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THE TOPOLOGY OF COMPLEX PROJECTIVE 
VARIETIES AFTER S. LEFSCHETZ 
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(Received 1 July 1979) 

AFTER THE topology of complex algebraic curves, i.e. the genus of Riemannian 
surfaces, had been understood mathematicians like Picard [12] and PoincarC [ 12a] 
went on to the next dimension and began to investigate the topology of complex 
algebraic surfaces. From 1915 on Lefschetz continued their work and extended it to 
higher dimensional varieties. In 1924 he published his famous exposition [L] of this 
work. 

When it was written knowledge of topology was still primitive and Lefschetz 
“made use most uncritically of early topology g la PoincarC and even of his own later 
developments”?. This makes it nowadays rather difficult to understand the topologi- 
cal parts of [L] properly. But that is not the only difficulty: Implicitly Lefschetz quite 
often appeals to geometric intuition where we would like to see a more precise 
argument. 

Thus there is some temptation to discard Lefschetz’s original “proofs” and adopt 
instead the more recent methods which have been employed to obtain many of his 

results, using Hodge’s theory of harmonic differential forms or Morse theory or sheaf 
theory and spectral sequences. But none of these very elegant methods yields 
Lefschetz’s full geometric insight, e.g. they do not show us the famous “vanishing 
cycles”. 

The first attempt to rewrite the topological part of [L] using modern singular 
homology theory was made more than twenty years ago by Wallace [16]. But the 
details of his presentation are too complicated to popularize Lefschetz’s original 
methods. Wallace leaves the realm of algebraic geometry far too early when he makes 
Lefschetz’s intuitive arguments precise. Furthermore he does not give a complete 
picture of Lefschetz’s achievements. 

In the following I make a new attempt to present Lefschetz’s almost sixty year old 
investigations rigorously but as geometrically as he did in [L]. For topologists 
Lefschetz is usually interesting for the work he did in pure topology after he had 
completed [L]. But [Ll has at least “a unique historical interest in being almost the 
first account of the topology of a construct of importance in general mathematics 
which is not trivial” (Hedge). We may furthermore speculate how much of the 
contributions of Poincare, Lefschetz and others to algebraic topology we owe to the 
difficulties they encountered with the topology of algebraic varieties. 

The necessary prerequisites in algebraic geometry can be found in the first two 
chapters of Shafarevich’s book[l3]. The main tool from differential topology is 
Ehresmann’s fibration theorem, which for the convenience of the reader is stated in 
3.0. (Strangely enough this theorem is not included in the standard textbooks.) As far 
as homology theory is concerned a textbook like Dold’s[6] will amply suffice. 
Furthermore some basic facts about the fundamental group and the homotopy lifting 
theorem for fibre bundles will be used. 

VS. Lefschetz in his autobiography, Bull. Am. Math. Sm. 74, (1%8) 854-879. 
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A descriptive outline may be obtained by reading $1, 3, 4, 6.1-3., 7.1-3. and 8.1. I 
must admit that I have not succeeded in proving the “Hard Lefschetz Theorem” 
rigorously by purely topological methods. I have merely collected a lot of equivalent 
formulations of it and some consequences in 94 and 07. In [L] the Picard-Lefschetz 
formula and the Hard Lefschetz Theorem are the two fundamental facts upon which 
the further investigations are built. I have not kept to the original order of [L] because 
many of Lefschetz’s results do not require the full strength of these two theorems. 
They follow already from a less deep result, which I call the Fundamental Lemma, 
(3.2.2) below. 

Transcendental analytical methods play an essential role in complex algebraic 
geometry: see e.g. [5,5a]. But in the following exposition I want to emphasize the 
directness of Lefschetz’s methods, i.e. to investigate the topology of a variety as far 
as possible by geometrical and topological methods before embarking on transcen- 
dental considerations. 

Il. THE MODIFICATION OF A PROJECTIVE VARIETY WITH 
RESPECT TO A PENCIL OF HYPERPLANES 

1.1 Let PN denote N-dimensional complex projective space. A pencil in PN 
consists of all hyperplanes which contain a fixed (N-2)-dimensional projective sub- 
space A, which is called the axis of the pencil. 

The hyperplanes of PN are the points of the dual projective space P,. The 
following notation will be used 

The hyperplanes {Ht} form a pencil if and only if the corresponding points {t} form a 
projective line G C 6,. Hence the pencil is denoted by {H,},EG. 

1.2. The main object under consideration is a closed, irreducible subvariety 
X C PN, without singularities. Let 

dim X = n. 

(Lefschetz actually studies a hypersurface X C P “+, which has singularities, but only 
those occurring in a generic projection of a smooth variety Y C PN into P,,,, see [L] 
Chap. V, 61.) 

The variety X is intersected by a pencil {H,},EG of hyperplanes, 

so that 

X, = X n H,, tEG 

x=ux, 
IEG 

is the union of the hyperplane sections X,. Off the exceptional subset 

X’=XnA 

X can be looked at as a fibration over G with fibres X,\X’. This is an important fact 

for Picard’s and Lefschetz’s geometric arguments. In order to make their arguments 
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precise and at the same time easier to understand it is very convenient to modify 
(blow up) X along X’ to get a new variety Y with a map f: Y + G such that the fibres 
f-r(t) are the whole hyperplane sections X,. This idea can be found in Wallace’s 
book[16]. But at this stage he leaves the realm of algebraic geometry and constructs Y 
by complicated topological cutting and pasting. It is much easier and better to stay in 
the realm of algebraic geometry and to define the modification 

Y = {(x, t) E X x G Ix E HI}. 

Then there are two projections 

X’PYf\G. 

Let 

(1.2.1) Y’ = p-‘(X’) = X’ x G 

denote the exceptional set. The complement is mapped isomorphically 

(1.2.2) p : Y \ Y’ = X\X’. 

and each fibre of f is mapped isomorphically onto the corresponding hyperplane 
section. 

(1.2.3) p : Y, = f-‘(t) = x,, t E G. 

1.3. Lefschetz in [L] studies not only pencils {X} t tEG of hyperplane sections but 

more generally linear (i.e. one parameter) systems of hypersurfaces of X. He states 
(e.g. in [L] Chap. IV, 92) that the restriction to hyperplane sections does not diminish 
the generality. This is justified by the Veronese embedding of projective spaces (see 
e.g. [13, Chap. I, 04, 94.21): Consider PN with its homogeneous coordinates 
(x0: . . . : xN). Let pa,. . . ,pM denote all fIIOnOrfkdS of degree d in x0,. . . ,xN. Thus 

- 1. The Veronese embedding of degree d is defined to be 

0: PN -+P&,, (x0:. . . :xN) - (,&,: . . . :,.&). 

It is a regular embedding of PN onto the Veronese variety v(PN) C PM. There is a 
one-to-one correspondence between the hypersurfaces F of degree d in PN and the 
hyperplanes of PM: If F is given by the homogeneous polynomial equation 

M 
f(xo, . A,) = c u~/+~ = 0, h t 

j=O 
e corresponding hyperplane HF C PM is given by 5 Uiyj = 

j=O 

0. The image u(F) is the intersection 

u(F) = U(PN) n HF 

The point x E F is simple if and only if HF intersects u(PN) at u(x) transversally. 
Consider now an arbitrary Zariski-closed subset XC PN and let x E X n F be a 
simple point of both X and F. If F intersects X at x transversally, HF intersects u(X) 
at u(x) transversally. 
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1.4. Let us now return to pencils of hyperplanes. In general some (finitely many) 
hyperplanes of a fixed pencil are tangent to X and the points of tangency become 
singular points of the corresponding hyperplane sections. Lefschetz admits only 
pencils for which at worst simple singularities occur (see [L], Chap. II, $8 and Chap. 
V, 92). These pencils are called Lefschetz pencils in the Seminaire Geometric 
Algebrique: see [22, Expose XVII]. They will now be described using the notion of 
transversality. At the same time it will become clear that they are generic. The 
following treatment is similar to [22, Expose XVII] but may be easier to understand 
for those who are less trained in modern algebraic geometry and want only to look at 
the classical case of complex projective varieties. 

(1.4.1) All hyperplanes of PN which are tangent to X form a closed irreducible 
subvariety X C PN of at most N - 1 dimensions. It is called the dual variety of X. 

This will be proved in 2.1. In general X has singularities even if X is smooth, and 
dim X = N - 1 even if dim X < N - 1. The following corollary is almost equivalent to 
(1.4.1): 

(1.4.2) The hyperplanes which intersect X transversally form the non-empty 
Zariski-open subset @,\X of I,. 

1.5. If X is a hypersurface it has a degree r > 0. This degree is called the class of 
X. (This agrees with the usual definition for plane curves.) If dim X 5 N - 2 the class 
of X is 0 by definition. 

Let b E gN\J+? (so that Hi, intersects X transversally). All projective lines in P, 
through b form an (N - I)-dimensional projective space E. If class X = 0 (i.e. 
dim X 5 N - 2) the lines which do not meet X form a non-empty open subset in E. If 
class X = r > 0 (i.e. dim X = N - 1) the lines which avoid the singular set of X and 
intersect X transversally form a non-empty open subset in E. For each line G in this 

subset the intersection G f-12 consists of r = class X many points. 

In order to prove this result consider the projection with center b 

” 

p: X+ E, p(y) = line through b and y. 

It is a regular map. Therefore p(X) is a closed subset of E with dim p(X) I dim X. If 
dim X I N - 2 the lines which do not meet X form the non-empty open subset 
E\p(X). If dim X = N - 1 the subset CC k consisting of all singular points of X 
together with the simple points y of X where the line p(y) is not transversal to X (i.e. 
where p fails to have maximal rank N - 1) is proper and closed, hence dim C 5 N - 2 
because X is irreducible. Therefore p(C) is a closed subset of at most N - 2 
dimensions, and the lines which intersect X transversally form the non-empty open 
subset E\p(C). 

1.6. Let G C i, be a projective line which intersects X transversally and avoids 
the singular set, so that in particular G fl T? = 0 if dim J? I N - 2. Let {H,},,o denote 
the corresponding pencil of hyperplanes in PN with axis A. 

(1.6.1) The axis A intersects X transversally. Therefore the exceptional subsets 
X’ = X tl A and Y’ = p-‘(X’) = X’ x G are non-singular and have n - 2 resp. n - 1 

dimensions. 
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(1.6.2) The modification Y of X along X’ is irreducible and non-singular. 

(1.6.3) The projection f: Y + G has r = class X critical values, namely the points of 
X r3 G. There are the same number of critical points, i.e. no two lie in the same fibre of 

f. 

(1.6.4) Every critical point is non-degenerate, i.e. with respect to local holomorphic 
coordinates the Hessian matrix of the second derivatives off has maximal rank n at 
the critical point. 

These results will be proved in 02.5 and 92.6. The topological investigations begin in 
the third section. In order to understand them the following 02 can be omitted. 

$2. THE DUAL VARIETY 

2.1. Let X C PN denote a closed irreducible subvariety of n dimensions which 
may have singularities, and let X, C X denote the non-empty open subset of its simple 
points. Define 

Vi= {(x, y) E PN x i, Ix E X, and H, is tangent to X at x1, 

This is a quasi-projective subset of PN x PN, because the set V = 
{(x, y) E PN x P, Ix E X, x is singular or H, is tangent to X at x} is closed in PN x P, 
and Vi is open in V. The first projection 

7T1: vi-+x,, (x9 Y) - x 

fibres Vi locally trivially. The fibres are (isomorphic to) (N - n - I)-dimensional 
projective subspaces of PN, in particular: If X is an hypersurface (n = N - l), 7rTTI is an 
isomorphism. Hence Vi is irreducible and has N - 1 dimensions. The same holds true 

for the closure Vx of Vi in PN x fi,. It is called the tangent hyperplane bundle of X 
The first projection maps Vx onto X, 

7r1: v, +x, (x, y) - x. 

Consider now the second projection 

” 

7T2: VX-,PN, (x7 Y) - Y- 

Its image X = 7r2( V,) is a closed irreducible subvariety of P, of at most N - 1 
dimensions, the so called dual variety of X. This definition of X coincides with the 
definition of §I when X has no singularities. In general X has singularities even if X 
does not. The reason why the dual variety has been defined for singular varieties too 
is the following; 

2.2. DUALITY THEOREM. The tangent hyperplane bundles of X and X coincide 

V,q = V, and hence X = X. 

2.3. In order to prove this theorem and also the results of §I the bundle 

(2.3.1) 
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of all hyperplane sections of X will be used. By the first projection 

PI: w+-x Plk Y) = x, 

W is locally trivially fibred over X with the hyperplanes of P, as fibres. For an 
explicit trivialization see (2.6.3) below. Hence W is closed in PN x eN, irreducible, and 
has N + n - 1 dimensions. Obviously Vx C W and 7~~ = pI ) V,. The open set of simple 
points is W, = p,-‘(X,). At a simple point (c, b) E W the second projection 

p2: W-A, P2k Y) = Y 

has maximal rank ( = N) if and only if & intersects X at c transversally, in other 
words Vi is the set of simple points of W which are critical with respect to p2. 

Before using W for the announced proofs another easy but important application 
will be made. For this assume XC PN to be smooth. Remove the dual variety X and 
its inverse image pz-I(X). Then p2: W\p,-‘(X)+P,\X is a proper mapping which 
everywhere has maximal rank = N. Therefore according to Ehresmann’s fibration 
theorem (see 93.0 below) W\p,-‘(2) is a C” locally trivial fibre bundle over P,\X. 
Since I’,\* is path-connected all fibres of W\p2-‘(Xi-), i.e. all transversal hyperplane 
sections X, of X are diffeomorphic to one another. If this is applied to the Veronese 
variety X = u(PN) C PM of degree d (see 1.3.) we get the remarkable result: 

(2.3.2) All smooth hyperfaces of PN which have the same degree d are diffeomor- 
phic to one another. 

2.4. Proof of the Duality Theorem 2.2. Consider the subset U C V, consisting of 
all points (c, b) such that c E X,, b E &, and 7r2 = p2/ Vx has maximal rank ( = dim X) 
at (c, b). This set is open in V, and non-empty. It is sufficient to prove that U C Vk 
because this implies V, C Vz. Since dim Vx = dim Vz and X and hence V* is 
irreducible, V, = Vz. In order to prove U C Vg let (c, b) E U. The definition of W 
implies {c}x.H C W. Here JZ C P, is the hyperplane of P, which corresponds to 
c E PN. Therefore T,, ,,({c} x fH) C T,, bj W (here T, means the tangent space at a) and 

(TP,)( T, ,,({cl x 3)) c (TP,)(T,, I,) WI. 

The projection p2 maps {c} x cH isomorphically onto cH, hence 

tT~Jt~c,d{~~ x .H)) = T,tcW. 

At (c, b) the rank of p2 is < N. The preceding formulas show: The rank is = N - 1, 
more precisely 

(TPz)(T,,,,W) = T,(8). 

On the other hand V, C W implies T,, bj V, C TcE, bj W, hence 

(2.4.1) (TMqc,bjV~) C (T~d(Tcc,wW = Tb(cHh 

Since 7r2 = p2( V, has maximal rank ( = dim X) at (c, 6) and b E X is simple, 

(2.4.2) 
I 

TbX = ( T~z)( T,, b) Vx) C Tb (3 )v 

i.e. .H is tangent to X at b and thus (c, b) E Vg by the definition of V%. 
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2.5. The bundle W, see 2.3., contains the modification Y of X along X’: 

Y = p*-'(G) and f=p2(Y: Y+G. 

If class X = 0, i.e. dim 2 5 N - 2 the results of 1.6 follow now easily: In this case G 
does not meet 2, i.e. all hyperplanes of the pencil {H,},,, intersect X transversally. 
Hence so does the axis A. Since all points of G are regular values of p2, Y = p,-‘(G) 
has n dimensions at every point, in particular there are no singular points. The same 
reason implies that f has no critical points. It remains to prove that Y is irreducible: 
Since X is irreducible the open subset X\X’ is irreducible; hence so is Y\Y’ because 
this is isomorphic to X\X’ under p. The closure of Y\Y’ in Y is an irreducible 
component of Y. The other components of Y (if there are any) must be contained in 
Y’. Now dim ,Y = 12 at every point z E Y, i.e. every component of Y has n dimen- 
sions and cannot be contained in Y’ which has only n - I dimensions. 

2.6. If class X > 0, i.e. if ?? C g, is a hypersurface the proof of the results of 1.6 is 
more complicated. The complications are caused by the points b E G n 2 C 2,. There 
is exactly one point c E X such that (c, b) E V = V, = V*, because V> is mapped 
isomorphically onto ??e by 7~~, see 92.1. The following tangent spaces are equal: 

(2.6.1) T,(8) = (57’2)(Tcc,,, W) = (Tm)(TCc,bjV) = T,A 

because of (2.4.1 and 2.4.2). 

Proof of (1.6.1). If A did not intersect X transversally, there would be a hyper- 
plane Hb of the pencil {Hf},EG tangent to X at a point c E A. This means (c, b) E V. 
On the other hand c E A C Hb dualizes to CH 3 G 3 b. Since G intersects J? trans- 
versally, so does .H, that means (c, b) E V by the duality Theorem 2.2. 

The projection p2: W +6, is transversal to G, i.e. if (c, b) E W and b E G the 
tangent space T,,eN is spanned by (TP~)(T(~,~) W) and TbG. 

Proof. If p2 has maximal rank N at (c, b), (Tp,)(T,,,,W) = TbPN alone suffices. 
Otherwise, (c, b) E V (see 2.3.) and therefore (Tp,)(T(,+ W) = T,$ by (2.6.1). The 
result follows now because G intersects X transversally at b. 

Proof of (1.6.2). Since p2 is transversal to G, the modification Y = r2-‘(G) has n 
dimensions at every point; in particular Y has no singularities. From this it follows 
that Y is irreducible by exactly the same argument as in the case class X = 0: see the 
last part of 2.5. 

Proof of (1.6.3). At every point (c, b) E Y. 

(2.6.2) ( Tf )( T,, I,) Y) = ( TP& Tee. b) W n TbG. 

If b E G\k, then (c, b) 65 V, hence (Tp2)(T CC,bjW) = T&, and (2.6.2) shows that f has 
maximal rank 1 at (c, b). If b E G n J? the point (c, b) lies in V therefore (Tp,) 
(T,,,, W) = T,_%! by (2.6.1). Since G intersects 2 transversally at b, the intersection 
(2.6.2) is the O-space, i.e. (c, 6) is a critical point of f. At the beginning of this 02.6 it 
has been remarked that for every b E G f-12 there is exactly one (c, b) E V. Therefore 
no two critical points lie in the same fibre of f. 
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Proof of (1.6.4). A coordinate description of f in a neighbourhood of a critical 
point (c, b) will be calculated. Since (c, b) is critical, (c, b) E V and b E G. The 
projective coordinates of PN are denoted by x = (x,,: . . . . :xN), the dual coordinates of 

@, by y = (yo: . . .:y,).Theyarechosensuchthatc=(l:O...:O),b=(O:...:O:l)and 
so that G C kN is given by y, = * * * = yN_, = 0. The following explicit trivialization of 
p,: W-+X over U ={xEX~X~=!=O} will be used: 

(2.6.3) u x P,_, + p,-‘( U), 

(X,2) H (Xv (-g XiZj:XOZl: f.. :XOZN)) 

Here z = (2,: . . . . :zN)iPN_,. Let (t,,.. . ,f,) be local holomorphic coordinates of X in 

a neighbourhood of c. They together with the affine coordinates 5, = 2,. . . t&k, = 

2 of P,_, yield the homomorphic coordinates (t,, . . . A, 51, . . . ,&_I) of w in a 

neighbourhood of (c, b). In a neighbourhood of b E k, the affine coordinates no = 

F of PN_, yield the holomorphic coordinates (t,, . . . ,t,, Cl,. . . ,&-I) of W in a 

The projection pZ: W +PN has now the following coordinate description: 

(2.6.4) 70 = g(k 5)~ 771 = 51~. . . ,qN-I = &I. 

Here g(t, 5) is a certain holomorphic function and 

(2.6.5) r + g(t, O), t = (t,, . . . ,t,) 

is a coordinate description of f: Y + G in a neighbourhood of (c, b). The Jacobian of 
p2 (2.6.4) is a&T &T - . . . . - *. . . .* atI at, 
(2.6.6) 

I 1 0 . . . 0 1 
. . . . . . . . . . 

0 . . . 0 \ 1 

Hence the subset V of W where p2 fails to have maximal rank is given by 

(2.6.7) ag ag 0 at,=‘. . ‘cat,= . 

Now r2 = p2) V has rank N - 1 at (c, b) (see (2.6.1)). Therefore the Jacobian of the 
defining eqns (2.6.7) of V together with the Jacobian (2.6.6) of p2 must have rank 
N + n - 1. This big matrix is 

a% 3% 
z ” * ’ 

- *. . . .* 
at, at,at, 

. . . . . . . . . . . . . . . . . . . . . . . . . . . 

a*8 a% - . . . . 7 *’ . . ‘* at,at, ah 
0 . . . . 0 ** * * * 

0 . . . . 0 1 
. . . . . . . . . . . . . . 

0 . . . . 0 \ 1 
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It has rank = N + n - 1 if and only if the rank of the Hessian matrix of the second 
derivatives of t H g(t, 0) has maximal rank n, i.e. if and only if (c, b) is a non- 

degenerate critical point of f. 

53. THE HOMOLOGY OF HYPERPLANE SECTIONS 

3.0. Singular homology with coefficients in an arbitrary principal domain (like Z or 
the fields F,, Q, R, C) will be used. The following excision property will be very 
convenient: 

Let f: (X, A)+ (Y, B) be a continuous mapping between pairs of compact Eucli- 
dean neighborhood retracts (ENR), such that f: X\A + Y\B is a homeomorphism. 
Then f induces an isomorphism 

f*: H,(X A)+H,(Y, B) 

of the relative singular homology. 

This follows for example from Proposition IV, 8.7 of Dold’s book[6]. All spaces 
which occur in the following are ENR’s because they can be embedded in some R”, 
they are locally compact and locally contractible, see e.g. [6] IV, 8.12. A tech type 
homology theory could also be used. It has the advantage that the excision property 
stated above holds true for arbitrary pairs of compact Hausdorff spaces. 

Many of Lefschetz’ intuitive arguments will be made precise by 

EHRESMANNS FIBRATION THEOREM [7]. Let f: E + B be a proper differentiable map- 
ping between differentiable manifolds E and B without boundary such that rkf = 
dim B everywhere. Then f fibres E locally trivially over B, i.e. for every point b E B 

there is a neighborhood U and a fibre preserving difleomophism @: f-‘(b) X U = 
f-‘(U). If E has a boundary 8E and in addition rk(f 1 8E) = dim B everywhere f fibres 
the pair (E, JE) locally trivially, i.e. @ is a fibre preserving diffeomorphism between the 
pairs (f-‘(b) x U, (f-‘(b) fl JE) x U) = (f-‘(U), f-‘(U) n 8.E). Similarly if there is a 
closed submanifold E’ C E and in addition rk(f) E’) = dim B then f fibres the pair 
(E, E’) locally trivially. 

For a proof of the absolute version which can easily be adapted to the relative 
cases see e.g. [19]. 

3.1. Let p : Y + X be the modification of X along X’, as in § 1.2. The homology of 
Y and X will now be compared. By (1.2.1) and the Kiinneth theorem there is a 
canonical isomorphism 

(3.1.1) H&X’) @ H,-,(X) = H,(X’) @ Z-MC) $ &2(X’) @ Hz(G) 

= H,(X’ x G) = H,( Y’). 

Therefore by restriction to Hq_2(X’) and composition with the inclusion Y’ 4 Y 
there is a canonical homomorphism K: Hp_2(X’) + H,( Y). 

(3.1.2) The sequence 0 + H4-2(X’) 2 H,( Y) -% H,(X) + 0 is exact and splits for 
every q. 
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I. First shown p* has a right inverse: For a given H,(X) let 
u E H’“-“(X) i.e. x = u tl where 

Then p*(u) H,(Y) and p&*(u) tl [Y]) = u fl p*[ Y] = u rl [Xl = 
X. 

II. The exact homology sequences of (Y, Y’) and (X, X’) are compared: 

H,+,(Y)-,Hq+,(Y3 Y’)----+ J* H,(X’)$ H,-,(X’)+H,(Y)+Hq(Y, Y’) 

lp* lpL 1.. lp. lpL 
H,+,(X) + Hq+,(X X’) a, f&W’) - H,(X) + ffqw, X’). 

Here pi is an isomorphism because p’ is a relative homeomorphism, see (1.2.2) and 
43.0. Furthermore H,(Y’) has been replaced by H,(X’) $ Hq&X’) using (3.1.1). 
Diagram chasing (here “p* is epimorphic” is quite important) yields the desired result. 

3.2. Consider now f: Y + G as in 41.2. Decompose the projective line G (which is 
a two-sphere) into two closed hemispheres D, and D_ such that the critical values off 
are contained in the interior 8,. Denote 

(3.2.1) G = D, U D_, S’ = D, f-I De, Y, = f-‘(ok), Y,, = f-‘(9). 

Choose a base point b E S’. 
Through Lefschetz does not state it explicitly the following main lemma is a 

precise formulation of many of his arguments. 

(3.2.2) MAIN LEMMA. H,(Y+, Y,,) = 0 if qf n = dim X = dim Y, H,( Y+, Yb) is free 
of rank r = class X. 

This lemma will be proved in 9.5. We shall now show how many of Lefschetz’s 
results follow from this lemma using standard techniques of homology theory, in 
particular the exact sequences for pairs and triples of spaces. 

3.3. To begin with consider the exact homology sequence of the triple Y > Y+ > 
Yb. The homology H,( Y, Y+) which occurs in it will be replaced by H,_,(X,) by means 
of the following isomorphism 

(3.3.1) 
H,(Y, Y+)’ HJ Y_, YO) 2 H,(X, x (Dm, S’)) 

.X[D_] 
F Hq-*(X/d. = = 

For the excision isomorphism see 93.0. Since f has no critical values within D_ the 
Ehresmann fibration theorem (also in P3.0) shows that there is a diffeomorphism 

(3.3.2) @: Y-=X, x D- 

which yields @* in (3.3.1). Finally the canonical orientation of G determines a 
generator [D_] of H,(D_, 9). The cross-product with it is an isomorphism because of 
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the Kiinneth formula. The homology sequence of (Y, Y+, Yb) thus becomes the exact 
sequence 

(3.3.3) ’ ’ . + &+I( y+, yb) -+ &+,(yt yb) : &(x,)-r, &( Y+, Yb) + * . ’ 

Because of (3.2.2) this sequence decomposes into the isomorphisms 

(3.3.4) L: &+,( Y, Yb) = &1(x,), q# n - l, n 

and a s-term exact sequences containing H,( Y+, Yb). 

3.4. The first application of (3.3.4) is a Bertini type theorem: 

(3.4.1) The generic hyperplane section Xb is non-singular and irreducible provided 
dim X = n 2 2. 

Proof. Generic means bE 2, hence Xb is non-singular because of (1.4.2). Thus 
“irreducible” is the same as “connected”. Since n 2 2 (3.3.4) yields &(Y, Yb) = 
H,( Y, Yb) = 0, thus &( Yb) = Ho(Y). This implies Xb = Yb is connected because Y is 
connected according to (1.6.2). 

3.5. The second application is to the Euler-Poincare characteristics e of X, Y, Xb 
and X’. Using the fact that the alternating sum of the ranks of the modules of a finite 
exact sequence is zero, (3.1.2) yields 

(35.1) e(Y) = e(X) + e(X’), 

and (3.3.3) yields e(Y) - e( Yb) = e( Y, Yb) = e(Xb) + ( - l)“r, hence 

(3.5.2) e(Y) = 2e(Xb) + (- l)“r 

(35.3) e(X) = 2e(Xb) - e(X’) + ( - l)“r, r = class X, 

(compare Lefschetz [L], Chap. III, §ll (n = 2) and Chap. V, 09, Theo&me XII for 
arbitrary n). According to Lefschetz, for n = 2, this formula is due to J. W. Alex- 
ander. For n = 1, i.e. for a curve X C P,, the result (3.5.3) is still non-trivial but much 
older as will now be explained: There is a projection PN +PZ such that the image of X 
is a plane curve C which has no singularities but ordinary double points. Let d denote 
the degree of C and v the number of double points, let g be the genus of C = genus of 
X. Then by definition e(X) = 2 - 2g, furthermore e(Xb) = d because Xb consists of d 
points, e(X’) = 0 because X’ is empty. Finally, X and C have the same class 

r=d(d-l)-2v. 

(This is one of Plucker’s formulas, see e.g. Walker’s book[l7, Chap. IV, 6.2 and Chap. 
V, 8.2.1) Therefore the result (3.5.3) becomes a well known formula for the genus: 

g = Cd - l)(d - 2) _ v 
2 

(Clebsch 1864), 

see e.g. [17, Chap. VI, Theorem 5.1.1. 
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3.6. The third application yields Lefschetz’s famous 

THEOREMONTHEHOMOLOGYOFHYPERPLANE SECTIONS 

(3.6.1) HJX, X,) = 0 for all q 5 n - 1, n = dim X, 

in other words: The inclusion X, 4 X induces isomorphisms of the homology groups 
in all dimensions strictly less than n - 1 and an epimorphism of H,_,. 

The proof requires a modification of 03.3 which replaces Y, and Yb by their union 
with Y’. Then (3.3.1) becomes an isomorphism 

(3.6.2) H,( Y, Y+ U Y’) = H,_,(X,, X’). 

Furthermore the excision theorem of 93.0 implies that 

(3.6.3) p*: H( Y, Yb U Y’) = H&X, X,) 

is an isomorphism and finally 

(3.6.4) H&Y+ U Y’, Yb U Y’) = H,( Y,, Yb) 

induced by the composed inclusions (Y,, Yb) 4 (Y,, Y, U Y:) 4 (Y+ U Y’, Y, U Y’). 
Since Yr, = X, x {b}‘is a deformation retract of Yb U Y: = X,, x {b} U X’ x D+, the first 
inclusion induces an isomorphism in the homology, and so does the second one 
because of the excision property (see 03.0). Thus the homology sequence of (Y, Y, U 
Y’, Yb U Y’) is transformed into the exact sequence 

(3.6.5) . . . +Hq+dY+, Yi,)- ‘* Hq+,(X X,1 L’ 

Hq W,, X’) z Hq+dY+, Yt,)+. . ., 

which replaces (3.3.3). This sequence decomposes into the isomorphisms 

(3.6.6) L’: H,+,(X, X,) = E&,(X,, X’), qfn-1,n 

and a Sterm exact sequence containing H,( Y+, Y,). 
The Lefschetz Theorem (3.6.1) follows now by induction on n = dim X: The 

beginning n = 1 is trivial. Induction from n - 1 to n(n 2 2): The hyperplane section X, 
is an (n - I)-dimensional, irreducible closed subvariety without singularities in Hb = 
PN_, (see (3.4.1)), and X’ = X, fl A is a transversal hyperplane section of X,. Hence 
the induction hypothesis applies for (X,, X’), i.e. H,(X,, X’) = 0 for q I n - 2. The 
isomorphisms (3.6.6) then yield (3.6.1). 

When the universal coefficient theorem is applied to (3.6.1) the corresponding 
result for the cohomology follows: 

(3.6.7) Hq(X,X,,)=Oforq5n-1, n = dim X, 

in other words: The inclusion X, induces isomorphisms of the cohomology groups in 
dimensions strictly less than n - 1 and a monomorphism of H”-‘. 
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The universal coefficient theorem furthermore shows that the natural epimorphism 
(R the coefficient ring) 

(3.6.8) H”(X, xb; R) = Hom(H,(X, X,), R) 

is an isomorphism, and hence H”(X, X,; Z) is free. By the Poincare-Lefschetz duality 
theorem these results are equivalent to 

(3.6.9) H,(X\X,) = 0 for q 2 n + 1 and I-Z,(X\X,, Z) is free. 

This proof of (3.6.1) is essentially Lefschetz’s original proof as in [L] Chap. V, $3. 
Lefschetz’s proof is difficult to understand because he did not use exact sequences. 
He constructed L (3.6.6) or rather L-’ quite explicitly for chains. He calls L-‘(x) the 
“locus of x as b varies”: see [L] Chap. II, 511 (n = 2) and Chap. V, §3-5 (n arbitrary). 

3.7. Using 1.3 the results about hyperplane sections can be generalized to hyper- 
surface sections. To be more precise: 

(3.7.1) Let X C PN be a smooth irreducible n-dimensional variety, let F C PN be a 

hypersurface such that all points of F f~ X are simple points of F and F intersects X 
transversally. Then H,(X, X fl F) = 0 for q I n - 1, i.e., the inclusion X fl F 4 X 
induces isomorphisms of all homology groups in dimensions I n - 2 and an epimor- 
phism in dimension = n - 1. 

Using (3.7.1) the topology of complete intersections can be compared with the 
topology of projective spaces: A subset Y C PN is called a smooth complete inter- 
section, if Y = F, n . . . n F, is the intersection of hypersurfaces F,, . . . ,F, C PN such 
that F, is smooth, the points of F, n F2 are simple points of F2 and Fz intersects F, 
transversally, the points of F, fl F2 n F3 are simple points of F3 and F3 intersects 
F, n F2 transversally and so on. In this case Y is a smooth (N - r)-dimensional 
variety. Apply now (3.7.1) first to X = Phr and F = F, then to X = F, and F = F2, then 
to X = F, fl Fz and F = F3 and so on: 

(3.7.2) If Y c PN is an n-dimensional smooth complete intersection, then 
H,(P,, Y) = 0 for q 5 n, i.e. Y + PN induces isomorphism of all homology groups in 
dimensions I n - 1 and an epimorphism in dimension = n. 

This imposes strong topological restrictions on n-dimensional varieties Y which 
can be embedded as smooth complete intersections: Except in the middle dimension n 
the homology groups of Y and PN are isomorphic (for dimensions > n this follows by 
Poincare duality). Furthermore if n is even the nth Betti number of Y is 2 1. If, e.g. 
C is a smooth curve of genus > 0 the product C x P,, n 2 1, is not a smooth complete 
intersection because its first Betti number is > 0, the products P, X P, except for 
P, X P, are not smooth complete intersections because their second Betti number is 2 

and not 1. 

3.8. Consider the connecting homomorphism 8,: H,(Y+, Yb)-, 

Hn_,(Yb) 1 H,_,(X,,). Its image 

V = a,(Hn(Y+, Yt,)) 
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is called the module of “vanishing cycles”. The exact homology sequences of (Y,, Y,,) 

and (X, X,) form the following commutative diagram 

(3.8.1) 

All vertical homomorphisms are induced by restrictions of p: Y + X. The left hand 

one pl is epimorphic because it occurs in the exact sequence (3.6.5) and the following 

term I-InmZ(Xhr X’) = 0 according to (3.6.1). The middle one p2 is an isomorphism. 

Hence the Five Lemma implies that p3 is also an isomorphism. This diagram shows 

that 

(3.8.2) V = image (a,: I&(X, X,)+ Z-Z-,(X,)) 

= kernel (i*: H,_,(X,) -+ H,_,(X)), 

and 

(3.8.3) rk H,_,(X,) = rk V + rk H,_,(X). 

3.9. When 93.8 is translated into cohomology we get the commutative diagram 

with exact lines 

This diagram shows (if X, and Yr, are identified as usual) 

(3.9.1) I*: = kernel (6*: Z-I-‘(Y,)+H”(Y+, Yb)) 

= kernel (a*: H”-‘(X,) + H”(X, X,)) 

= image (i*: H”-‘(X) -+ H”-‘(X,)). 

I* is called the module of “invariant cocycles”. The module I of invariant cycles is 

defined to be the Poincare dual of I*, i.e. 

(3.9.2) I: = {u fl [X,]) u E I*} c H”_,(X,). 

The last description of I* yields by Poincare duality 

(3.9.3) I = image (i,: H,+,(X) + H,-r(X,)). 

Here i! denotes the Umkehr homomorphism (transfer), i.e. the Poincare dual of i*, see 
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e.g. Dold[6, Chap. VIII, lo]. Since i* is injective, i! is also injective, in particular 

(3.9.4) rank I = rank H,+,(X) = rank H,_,(X). 

The last equality comes from Poincare duality. The first description of I* (3.9.1) 
together with H”( Y+, Y,) = Horn (H.( Y+, Yb), R) (here R denotes the coefficient ring 
and the isomorphism comes from the universal coefficient theorem because 
H,_,( Y+, Yb) = 0 according to 3.2.2) yields I* = {u E H”-‘( Yb)/(u, x) = 0 for every 
x E V}. Here (- , -) denotes the Kronecker pairing between cohomology and 
homology. By Poincare duality the Kronecker pairing becomes the intersection form 

Hn-dxb) x Hn-,(Xb) + R 

which will also be denoted by (- , -); thus: 

(3.9.5) 1 = {y E H,_,(Xb) ) (y, x) = 0 for every x E v}. 

If coefficients in a field are taken, the intersection form is non-degenerate by Poincare 
duality. Hence (3.9.5) implies 

(3.9.6) rank I + rank V = rank H,_,(Xb). 

The rank formulas (3.8.3), (3.9.4) and (3.9.6) can be found in [L] Chap. III, 43 (n = 2) 
and Chap. V, 96 (n arbitrary). 

$4. THE HARD LEFSCHETZ THEOREM 

Lefschetz derives the rank formulas (3.8.3), (3.9.4) and especially (3.9.6) from a 
much stronger result namely: H,_r(Xb) is the direct sum of I and V. (This would 
follow from (3.9.5) if the intersection form were definite.) This stronger result is 
nowadays called the “Hard Lefschetz Theorem”. In this chapter several equivalent 
formulations of this theorem and consequences of it will be discussed. A proof will 
not be given. 

4.1. Let u E H’(X) denote the Poincare dual of the fundamental class [Xb] E 
H2n_2(X) of the hyperplane section Xb, i.e. 

u n [x] = [x,]. 

The homological expression for the intersection with Xb is the cap-product with U. It 
factors through Xb, i.e. 

(4.1.1) 

THEOREM. Zf field coefficients are chosen, the following statements are equivalent: 

(4.1.2) V n I = 0 
(4.1.3) v @ 1 = H,_,(X,) 
(4.1.4) i*: &,(Xb) + H,_,(X) maps Z isomorphically onto H,_,(X). 
(4.15) H,+,(X) = H”_,(X), x - u n x, is an isomorphism. 
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(4.1.6) The restriction of the intersection form ( - , -) from 

I&,(X,) to V remains non-degenerate. 
(4.1.7) The restriction of (- , -) to I remains non-degenerate. 

Proof of the equivalences: (4.1.2) and (4.1.3) are equivalent because of (3.9.6). 
Since i,: H,_,(Xb)+H,_I(X) is epimorphic (3.8.1) and maps V to 0 (3.8.2), the 
statement (4.1.4) follows from (4.1.3). According to 03.9 i! is monomorphic and image 
i!=I; thus un..*= i*$ is monomorphic because of (4.1.4). Then (4.15) follows 
because H,+,(X) and H,_,(X) are isomorphic by Poincare duality. Vice versa: If 
(4.15) holds true, i,(l) = H,_,(X), therefore i*jl is an isomorphism because of (3.9.4). 
Hence (4.1.4) follows from (4.15). Since i*(V) = 0 (4.1.4) implies (4.1.2). Thus (4.1.2- 
5) are equivalent. 

(4.1.3) and (3.9.5) imply that the intersection form ( - , - ) on H,_,(X,) splits into 
the direct sum of its restrictions to V and I. 

(-3 -)=(-3 ->v$(-7 ->,. 

Since (- , - ) is non-degenerate by Poincare duality, the direct summands must also 
be non-degenerate. Thus (4.1.6) and (4.1.7) follow from (4.1.3). Vice versa (4.1.6) or 
(4.1.7) implies (4.1.2): Assume z E V n 1. Then (z, v) = (z, u)” = 0 for every v E V and 
(c, z) = (c, z), = 0 for every c E I according to (3.9.5). The first statement together 
with (4.1.6) or the second statement together with (4.1.7) both imply z = 0, i.e. 
Vf-lI=O. 

(4. I .8) THE HARD LEFSCHETZ THEOREM. The statements (4.1.2)-(4.1.7) are true if 
coefficients in a field of characteristic zero are chosen. 

Lefschetz claims that (4.1.2) and (4.1.3) hold true for integer coefficients, see [L] 
Chap. II, 913 and 18 for n = 2 and Chap. V, §7 for arbitrary n. But his proof is difficult 
to understand and seems to be incomplete even for field coefficients. At present I 
don’t know a complete topological proof. The only complete proof comes from 
Hodge’s theory of harmonic integrals (forms), see 94.6 below, where the cohomolo- 
gical version is presented. 

The other statements (4.1.4), (4.1.6) and (4.1.7) are also due to Lefschetz [L], Chap. 
II, §19 and Chap. II, 93 and §S. For (4.1.5) Lefschetz has a better version: see (4.3.2) 
below. 

For the rest of this 04 coejicients in a field of characteristic zero are chosen so that 
the statements (4.1.2H4.1.7) hold true. 

4.2. Iterate the sequence X 1 X, 3 X’ to 

(4.2.1) x=x,3x,=x,3x*=x’3x,*~*3x”3x”+,=o 

so that X, is a generic hyperplane section of X4_,, hence 

dim X, = n - q. 

Denote the inclusions by 

&:X, 4X. 
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Define the submodule 

of invariant “cycles” for the pair X, C X,_, in the same way as for the pair X,, C X, 
see $3.9. Then (3.9.3), (4.1.4) and (4.1.7) can be generalized to 

(4.2.2) (iq)!: H,+,(X)+ EZ-q(Xq) maps H,,+,(X) isomorphically onto 1(X,). 

(4.2.3) (i,),: H,_,(X,) + H,_,(X) maps Z(X,) isomorphic&/y onto H,_,(X). 

(4.2.4) The restriction of the intersection form (- , -) from 

H,_,(X,) to Z(X,) remains non-degenerate. 

The isomorphism (i,),: Z(X,) + Z-Z_,(X) carries this form to a non-degenerate bilinear 
form Q on H,_,(X). The form Q is symmetric if n - 4 is even and skew-symmetric if 
n - 4 is odd. Since non-degenerate skew symmetric forms can only exist on even- 
dimensional vector spaces the following consequence is obtained: 

(4.2.5) The odd-dimensional Betti numbers of X are even. 

This result and its proof are essentially due to Lefschetz, see [L] Chap. II, 019. As 
Lefschetz already points out this result shows: In contrast to real surfaces, for I > 1 
not every closed oriented 21-dimensional real manifold is homeomorphic to a complex 
projective manifold. Even certain compact complex manifolds like the Hopf mani- 
folds (see [3, p. 31) which are homeomorphic to S2m-’ x S' are excluded this way. 

4.3. The q-th power u4 E Z-Zzq(X) is Poincare dual to the fundamental class 
[X,] E ZYZ~~-~JX) of X,. Therefore the decomposition (4.1.1) generalizes to 

(4.3.1) 

and (4.2.2) and (4.2.3) imply the following generalization of (4.1.5): 

(4.3.2) For every q = 1, . . . ,n the cap-product with the qth power uq is an isomor- 
phism 

K+,(X) -L K,(X), x H uqnx. 

This version of the Hard Lefschetz Theorem and its proof are essentially due to 
Lefschetz himself [L] Chap. V, 48, Theo&me VII and VIII. The following refor- 
mulation is due to Hodge[9, Chap. IV, No. 441. 

4.4. An element x E H,+,(X), 0 5 q d n, is called primitive if uq+’ n x = 0. (uq II 
x = 0 would imply x = 0 by (4.3.2)) The result (4.3.2) and hence the Hard Lefschetz 
Theorem is equivalent to the following 

PRIMITIVE DECOMPOSITION. Every element x E H,+,(X) can be -written uniquely as 

(4.4. la) 

TOP Vol. 20, No. I-C 
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and every element x E H,_,(X) as 

(4.4.1 b) X=Uqnx,+uq+1nx,+Uq+2nx,+... 

where the Xi E Hn+q+zi(X) are primitive, and 4 2 0. 

Proof. The cap-product with uq obviously transforms (4.4.la) into (4.4.lb). Since 
the representations are unique, uq rl * * * is an isomorphism and thus (4.4.la) and 
(4.4.lb) implies (4.3.2). Vice versa (4.4.la) follows from (4.3.2) by induction beginning 
with 4 = n and 4 = n - 1 where every element is primitive. For the induction step 
from n + 4 + 2 to n + 4 it suffices to show that every x E H,,+,(X) can be written 
uniquely as 

(4.4.2) x=xo+uny with x0 primitive, 

because the induction hypothesis applied to y then yields the decomposition (4.4.la). 
In order to prove (4.4.2) consider u q+’ fl x According to (4.3.2) there is exactly one . 

y E Hn+q+2(X) with uq+’ fl y = up+’ rl x, and thus x0 = x - u n y is primitive. In order to 
show the uniqueness assume 0 = x0+ u rl y with x0 primitive. Then uq+’ n x0 = 0, 
hence u q+2 n y = 0, and (4.3.2) implies y = 0, hence x0 = 0. The isomorphism uq fl . . . 

(4.3.2) applied to the unique decomposition (4.4.la) yields the unique decomposition 
(4.4.lb). 

The primitive decomposition shows that the homology of X is completely deter- 
mined by the submodules P,+,(X) C H,+,(X), 0 I cg I n, of the primitive elements. 
The intermediate result (4.4.2) implies 

(4.4.3) dim I’,+, = bn+q - bn+q+2 = b,_, - bn-q_2 

(bi = i-th Betti number of X). Since dim Pn+q 2 0, the Betti numbers form two 
increasing sequences 

(4.4.4) 
1 = b. 5 b2 5 . . . 5 b2i, 

bl I b3 5 . * . 5 bzi+l, 

for every i with 2i I n 

for every i with 2i + 1 I n 

Like (4.2.5) this obviously restricts the topological possibilities for projective mani- 
folds. 

Remark. Our (4.4.1) is not exactly Hodge’s formulation because he uses the 
“effective cycles” y E H,_,(X), defined by u tl y = 0, rather than the primitive ele- 
ments x E H,+,(X). Since uq n . . . is an isomorphism (4.3.2) and x is primitive if and 
only if uq n x is effective it is easy to translate (4.4.1) into a formulation using 
“effective cycles”. The term primitive is due to Weil[ 171. 

4.5. The Lie algebra s12 of all (2 x 2)-matrices with trace zero is three dimensional 
and has a basis consisting of 

e= [i A] f= [y 81 h= [A _:I. 
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Its 

Its 

commuter relations are ([xy] = xy - yx): 

(4.5.1) [ehl = - 2e, I#] = 2f, [ef] = h. 

representations are well known, see e.g. Jacobson[lO, Chap. III, 981. 
Consider now the endomorphisms of H,(X) 

(45.2) 
f: Hj(X) + Hj-*(X)9 fx=uf-lx 

h: Hj(X) + Hi(X), hx = (j - n)x. 

Obviously [f/r] = 2f. The primitive decomposition and hence the Hard Lefschetz 
Theorem is equivalent to: 

(45.3) There is an homomorphism e: H,(X)+ Hi+z(X) which together with f, h 
(4.5.2) satisfies all commutator relations (4.5.1), in other words: H,(X) is an s/*- 
module. 

Proof. Using the primitive decomposition (4.4.1) it suffices to consider elements of 
the form 

urn, x E P,+,(X), 

in order to define e and to check (4.5.1). The definition is 

(4.5.4) e(u’ n x) = r(q - r + 1)~‘~’ fl x, 

and the checking is easy. Vice versa the representation theory of s/:! implies the 
primitive decomposition (4.4.1) in the following way: Like any &module H,(X) is a 

direct sum of irreducible &-modules A, $a * a$ A,. Up to isomorphism an irreducible 
slz-module is determined by its dimension: Let dim Ai = di + 1. Then there is an 

element Xi E Ai SO that {Xi, fXi, . . . yfd'Xi} is a base of Ai, fd+'Xi = 0 and hxi = diXi. The 

definition (4.5.2) implies that f’xi E Hn+di_Zr(X). Thus H,(X) = 6 H,(X) fl A; has the 
i-l 

basis cf’ixi ) di - 2qi = p}. This yields the primitive decomposition. 

Remark. The (d + 1)-dimensional irreducible &-module occurs dim Pn+d(X) times 
as direct summand in H,(X). Therefore (4.4.3) may be interpreted in the following 
way: The Betti numbers of X and the structure of H,(X) as s&-module (up to 
isomorphism) determine one another. 

4.6. The three versions (4.3.2), (4.4.1) and (4.5.3) of the Hard Lefschetz Theorem 
are easily translated into cohomology by the Poincare duality theorem. Then they run 
as follows: 

(4.6.1) - (4.3.2) For every q = 1,. . . ,n the cup product with the q-th power of 
u E H*(X) is an isomorphism 

H”-q(X) =\ Hn+q(X), x I+ uqux. 

A cohomology class x E Hneq(X) is called primitive if the Poincark dual homology 
class x rl [Xl E H”‘q(X) is primitive, i.e. if uq+’ u x = 0. 
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(4.6.2) - (4.4.1) Primitive decomposition: Every element x E Hneq(X) can be writ- 

ten uniquely as 

and every element x E H”+“(X) as 

where the xi E H”-q-2i(X) are primitive. 

The Poincare duals of the endomorphisms e, f, h: H,(X)+ H,(X), see $4.5, are 

(4.6.3) 
A; H’(X)+ H’-*(X), u’ U x H r(q - r + 1)~‘~’ U x, x E Hneq(X) primitive 
L: H’(X) + H’+*(X), x H u U x 
H: H’(X) + H’(X), x H (n -j)x. 

(4.6.4) - (4.5.1) and (4.5.3): [AH] = 212, [LH] = -2L, [AL] = H, i.e. H*(X) is an 
s/2-module. 

Hodge proves (4.6.2) for the coefficient field C using his theory of harmonic 
integrals: see [9, Chap. IV, 042-441. For a more modern presentation which explicitly 
includes (4.6.1), (4.6.2), the operators (4.6.3) and their commutators (4.6.4) see 
Weil[17, Chap. IV, Nos. 6 and 81. Chern[4] seems to be the first who saw the 
representation theoretical aspect of this theory. See also Cornalba-Griffith[5] for a 
recent survey of transcendental methods. 

55. THE TOPOLOGY OF HOLOMORPHIC FUNCTIONS WITH 
NON-DEGENERATE CRITICAL POINTS 

This chapter deals with the holomorphic analog of the (finite dimensional) Morse 
theory. Actually the holomorphic case is older than the real Morse theory because all 
ideas occur already in [L]. 

5.1. Let ‘f: Y -+ G be a holomorphic mapping between an n-dimensional compact 
complex manifold Y and a projective line G, such that all critical points xl,. . . ,x, of f 
are non-degenerate and no two lie in the same fibre, compare 1.2 and 1.6. Decompose 
G into the closed upper and lower hemispheres D, and D_ so that all critical values 

[I,. . . ,t, of f are interior points of D,. A regular value b E alI+ serves as base point. 
Let 

Y+ = f-‘(D+) and Yb = f-‘(b). 

In this situation the Main Lemma of $3.2 holds true: 

(5.1.1) H,(Y+, Yh)=O ifq#n 

(5.1.2) H,(Y+, Yb) is free of rank r. 

The following proof of (5.1.1) and (5.1.2) will also be the starting point for the 
investigation of invariant and vanishing cycles in the following chapters. 
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5.2. By choosing a suitable holomorphic coordinate t the hemisphere D, is 
identified with the closed unit disk in C so that b corresponds to 1. Small disks Di with 
center ti, i = 1,. . . ,r, and radius p are chosen so that they are mutually disjoint and 
contained in D+, see Fig. 1. The investigation of (Y+, Y,,) is carried through in three 
steps: First (Y,, Yb) is reduced by a localization in the base to (Ti, Fi) where 

(5.2.1) Ti = f-‘(Di) and 6 = f-‘(ti + p). 

Then one localizes in the total space: Since xi is a non-degenerate critical point off in 
a neighbourhood B of Xi local holomorphic coordinates (z,, . . . ,z,) of Y can be 
chosen so that fl B has the coordinate description 

(5.2.2) f(z) = t; + q2 +. . . + 2;. 

The pair (T;, FL) is reduced to (T, F) where 

(5.2.3) T=TnB and F=enB, 

see Fig. 2 below. Finally the homology and homotopy of (T, F) is computed using the 
explicit coordinate description (5.2.2). 

5.3. In D, Cm-embedded intervals li from b to ti + p are chosen SO that I = 6 Ii can 
i=l 

be contracted within itself to {b} and D, can be contracted to k = I U b Di, see the 
i=l 

following figure (r = 3): 

(5.3.1) The fibre Yb is a strong deformation retract of L = f-‘(l) and K = f-‘(k) is a 
strong deformation retract of Y+, hence the inclusions 

(Y+, Yb)- (Y+v L) -(K, L) 

induce isomorphisms of all homology and homotopy groups. 

Fig. 1 Fig. 2 
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Proof. According to Ehresmann’s fibration theorem f: Y+\f-‘{l,, . . . ,tr}-* 

D+\{f,, . * . ,t,} is a C” locally trivial fibre bundle. Since 1 C D+\{t,, . . . ,t,} f: L+ 1 is a 
subbundle. The homotopy covering theorem, see e.g. Steenrod [ 14, 911.31, implies: 
The contraction from 1 to {b} can be lifted so that Yb becomes a strong deformation 

retract of L. Similarly the contraction of D+\{t,, . . . ,t,} to I U b (Di\ti) can be lifted SO 
i=l 

that L U iG, (K\f-‘(ti)) becomes a strong deformation retract of Y+\f-‘{t,, . . . J,}. 

Since the ti are interior points of k the singular fibres can be filled in so that K is a 
strong deformation retract of Y+. 

In order to reduce the investigation from (Y,, Yb) to (T, F,), see (5.2.1), observe 

that the inclusion ( ; r, ; Fi) + (KY L) is an excision, i.e. induces an isomorphism in 
i=l i=l 

homology. Since the union is disjoint, (5.3.1) finally yields: 

(5.3.2) The inclusions induce isomorphisms 

6 H,(~,Fi)~~*(Y+,L)-iH*(Y+, Yb). 
i=I 

5.4. There is exactly one critical point Xi of f within Tie In a neighbourhood of Xi 
holomorphic coordinates (z,, . . . J,,) of Y are chosen SO that Xi = (0,. . . ,O) and f is 
described by (5.2.2). If E > 0 is small enough the ball 

is contained in the range of the coordinates. In the following the corresponding subset 
of Y will also be denoted by B. The radius p of pi must be shrunk so that p < l 2. The 
result of the second localization step from (Ti, Fi) to (T, F), see (5.2.3), is 

(5.4.1) The inclusion (T, F)+ (T, 6) induces isomorphisms for the homology. 

Proof. Let B = {z E B (JJz(J = E}, T’ = T n dB and F’ = F n 3B. Consider the 
diagram of inclusions 

(7’3 F)+ (T, Fi) 

I I_ 
(T, T’ U F) + (Ti, Ti\B U Fi)s 

The bottom inclusion is an excision. The following result (5.4.2) implies that both 
vertical inclusions also induce isomorphisms for the homology. Hence (5.4.1) follows. 

(5.4.2) fi\6 is a strong deformation retract of T\8 and F’ is a strong deformation 
retract of T’. 

The real analytic mapping f has maximal rank = 2 everywhere on Ti\B and its 
restriction f) aB has also maximal rank = 2 on the (partial) boundary Ti n aB = T’. 
Hence Ehresmann’s fibration theorem for manifolds with boundary yields a fibre 
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preserving diffeomorphism between the pairs (K\fi, JT) and (Fj\& aF) x Die Since Di 
can be contracted onto ti + p, this implies (5.4.2). 

5.5. For the final step the following explicit coordinate descriptions will be used 
(This description is due to J. Leray. It has first been published by Fary[8], 96.): 

(55.1) T = {z E C” 1 jzll* + . * . + /z,/* 5 e* and )z,2 + - . . + Z”2) 5 p) 

(5.5.2) F={z~T~z,*+...+z,2=p} 

(55.3) f(z) = ti + .z,* +. - . + z,2. 

(5.5.1) shows that T can be linearly contracted onto the origin. Therefore the 
connecting homomorphism 

(5.5.4) 
a,: H,(T, F): H,-,(F) for q* 0 

is an isomorphism and H,,(T, F) = 0. 
There is a well known real analytic diffeomomorphism between F and the space 

(5.5.5) Q={(u,v)ER”xR”Illull=l, ~~~~~~1, (u,u)=O} 

of all tangent vectors of length 5 1 of the unit sphere S”-’ in R”. Here (u, u) = 2 UP, 
“=I 

denotes the usual Euclidean inner product and ]]u]] = d(u, u) the corresponding 
norm. This diffeomorphism is given in the following way: Decompose z, = x, + iy, into 
its real and imaginary part. Let x =(x1, . . . ,x,) and y = (y,, . . . ,y,) ER”. Then from 
(5.5.1) and (5.5.2) F = {(x, y) E R” x R” lllx//* + lly/* 5 E*, llxll* - IIyIJ’ = p, (x, y) = 0). This 

implies llyll< J(v) = : CT. Then F = Q is given by 

(5.5.6) u+iv=fi+$y. inverse: x + iy = ~((r2j(v1)2 + p) * u + iav. 

This diffeomorphism maps the real part of F, namely the sphere 

(5.5.7) S”-’ = {z E F ) all z, real} 

onto the zero section Q0 = {(u, 0) E Q} of Q. Therefore S”-’ is a strong deformation 
retract of F and the homology of F is 

(5.5.8) H,_,(F)=0 for qf 1, # n, H,(F) and H,_,(F) are free of rank 1, an 
orientation of S”-’ determines a generator of H,_,(F). 

Using (5.5.4) this is translated into the relative homology: 

(5.5.9) H,(T, F) = 0 for gf n, H,,(T, F) is free of rank 1 and an orientation of the 
real n-disk 

A = {z E T I all z, real} 

represents a generator of H,,( T, F). 
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The results (5.1.1) and (5.1.2) are now easily deduced from (5.5.9), (5.4.1) and (5.3.2). 

Remark. Later, for the proof of (6.5.2) an explicit retraction R: T’+ F’( 4 F), see 
(4.4.2) will be needed: The coordinate description 

T’ = {z E C” (/z,)* + . . . + )zn(’ = l * and lz12 + . . . + z,21 5 p} 

F’={zET’Iz,*+-+z,*=p} 

is used. Let z E T’ be given. Represent f(z) = ti + r * e2nic in polar coordinates, define 
zI = e-vi+7 

z (so that f(z’) = r). Decompose z’ = x’+ iy’ into real and imaginary part and 
define 

R’: T’-+Q, R(z)=~"'Q &+ih). 

Here the points of Q (5.55) are denoted by u + iv. (Observe that R’ does not depend 
on the choice of cp.) Then 

is the composition of R’ with the diffeomorphism (5.5.6). 

86. THE PICARD-LEFSCHETZ FORMULAS 

6.1. Let f: Y + G be as in 5.1. When the singular 
removed from G, 

(6.1.1) G* = G\{t,, . . . J,}, 

values t,, . . . ,t, of f: k ‘+ G are 

and the corresponding singular fibres are removed from Y, 

(6.1.2) Y* = Y\f_‘{t,, . . . J,}, 

a locally trivial fibre bundle f: Y* -+ G* with typical fibre Y, = X, remains according 
to Ehresmann’s fibration theorem. The fundamental group n,(G*, b) acts on the 
homology of Y,. This action is called the monodromy of f: Y + G. It will be studied in 
P6 and $7. The main results are the Picard-Lefschetz formula (6.3.3) which holds in 
general and the semi-simplicity of the monodromy (7.3.3) which holds in the special 
situation described in § 1.2 above. 

Let t be a local coordinate of G in a neighbourhood of t,. Choose p > 0 so small 
that the disk 0, with centre t, and radius p does not meet any t,, p# V. Let I, be any 
path in G* from b to t, + p and let 

(6.1.3) W,(S) = t, + pe*+, 0 5 s 5 1, 

be the path which encircles t, once. Then 

(6.1.4) w, = I;’ * w, * I, 

is called an elementary path encircling t,, see Fig. 3 and also Fig. 1 in 95.3. 
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Fig. 3 

The fundamental group rr,(G*, b) is a free group generated by the homotopy 
classes [w,], . . . ,[w,] of the elementary paths. If the t, are suitably ordered and the I, 
are suitably chosen there is exactly one relation 

[w,] * [w*]* . *[w,] = 1. 

The Picard-Lefschetz formula describes the action of the elementary paths wi on 
H,(Y,). It requires special elements of H,_,( Yb) and H,( Y+, Yb) which will now be 
defined using the results of 05. 

6.2. Consider the following sequence of homomorphisms induced by inclusions 

(6.2.1) H,,( T, F) L 
(5.4.1) 

According to (55.9) an orientation of the disk A determines a generator [A] of 
H,(T, F). The monomorphism (6.2.1) transforms [A] into an element Ai E H,( Y+, Yb). 
The elements A,, . . . ,A, generate H,( Y+, Yb) freely. The connecting homomorphism 
a,: H,( Y+, Yb)+H,_,( Yb) transforms Ai into 

(6.2.2) $ = a*Ai E H”_r( Yb), i=l,...,r. 

Lefschetz [L] Chap. II, $13 and Chap. V, 06, calls Si a vanishing cycle and Ai the 
corresponding thimble: The geometric boundary aA = S”-’ C F C Fi is an embedded 
(n - l)-sphere in Fi (see, 55.7). Since the inverse image f-‘(li) is trivially fibred there 
is an embedding 

(6.2.3) j: Fi X 1; + Y, j(fi X li) = f-‘(I;), j(y, ti + p) = y Und fij(y, A) = A for y E 
E and A E li 

Then the thimble 

(6.2.4) C’i = A U j(S”-’ X ii) 

represents Ai. Its boundary K’i is an embedded (n - I)-sphere in Y,,, which represents 
Si: see Fig. 4. 

When the sphere Ci is pushed along the thimble from Y, following Ii into 6 = Y,,,, 
and further into the singular fibre Y,; it vanishes at the critical point Xi, hence the name 
“vanishing cycle”. 

6.3. A tubular neighbourhood of S”-’ in Fi is F, and S”-’ lies in F as the zero 
section GO lies in the tangent bundle Q of the (n - 1)-sphere, see (5.5.5)-(5.5.7). The 
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self-intersection number of Q0 in Q (i.e. the Euler number of S”-‘) is known to be 0 or 
2 depending on whether n is even or odd. This number is calculated with respect to 
the usual orientation of Q (first an orientation of Q0 and then the corresponding 
orientation of a fibre). The complex structure of F induces another orientation of Q. It 
differs from the usual one by the factor (- l)(n~‘)(n-2)‘2 and hence the self-intersection 
number of S”-’ in E is (- l)(n~‘Xn-2)‘2 (1 - ( - 1)“). The orientation preserving 
diffeomorphism 

(6.3.1) hi: Z$ = Y/)2 MY) = i(y, b), Y E Fi, 

maps S”-’ onto Ci. Hence: 

(6.3.2) The normal bundle of the vanishing cycle Cj in Yh is isomorphic 
tangent bundle of the (n - I)-sphere. The self-intersection number is 

n even 
n odd 

(6.3.3) THE PICARWLEFSCHETZ FORMULA. If qf n - 1 the fundamental 
r,(G*, b) acts trivially on H,(Y,). For q = n - 1 the elementary path wi, see 
and (6.1.4), acts by 

(W;)*(X) = x + (- l)n'"'1"2(~, Si)6i, x E H,_I( Yb). 

to the 

group 
(6.1.3) 

For n = 2 the formula (6.3.3), up to the coefficient (x, S,), is due to Picard[l2, Tome I, 
p. 951. The coefficient (x, Si) was first obtained by Lefschetz. In his book [L] (6.3.3) is 
the “theoreme fondamentale”, Chap. II, 09, upon which he builds the investigation of 
algebraic surfaces. Later in [L], Chap. V, Nos. 6 and 7, he generalizes the result from 
surfaces to higher dimensional manifolds. The following sections contain the proof of 
(6.3.3). 

6.4. This section contains topological preliminaries. Let f: A + B be a continuous 
mapping and Z3* C B a subspace such that f fibres E = f-‘(II*) locally trivially over 
B*. The fibre over y E Z3 is denoted by F, = f-‘(y). Let w: Z = [0, I] + B* be a path 
from a = w(O) to b = w(l). The induced bundle w*E over Z is trivial, in other words: 
There is a continuous mapping 

(6.4.1) W:F,xZ-+E$A 
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with the following properties: 

fi W(x, t) = w(t) and W(x, 0) = x for x E F,, t E I. 

For any fixed t E Z W,: F, = F,,,(,,, x H W(x, t), is a 

homeomorphism; for any L with F, U Fb C L C A the lifting 
W is a mapping between pairs 

W: Fa x (Z, JZ) + (A, L). 

The homotopy class of the path w determines W up to homotopy relative to aZ and L 

and determines WI: F, = Fh up to isotopy. Since the induced isomorphism in 
homology (WI)* depends only on w, it will be denoted by 

(6.4.2) W c+c = (WI)*: rf,(F,) = H,(K). 

If w is closed, W, is called a geometric monodromy and w* the algebraic monodromy 

along w. Let 

1 E H,(Z, az) 

be the canonical generator. Then 

(6.4.3) 
7,: Hq(FJ - Z-Z,+@, x (iv aI)) - w* H,+,(A, L) 

x HXXl 

is called the extension along w. It depends only on the homotopy class of w. Further 
properties of the extension are: 

(6.4.4) Zf L 3 f-’ (image of w), then T, = 0. 

(6.4.5) NATURALITY. A commutative diagram 

0 
A-A, 

with cp(B*) C BY and q(L) C L, induces the commutative diagram 

Hq+dA L) - &+,(A,, U 

(6.4.6) Zf a,: H,+,(A, L)+ H,(L) denotes the connecting homomorphism, then 

(- l)qa*Tw(x) = w*(x) -x, x E Hq(Fa). 

Here the image of x under F, + L is also denoted by x, and similarly for w*(x). 
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(6.4.7) COMPOSITION. If w is a path from a to b and v is a path from b to c and if 
L 3 F, U Fb U F, then 

T”WJ = T,OW* + Tw and (vow)* = v*ow*. 

A relative version is also needed: Let A’C A be a subspace, denote 

E’=EnA’ and Fi=F,nA’. 

Assume: (1) f fibres the pair (E, E’) locally trivially over B* and (2) FA is a strong 

deformation retract of A’. Then 

w: (F,, F;) x (I, aI) = (F, x I, Fo x aI U F:, x 1) - (A L U A’) 

and the relative extension is defined to be 

(6.4.8) ~,v: EL&F, FL) + &+,((Fa, FL) x (I, al)) 2 &+,(A, L U A’) 
XHXXL t inc, 

&+,(A L) 

Mutatis mutandis the results (6.4.4)-(6.4.7) remain true in the relative case. 
The extension along the elementary paths (6.1.4) will now be calculated. The 

procedure is the same as in 04 but in reversed order. 

6.5 First the situation of Q5.5. is studied, f: T-+D = {t EC’-/ ItI I p}, f(z) = 
z,2 + . . . + z,2, with D* = D\O, typical fibre F. This is a relative situation due to T’ 
(5.4.2). Both assumptions for (6.4.8) are fullfilled, (1) because of the relative version of 
Ehresmann’s fibration theorem and (2) because of (5.4.2). Therefore the relative 
extension 

7,: H,_,(F, F’)+H,(T, F) 

along the path w: I +D\O, o(t) = pe2”i’, is defined. The other dimensions # n are 
uninteresting because then the homology of (T, F) vanishes (5.5.9). Let s = a,[A] = 
[S”-‘1 E H,_,(F). Choose c E H,_,(F, F’) so that (c, s) = 1. Then 

(6.5.1) TV = - (- I)“‘“-‘“2[A]. 

This is the main result of this section. In its proof explicit geometric considerations 
will play an essential r6le. Since H,(T, F) is generated by [A], “T,(C) = ro[A] with 
y E Z” is obvious. It remains to prove 

(6.5.2) y = _ (_ l)W)/2. 

For this purpose the following diagram is considered: 

I-Z,,(F x I, d(F x I)) w.\ H,(T, T’ u F) + H,(T, F) 

-Ia* -Ia* 1 
a* 

H,_,(a(F x I)) & H,_,(T’ u F) ++ H,-,(F)% K-,(S”-‘) 

(5.5.6) 
12 

(*) 
II 

(5.5.6) 

Hi+l(J(Q x 0) 
g* 

F Hn-,(Qd 
= 

T inc. II 
Hn-,(a(C x 0) & ’ Hn-,(Qd. 
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In the diagram the following spaces and mappings occur: 

W: F x Z + T, (x, t) +-+ e+’ * z 

R: T’U’F-F, R/F= idF and for RIT’ see the end of §S.S. 
Re = real part 
Q and Q,, as in 95.5, Q’ = {(u, U) E Q ]I(u)) = l} 
g: a(Q x I) = Q’ x Z U Q x dZ -+ Q,,, (u + iv, t) + Re(e’“‘(u + iv)) 
C = {e, + iv 1 v E R”, vie,}, where e, = (1,O. . . 0) E R” 

In the following other unit vectors eU will also occur. 
All partial diagrams commute; this is mostly obvious, with (*) it must be checked 

by comparing the mappings ReoRoW and g explicitly. Starting from c x L E 
FZ,,(F, a(F x I)) the upper line of the diagram yields T,(C) = y * [A]. The isomorphisms 
of the right boundary transform this element into y. [Q,,]. Here Q. = 
{(u, 0) E R” x R”] I]u(] = 1) . 1s oriented as the unit sphere of the canonically oriented R”. 

The commutativity of the diagram implies that the isomorphisms of the left boundary 
applied to c x L followed by g, yield y . [QO], too. In order to determine y two things 
must be checked: Which orientation of 8(C x I)( = S-l) is determined by c x L, and: 
What is the mapping degree of g: a(C x Z)+ Q,,? 

(65.3) The orientation of the coordinate system 
orientation which c E ff,_,(F, F’) determines by the 

n(n-I)/2 (-1) . 

(5, f . . ,v,) on C differs from the 
factor 

This is proved by considering a neighbourhood of el in F. Here (v2,. . . ,v,) followed 
by the positively oriented coordinate system (u2,. . . ,u,) of Q0 form the coordinate 
system ( v2, . . . ,v,, u2, . . . ,u,) of F. Since (c, s) = 1 the orientation of (v2,. . . ,v,,) differs 
from the orientation of c by the same factor as the orientation of 

(v2, * * . 7% u2,. . . ,u,) differs from the canonical orientation of F. The latter is deter- 
mined by any complex coordinate system, e.g. by (u2+ iv*, . . . ,u, + iv,) which yields 
the positively oriented real system (u2, v2,. . . ,un, v,). Its orientation differs from the 
one of (v2,. . . ,v,, u2,. . . ,u,) by the sign of the corresponding coordinate permutation, 
i.e. by ( - I)n(n-‘)‘2. 

The degree of g: a(C x I)-+ Q0 is calculated in the following way: The point 

(el + ie2,f> E CW X Z C a(C’ X I) is the only inverse image point of - e2 E Q,,. Therefore 

y equals the local mapping degree of g at 
( . 9 

e, + le2, The orientation of C given by 

(v2,. . . ,v,) followed by the canonical orientation of Z determines an orientation of 
C x Z and hence of a(C x I). With respect to this orientation (v~, . . . ,v,,, t) is a 

positively oriented coordinate system of a(C X I) in a neighbourhood of ( I e + ie 24. 

In a neighbourhood of - e2 in Q0 the positively oriented coordinate system 

(u,, u3,. . . ,u,) is chosen. With respect to these coordinates g(v3. . . . ,v,, t) = (cos d, 

- sin n-t . v3, . . . , - sin d . u,). The Jacobian of this system at ( el f- le2, ’ i) is negative; 

hence with respect to these orientations the degree of g equals - 1. This together with 
(6.5.3) yields y as in (6.5.2). 
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6.6. Following the procedure of §5 in reversed order f: TV + D, as defined by 
(5.2.1) must be considered next. Here 0: = D,\t, and t, + p is the base point. The 
(absolute) extension along the path CO, (6.1.2) is 

(6.6.1) 7,“: H,_,(F,)+H,,(T,, F,), x H -(- l)n(n-1)‘2(~, s). [A]. 

Here H,(T,, F,) is freely generated by [A] according to (5.4.1) and (5.5.9) and 
s = a,[A] E H,_,(F,). As in 5.4 this formula is proved by reduction to the case (T, F). 
Let r: (F,, 0) 4 (F,, F,\fi) be the inclusion. Because of (5.4.2) the relative extension 

7,“: K,(F,, E\& -+ K(T,, I%) is also defined. The naturality of the extension (6.4.5) 
makes the following diagram commutative: 

Hn-,(2-v, Fv) ( (4.4.') H,(T, F). 

The homomorphism of the top line transforms x E H,_,(F,) into (x, s) . c E 

H,_,(F, F’). The desired result (6.6.1) follows now from (6.5.1) applied to c. 

6.7. Still following the procedure of §5 in reversed order the starting point 
f: Y++ D, with DT = D+\{t,, . . . ,t,} is now reached: The extension along the elemen- 
tary path Wi (6.1.4) will be calculated. Using the notation of 6.2 the result is 

(6.7.1) 7,;: I$,_,( Yb)+ H,( Y+, Yb), X H - (- I)"("-')'*(X> &) . Ai. 

In order to prove (6.7.1) consider the following diagram 

H”-I( Yb) 
(0. 

+ Hn-,(fi) 

K(Y+, Y,,)- H,(Y+, i) - Hn(Ti, E). 

Both lower triangles are commutative because the extension is natural (6.4.5). Using 
(6.4.7) T_: H,_,( Yb)+ H,( Y+, L) is calculated as follows: TWi = 7/;-Io;l, = 

T,i-lOWi*oli* + T,~‘lj* + qi. The first and third summands are zero because image Ii C L, see 
(6.4.4). Thus T_ = TmoioIi* remains, i.e. the upper triangle of the diagram commutes, too. 
The result (6.7.1) follows now from (6.6.1). 

If (6.4.6) is applied to (6.7.1) the Picard-Lefschetz formula (6.3.3) follows im- 
mediately. 

97. THE MONODROMY 

7.1. In the previous 06 the monodromy has been introduced and studied for an 
arbitrary meromorphic function f: Y --, G with non-degenerate critical values as 
described in P5.1. This investigation will now be continued for the more special 
situation of 01.2: Here Y is the modification of a projective manifold X along the axis 
of a pencil of hyperplanes {Hl}rEG, and f assigns to every y E Y the hyperplane H, 
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through y. For the regular value b E G the hyperplane section X,, = X n Hb and the 
fibre Yb = f-‘(b) will be identified: see (1.2.3). 

7.2. The module I C Hn-,(Yb) of invariant cycles as defined in 03.9 is exactly the 
submodule of those elements of H”_,(Y,,) which are invariant under the action of 

n,(G*, b). 

This justifies the name “invariant”. The proof is a combination of known facts: 

The homotopy classes of the elementary paths w,, . . . ,w, generate r,(G*, b) accord- 

ing to $6.1. Therefore y E H,_,( Yb) is invariant under the action of r, if and only if 

y = Wi*(y) = y *(y, Si)Si, i.e. (y, 8,) = 0 for i = I,. . . ,r. 

Here the Picard-Lefschetz-formula (6.3.3) has been used. On the ,other hand I = 
{y ((y, x) = 0 for every x E V} according the (3.9.5). Since V is generated by 6,, . . . ,a, 

(see P3.8 and §6.2), I = {y [(y, Si) = 0 for i = 1, . . . ,r} and the result follows. 

7.3. The main result of this 67 is the 

MONODROMY THEOREM. For coefficients in a field the following results are 
equivalent: 

(7.3.1) 
(7.3.2) 
(7.3.3) 

The Hard Lefschetz Theorem, i.e. the equivalent results (4.1.2)-(4.1.7). 
V = 0 or V is a non-trivial simple n-module. 
H,_,( Y,,) is a semi-simple r-module. 

Here rr = r,(G*, b). 

Proof that (7.3.2) implies (7.3.3): Consider the n-invariant submodule Z fl V of V. 
Since V is simple, I fl V = 0 or = V. The latter is impossible because rr acts non- 
trivially on V and trivially on I f~ V: hence I rl V = 0. This together with the 

dimension formula (3.9.6) shows that H,_,( Y,,) = Z $ V is the direct sum of a trivial 
(hence semi-simple) and a simple r-module. Therefore H,_,( Y,,) itself is a semi-simple 
r-module. 

Proof that (7.3.3) implies (4.1.7) and hence (7.3.1): The restriction of (- , - ) to I is 
non-degenerate. Let i denote the dual module of I. It suffices to show that Z-i, 

2 H (2, - ), is epimorphic: Let cp E i be given. Since H,_,( Yb) is semi-simple I has a 
complementary n-invariant submodule A4 C H,_,( Y,,) so that I $ M = H,_,( Yh). This 
makes it possible to extend cp to a linear form I/J on H,_,( Yb): 

$(x + Y) = 4$x), x E z, y E M. 

Since ( - , - ) is non-degenerate on H,_,( Yb) there is exactly one z E H,_,( Y,,) with 
(z, - > = 4( - ), i.e. there is exactly one z E H,_,( Y,) with 

(7.3.4) (z, x + y) = q(x) for every x E Z and y E M. 

When z is replaced by (YZ, a E 7rTT, (7.3.4) remains true because (az, x + y) = 
(z, a-‘(~ + y)) = (z, x + a-‘~) = q(x). Since z is uniquely determined by (7.3.4) z = (YZ 
for every (Y E n, i.e. z E I and (z, x) = p(x) for every x E I. 
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Proof that (4.1.6), and hence (7.3.1), implies (7.3.2): Let Ff 0 be a n-invariant 
submodule of V and 0 # x E F. Since by (4.1.6) ( - , - ) is non-degenerate on V and V 
is generated by the vanishing cycles S,, . . . $3, there is a S, with (x, 6,) # 0. Let wfi be a 
corresponding elementary path according to the Picard-Lefschetz-formula (6.3.3): 
w,*(x) = x +(x, S,,)S,. Therefore 7~ acts non-trivially on x and S, belongs to F. But 
then all vanishing cycles 6,, . . . ,6, and hence all of V are contained in F because of 
the following result: 

(7.3.5) If the coejicients are a field then for any two vanishing cycles 6,, 6, there is 
an (Y E 7~ with (Y - 15, = + 6,. 

The Monodromy Theorem and its proof have been adapted from [22] Expose 
XVIII. The following sections are devoted to the proof of (7.3.5). 

7.4. Let XC PN be a hypersurface (possibly with singularities) and G C PN a 
projective line in general position with respect to X, i.e. G avoids the singularities of 
X and intersects X transversally. Then G n X = {t,, . . . ,t,} is finite and r = degree of 

X. Choose a base point b E G\X. 

(7.4.1) The embedding G\X 4 PN\X induces an epimorphism of the fundamental 
groups. 

Let E be a projective subspace with G C EC PN. Then (7.4.1) implies that the 
embedding E\X 4 PN\X induces an epimorphism of the fundamental groups. Zariski 
in [21] proved even more: When dim E 2 2 and the position of E with respect to X is 
suitably general, r,(E\X)+ r,(PN\X) is an isomorphism. Since Zariski’s proof is not 
quite satisfactory, Hamm and LC[8a] present a modern but rather long proof of 
Zariski’s result. In order to make our presentation selfcontained here is a much 
shorter proof of the weaker result (7.4.1) following the ideas of Zariski: 

All lines through b form a subspace P,_, of the dual projective space P,. A base 
point a E P,_, is chosen so that the corresponding line is G, = G. (In general the line 
through b which corresponds to z E P,+, is denoted by G,.) The point b in PN is 
blown up: 

Q = {(x, z) E PN x i,-, (x E G,}. 

Then there are two projections 

The inverse image of b is 

The complement 

p-‘(b) = {b} x &,. 

P: Q\p-‘(b) = h\(b) 

is mapped isomorphically. Let 

Y = p-‘(x). 
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Since hE X, p-‘(b) fl Y = 0. The second projection f: Q-P,_, fibres Q locally 

trivially with typical fibre G. Let C C PN-, consist of all lines through b which are not 

in general position with respect to X This C is a proper algebraic subset, see 1.5. 

When C and f-‘(C) are removed, the pair 

Q* = Q\f_‘(C), Y* = Y\f_‘(C) 

is locally trivially fibred by f over P,_,\C. This follows from the relative version of 

Ehresmann’s fibration theorem because Y* is smooth and fl Y* has maximal rank 

everywhere. Hence the difference Q*\Y* is fibred locally trivially over P,_,\C by f 

with typical fibre G\X. The upper line of the following commutative diagram is part of 

the exact homotopy sequence of this fibration: 

r,(G\X, b) - r,(Q*\ Y*, (b, a)) A ~‘N-I\C a) 

\\\\\\\ 

I i* 
I* 

dQ\ K (b, a)) 

1 

P. 

~IWN\X, b). 

This diagram shows. In order to show that i* is epimorphic it suffices to find a 

counterimage p E r,(Q*\Y*) with f&I) = 1 for every a E ~i(P~\x). Now p* and j* 

are both epimorphic. For p* this is shown most conveniently using a base point 

b’ + b. Then every element in 7rl(PN\X, b’) is represented by a path which avoids b 
and such a path can (uniquely) be lifted to Q\Y because p: Q\( Y Up-‘(b)) = 
PN\(X U {b}) is an isomorphism. Similarly it is shown that j* is epimorphic: Since 

p-‘(C) n (Q\Y) has real codimension 2 every path in Q\Y can homotopically be 

deformed so that it avoids p-‘(C) and thus is contained in Q*\ Y*. Let p’ E r,(Q*\ Y*) 

be an arbitrary counterimage of (Y, but eventually f*(P’) + 1. There is a path u in 

{b} x (@,_,\C) C Q*\Y* with [fiu] = f*B’. Then /3 = p’[u]-’ is a counterimage of (Y 

with f*(P) = 1 because pojou is constant. 

7.5. Let XC PN be a hypersurface (possibly with singularities) and let Go and G, 

be two lines in general position with respect to X which have the point bE X in 

common (possibly G, = G,). Let u0 and u, be elementary paths in Go\X (respectively 

G,\X) from and to b. 

(7.5.1) When X is irreducible the homotopy classes [u,,] and [v,] are conjugate 
elements in T,(P~\X, b). 

Proof. Let v. encircle the point co E Go 0 X and u, encircle cl E G, fl X. The 

subset 2 C X consisting of all points x such that the line through b and x is not in 

general position is proper and algebraic. Since furthermore X is irreducible there is a 

path w in X\Z from co to cl. Let G, be the line through b and w(t), 0 5 t I 1. Choose 

the isomorphisms @,: C = G,\(b) so that C x [O, l]+PN, (x, t) ++ Q,(z), is continuous. 

Let w*(t) = @r-‘(w(t)). If p is sufficiently small the disk in G, with centre w(t) and 

radius p intersects X only in w(t). Then (t, s) H @,(w*(t) + p * ezais), 0 5 s, t 5 1, is a 

free homotopy in PN\X between the paths we(s) = w*(O)+p . ezais and w,(s) = 

w*( 1) + p . ezais, which encircle co (respectively cl) once. This implies that u. = lo-‘wolo 

and D, = I,-‘wlll are conjugate in rl(PN\X, b). 

TOP Vol. 20, No. I-D 
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7.6. Proof of (7.35). Let wI1, w, be the elementary paths which belong to S, and 
6,. Let X be the dual variety (see (1.4.1)). The homotopy classes [w,] and [w,] are 
conjugate in rr,(eN\X) by (7.5.1), and since n,(G*)-+ n,@,\X) is epimorphic (7.4.1) 
there is a p,ath u in G* such that 

(7.6.1) [u] . [w,] = [w,] - [u] in 7r,@,\X). 

Consider the locally trivial fibre bundle p2: W\p2-‘(X)+PN\X as in 92.3. The fibre 
bundle f*: Y* + G* is obtained from it by restriction to G* C P,\k Therefore the 
action of rr,(G*) on H,_,(Y,) factors through n,(@,\X), and thus (7.6.1) implies that 

u*owp* = w,*ou*. When this is applied to an arbitrary element x E H,_,( Yb) the 
Picard-Lefschetz-formula (6.3.3) yields 

(7.6.2) (XV 6,)u*(&) = (u*(x), S”>%. 

The intersection form (- , -) is non-degenerate by Poincare duality. Therefore either 
S, = 0, and hence S, = 0, or there is an element x such that (x, 6,) + 0, i.e. ~,(a,) = 
c . a, with c E coefficient field. Then (7.6.2) implies (u*(x), S,)S, = 
(u*(x), u,(6,))u*(6,) = c2(u,(x), S,)S,; hence c = -+ 1. 

88. HOMOTOPY RATHER THAN HOMOLOGY 

8.1. In 1957 Thorn suggested that Lefschetz’s theorem on the homology of 
hyperplane sections (3.6.1) could be proved quite differently using real Morse theory. This 
idea was elaborated in two papers by Andreotti-Frankel [l] and Bott [2]. The latter 
observed that this method even yields a better result, namely (using the notation of 
$3.6): 

(8.1.1) The pair (X, X,) is (n - l)-connected. 

In his book [ 11, 473 Milnor presents Andreotti-Frankel’s proof adapted to this stronger 
result. 

The stronger version (8.1.1) of (3.6.1) yields of course stronger versions of the 
results in 03.7: In (3.7.1) the conclusion “HJX, X n F) = 0 for 4 5 n - 1” can be 
improved to “The pair (X, X rl F) is (n - I)-connected” and in (3.7.2) “H,(PN, Y) = 0 
for 4 I rz” can be imprived to “(PM, Y) is n-connected.” 

In the following sections it will be shown how Lefschetz’s original method also yields 
the stronger result (8.1.1). 

8.2. Two facts in homotopy theory will be used which I have not been able to find 
explicitly in the literature: 

(8.2.1) Let (X, A) and (Y, B) be r- respectively s-connected’relatiue CW-com- 

plexes with finitely many cells. Then (X, A) x (Y, B) = (X x Y, X X B U A X Y) is 

(r + s + I)-connected. 

Proof. If X\A has no cells in dimensions less than r + 1 and Y\B has no cells in 
dimensions less than s + 1, X x Y\(X x B U A x Y) has no cells in dimensions less 
than r+ s +2. Hence (X, A) X (Y, B) is (r+ s + 1)-connected. The general case is 
reduced to this special case in the following way: By attaching finitely many cells to A 

and X a new relative CW-complex (X’, A’) is obtained such that X’\A’ has no cells in 
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dimensions less than r + 1 and such that (X’, A’) collapses to (X, A), see e.g. 
Switzer[lS, 6.131. Similarly (Y, B) is replaced by (Y’, I?‘). Then (X’, A’) x (Y’, B’) is 
(r + s + I)-connected and it collapses to (X, A) x (Y, B) so that (8.2.1) follows in general. 

(8.2.2) Let f: (X, A)+( Y, B) be a relative homeomorphism. If (X, A) is an n- 
connected relative CW-complex, then (Y, B) is also n-connected. 

Proof. The relative CW-decomposition of (X, A) is mapped isomorphically onto a 
relative CW-decomposition of (Y, B). “Isomorphically” means: The mapping e- 
f(e) is a dimension preserving bijection between the cells e of X\A and the cells of 
Y\B and, if x is the characteristic mapping of e then fix is the characteristic mapping 
of f(e). Since (X, A) is n-connected cells can be attached to A and X in such a way 
that the new relative CW-complex (X’, A’) collapses to (X, A) and X’\A’ has no cells 
in dimensions less than n + 1. Since (Y, B) has an isomorphic CW-decomposition 
cells can be attached in the same way to Y and B as to X and A. Then the new 
relative CW-complex (Y’, B’) collapses to (Y, B) and Y’\B’ has no cells in dimensions 
less than n + 1. Therefore (Y’, B’) is n-connected and hence so is (Y, B). 

8.3. Proof of (8.1.1). By induction from n - 1 to n: As in homology the beginning 
n = 1 is trivial. Consider now the following sequence of pairs of spaces and con- 
tinuous mappings which has occurred already in the definition of L’, (3.6.5): 

(X,, X’) x (D_, 9) 2 (Y_, Yo u Y') = (Y, Y+U Y')-l(Y, YJ)U Y$-+(X,X,). 

By the induction hypothesis (X,, X’) is (n - 2)-connected. Therefore (X,, X’) x 

(D_, S’) is n-connected by (8.2.1). Since @ is a homeomorphism the same holds true 
for (Y-, Y,, U Y!). The homotopy excision theorem, see, e.g. Switzer[lS, 6.211, implies 
that (Y, Y+ U Y’) is also n-connected. As in homology the next step is the exact 
homotopy sequence where j* occurs, 

(8.3.1) i. 
* * .- 7r,(Y+U Y’, Y, u Y’)- ?TJY, Y* u Y’)+ 7Tq(Y, Y+ u Y’)---, . * . . 

In 98.4 below the following result, which should be compared to (3.2.2), will be 
proved: 

(8.3.2) The pair (Y+, Y,) is (n - I)-connected. 

Consider now the inclusions (Y,, Yb) 4 (Y+, Yb U Y:) 4 (Y+ U Y’, Yb U Y’). Since 
Yb is a deformation retract of Y, U Y: the first inclusion induces isomorphisms of all 
homotopy groups. In particular (Y+, Y, U Y:) is (n - l)-connected because of (8.3.2). 
The second inclusion is an excision, hence by the homotopy excision theorem 
(Y+ U Y’, Yb U Y’) is (n - I)-connected. Since (Y, Y+ U Y’) is also (n - I)-connected 
(even n-connected, as has been shown above), the exact sequence (8.3.1) implies that 
(Y, Yb U Y’) is (n - 1)-connected. Then (X, X,) is also (n - l)-connected because p is a 
relative homeomorphism, and thus (8.2.2) can be applied. 

8.4. Proof of (8.3.2). The contractibility of T (5.5.1) and the fact that F (5.5.2) has 
a (n - I)-sphere as deformation retract imply that (T, F) is (n - I)-connected. Since F 
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is a deformation retract of T’ U F (5.4.2), the pair (T, T’ U F) is also (n - I)-oon- 
netted. Then the homotopy excision theorem, see e.g. Switzer [15, 6.211, is applied ‘to 
(T, T’ U F) + (Tiy Ti\B U Fi), SO that (Tiy T;\G U F’i) is (n - 1)-connected. Then (Ti, Fi) 

is (n - I)-connected because Fi is a deformation retract of Ti\B U Fi (5.4.2). 

Let k; = I; U Oi, Ki = f-‘(ki) and Li = f-,(/i) (see Fig. 1 in $5.3). The (n - I)- 
connected pair (T;, Fi) is a deformation retract of (Ki, Li), and SO the latter is also 
(n - I)-connected. Since Yh is a deformation retract of Li the pair (Ki, Yb) is 
(n - I)-connected. This implies inductively that 

(8.4.1) (K, U * . . U K,, Y,) is (n - 1)-connected. 

The induction step from s to s + 1 (s = 1,. . . ,r - 1) is as follows: The assumption 
“(K, U . . . U K,, Yb) is (n - I)-connected” implies because of the homotopy excision 
theorem that (K, U + * . U K,+,, KS+,) is (n - I)-connected. The exact homotopy 
sequence of the triple 

T&K+,, Y,,) + rq(K, U + * * U KS+,, Y,,) --+ q(K, U . . . U KS+,, K,+,) 

yields the (n - I)-connectivity of (K, U * * * U KS+,, Yh) and thus completes the in- 
duction step. 

In (8.4.1) K = K, U . . . U K, can be replaced by Y+ because it is a deformation 
retract of Y+ as has been observed in (5.3.1). This yields (8.3.2). 
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