$$
$$(\lambda_1, \dots, \lambda_n) \mapsto \ker \operatorname{ev}_{(\lambda_1, \dots, \lambda_n)}$$

is surjective. Furthermore, the fibers are given by Galois orbits.

Exercise 7. Let $\mathbb{Q}_p^{\mathrm{nr}} = \mathbb{Q}_p$ $(x \in \overline{\mathbb{Q}_p} \mid x^n = 1 \text{ for some } n \text{ prime to } p)$ be the field obtained by adjoining all the prime-to-p roots of unity to \mathbb{Q}_p . Show that the p-adic norm $|\cdot|_p$ extends uniquely both to $\mathbb{Q}_p^{\mathrm{nr}}$ and to $\mathbb{C}_p := \overline{\mathbb{Q}_p}^{\wedge_p}$.

Exercise 8. Let K be \mathbb{Q}_p or \mathbb{Q}_p^{nr} . Let $|\cdot| \in \text{Spa}(K\langle x \rangle, A\langle x \rangle)$ be a valuation with support Ker ev_{λ} for some $\lambda \in \overline{K}$. Then show that the valuation $|\cdot|$ induced on $K(\lambda)$ is continuous.

Exercise 9. Let Γ be a totally ordered abelian group, such that for all $a, b \in \Gamma$ with a > 0 and $b \ge 0$, there exists $n \in \mathbb{Z}_{>0}$ such that b < na (or equivalently rank $\Gamma = 1$). Show that there exists an injective homomorphism of totally ordered abelian groups $\varphi \colon \Gamma \hookrightarrow \mathbb{R}$.

Exercise 10. Let A be an f-adic ring, and let $|\cdot|: A \to \Gamma$ be some valuation. Recall that the characteristic subgroup $c\Gamma_{|\cdot|}$ is by definition the convex subgroup of Γ generated by all elements $\gamma \geq 1_{\Gamma}$ in the image of $|\cdot|$. Show that

$$c\Gamma_{|\cdot|} = \{\gamma \in \Gamma \mid \exists m, n \in \mathbb{Z} \text{ with } m < 0 < n \ \exists a \in A: \ |a| \geq 1 \text{ and } |a|^m \leq \gamma \leq |a|^n\}.$$

Exercise 11. Let A be f-adic, $|\cdot|: A \to \Gamma$ a valuation and $H \le \Gamma$ a convex subgroup. Then the following are equivalent:

(i) The function $|\cdot|_H : A \to H$ defined by

$$|\cdot|_H\colon A\to H$$

$$a\mapsto |a|_H\coloneqq \begin{cases} |a| & \text{if } |a|\in H,\\ 0 & \text{otherwise} \end{cases}$$

is a valuation.

(ii)
$$H \supseteq c\Gamma_{|\cdot|}$$

(iii) For the composition

$$A \xrightarrow[]{|\cdot|} \Gamma \longrightarrow \Gamma/H$$

we have $|a|^* \leq 1$ for all $a \in A$.

(iv) If for some $a \in A$ we have $|a| \notin H$ then |a| < 1

Exercise 12. Let X be a quasi-compact and quasi-separated space. A subset $Y \subseteq X$ is said to be constructible if it is of the form $Y = U \cap (X \setminus V)$ for quasi-compact open subsets $U, V \subseteq X$. If X is the topological space underlying a scheme, then does this agree with the scheme theoretic notion of constructibility?

Exercise 13. Give an example of an f-adic ring A such that $Cont(A) \subseteq Spv(A)$ is not closed.

Exercise 14. Let $f: A \to B$ be an adic morphism of f-adic rings, let A_0, B_0 be rings of definition of A resp. B such that $f(A_0) \subseteq B_0$. Show that for any ideal of definition $I \subseteq A_0$, the extension $f(I) \cdot B_0$ of I under f is an ideal of definition for B.

Exercise 15. Consider the ring

$$\widehat{\mathbb{Z}} \coloneqq \lim_{\substack{n \in \mathbb{Z}_{>0}}} \mathbb{Z}/n\mathbb{Z}.$$

Show that $\widehat{\mathbb{Z}}$ is not f-adic.

Exercise 16. In $\mathbb{Q}_p\langle x\rangle$, exhibit all the points that lie in the intersection

$$R\left(\frac{x,p}{p}\right)\cap R\left(\frac{x-1,p}{p}\right)$$

Exercise 17. Let (A, A^+) be an affionoid ring, and $J \subseteq A$ an ideal. Let $(A/J)^+$ be the integral closure of A^+ in A/J. Then

$$\operatorname{Spa}\left(A/J,\left(A/J\right)^{+}\right) \cong \operatorname{Spa}(A,A^{+}) \cap \operatorname{Supp}^{-1}(V(J)).$$

3

In particular, $(A/J, (A/J)^+)$ is affinoid.