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VARIETIES AFTER S. LEFSCHETZ

KrLaus LAMOTKE

(Received 1 July 1979)

AFTER THE topology of complex algebraic curves, i.e. the genus of Riemannian
surfaces, had been understood mathematicians like Picard[12] and Poincaré[12a]
went on to the next dimension and began to investigate the topology of complex
algebraic surfaces. From 1915 on Lefschetz continued their work and extended it to
higher dimensional varieties. In 1924 he published his famous exposition [L] of this
work.

When it was written knowledge of topology was still primitive and Lefschetz
“made use most uncritically of early topology i la Poincaré and even of his own later
developments” {. This makes it nowadays rather difficult to understand the topologi-
cal parts of [L] properly. But that is not the only difficulty: Implicitly Lefschetz quite
often appeals to geometric intuition where we would like to see a more precise
argument.

Thus there is some temptation to discard Lefschetz’s original “proofs” and adopt
instead the more recent methods which have been employed to obtain many of his
results, using Hodge’s theory of harmonic differential forms or Morse theory or sheaf
theory and spectral sequences. But none of these very elegant methods yields
Lefschetz’s full geometric insight, e.g. they do not show us the famous “‘vanishing
cycles”.

The first attempt to rewrite the topological part of [L] using modern singular
homology theory was made more than twenty years ago by Wallace[16]. But the
details of his presentation are too complicated to popularize Lefschetz’s original
methods. Wallace leaves the realm of algebraic geometry far too early when he makes
Lefschetz’s intuitive arguments precise. Furthermore he does not give a complete
picture of Lefschetz’s achievements.

In the following I make a new attempt to present Lefschetz’s almost sixty year old
investigations rigorously but as geometrically as he did in [L]. For topologists
Lefschetz is usually interesting for the work he did in pure topology after he had
completed [L]. But [L] has at least ‘““a unique historical interest in being almost the
first account of the topology of a construct of importance in general mathematics
which is not trivial” (Hodge). We may furthermore speculate how much of the
contributions of Poincaré, Lefschetz and others to algebraic topology we owe to the
difficulties they encountered with the topology of algebraic varieties.

The necessary prerequisites in algebraic geometry can be found in the first two
chapters of Shafarevich's book[13]. The main tool from differential topology is
Ehresmann’s fibration theorem, which for the convenience of the reader is stated in
3.0. (Strangely enough this theorem is not included in the standard textbooks.) As far
as homology theory is concerned a textbook like Dold’s[6] will amply suffice.
Furthermore some basic facts about the fundamental group and the homotopy lifting
theorem for fibre bundles will be used.

tS. Lefschetz in his autobiography, Bull. Am. Math. Soc. 74, (1968) 854-879.
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A descriptive outline may be obtained by reading §1, 3, 4, 6.1-3., 7.1-3. and 8.1. 1
must admit that I have not succeeded in proving the “Hard Lefschetz Theorem”
rigorously by purely topological methods. I have merely collected a lot of equivalent
formulations of it and some consequences in §4 and §7. In [L] the Picard-Lefschetz
formula and the Hard Lefschetz Theorem are the two fundamental facts upon which
the further investigations are built. I have not kept to the original order of [L] because
many of Lefschetz’s results do not require the full strength of these two theorems.
They follow already from a less deep result, which I call the Fundamental Lemma,
(3.2.2) below.

Transcendental analytical methods play an essential réle in complex algebraic
geometry: see e.g. [5,5a]. But in the following exposition I want to emphasize the
directness of Lefschetz’s methods, i.e. to investigate the topology of a variety as far
as possible by geometrical and topological methods before embarking on transcen-
dental considerations.

§1. THE MODIFICATION OF A PROJECTIVE VARIETY WITH
RESPECT TO A PENCIL OF HYPERPLANES

1.1 Let Py denote N-dimensional complex projective space. A pencil in Py
consists of all hyperplanes which contain a fixed (N-2)-dimensional projective sub-
space A, which is called the axis of the pencil.

The hyperplanes of Py are the points of the dual projective space Py. The
following notation will be used

PNDHy yEf’N

The hyperplanes {H,} form a pencil if and only if the corresponding points {t} form a
projective line G C Py. Hence the pencil is denoted by {H,},c¢.

1.2. The main object under consideration is a closed, irreducible subvariety
X C Py, without singularities. Let

dim X = n.

(Lefschetz actually studies a hypersurface X C P,,, which has singularities, but only
those occurring in a generic projection of a smooth variety Y C Py into P,.,, see [L]
Chap. V, §1.)

The variety X is intersected by a pencil {H,},c; of hyperplanes,

X, =X NH, teG
so that

X=UJX

teG
is the union of the hyperplane sections X,. Off the exceptional subset
X'=XNA

X can be looked at as a fibration over G with fibres X,\X"'. This is an important fact
for Picard’s and Lefschetz’s geometric arguments. In order to make their arguments
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precise and at the same time easier to understand it is very convenient to modify
(blow up) X along X' to get a new variety Y with a map f: Y — G such that the fibres
f7(t) are the whole hyperplane sections X, This idea can be found in Wallace’s
book[16]. But at this stage he leaves the realm of algebraic geometry and constructs Y
by complicated topological cutting and pasting. It is much easier and better to stay in
the realm of algebraic geometry and to define the modification

Y={x,) EXxG|xEH}
Then there are two projections
x<v-La
Let
1.2.1) Y=p'(X)=X'XG

denote the exceptional set. The complement is mapped isomorphically
(1.2.2) p: Y\Y'=X\X",

and each fibre of f is mapped isomorphically onto the corresponding hyperplane
section,

(1.2.3) p: Y. =f't)=X, tedG.

1.3. Lefschetz in [L] studies not only pencils {X;},c¢ of hyperplane sections but
more generally linear (i.e. one parameter) systems of hypersurfaces of X. He states
(e.g. in [L] Chap. IV, §2) that the restriction to hyperplane sections does not diminish
the generality. This is justified by the Veronese embedding of projective spaces (see
e.g. [13, Chap. I, §4, §4.2]): Consider Py with its homogeneous coordinates

(Xo:...:xn). Let g, ...,up denote all monomials of degree d in xg,...,xy. Thus
M= <N; d> — 1. The Veronese embedding of degree d is defined to be

viPy =Py, (Xoi...:xN) ¥ (Mol ... itpm).

It is a regular embedding of Py onto the Veronese variety v(Py) C Py. There is a
one-to-one correspondence between the hypersurfaces F of degree d in Py and the
hyperplanes of Py: If F is given by the homogeneous polynomial equation

M M
f(xo, .. xn)=2 aju; = 0, the corresponding hyperplane Hz C Py, is given by Z ay;, =
j=0 j=0

0. The image v(F) is the intersection
v(F)=v(Py) N Hg.

The point x € F is simple if and only if Hy intersects v(Py) at v(x) transversally.
Consider now an arbitrary Zariski-closed subset X CPy and let xEXNF be a
simple point of both X and F. If F intersects X at x transversally, Hx intersects v(X)
at v(x) transversally.
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1.4. Let us now return to pencils of hyperplanes. In general some (finitely many)
hyperplanes of a fixed pencil are tangent to X and the points of tangency become
singular points of the corresponding hyperplane sections. Lefschetz admits only
pencils for which at worst simple singularities occur (see [L], Chap. II, §8 and Chap.
V, §2). These pencils are called Lefschetz pencils in the Seminaire Géométrie
Algébrique: see [22, Exposé XVII]. They will now be described using the notion of
transversality. At the same time it will become clear that they are generic. The
following treatment is similar to [22, Exposé XVII] but may be easier to understand
for those who are less trained in modern algebraic geometry and want only to look at
the classical case of complex projective varieties.

(1.4.1) All hyperplanes of Py which are tangent to X form a closed irreducible
subvariety X C Py of at most N —1 dimensions. It is called the dual variety of X.

This will be proved in 2.1. In general X has singularities even if X is smooth, and
dim X = N — 1 even if dim X < N — 1. The following corollary is almost equivalent to
(1.4.1):

(1.4.2) The hyperplanes which intersect X transversally form the non-empty
Zariski-open subset Py\X of Py.

1.5. If X is a hypersurface it has a degree r > 0. This degree is called the class of
X. (This agrees with the usual definition for plane curves.) If dim X = N — 2 the class
of X is 0 by definition.

Let b €Py\X (so that H, intersects X transversally). All projective lines in Py
through b form an (N —1)-dimensional projective space E. If class X =0 (ie.
dim X < N —2) the lines which do not meet )?form a non-empty open subset in E. If
class X =r>0 (i.e. dim X = N — 1) the lines which avoid the singular set of X and
intersect X transversally form a non-empty open subset in E. For each line G in this
subset the intersection G N X consists of r = class X many points.

In order to prove this result consider the projection with center b

p: X>E, p(y) = line through b and y.

It is a regular map. Therefore p(X’) is a closed subset of E with dim p()v() <dim X. If
dim X = N —2 the lines which do not meet X form the non-empty open subset
E\p(X). If dim X = N —1 the subset CC X consisting of all singular points of X
together with the simple points y of X where the line p(y) is not transversal to X G.e.
where p fails to have maximal rank N — 1) is proper and closed, hence dim C =N —2
because X is irreducible. Therefore p(C) is a closed subset of at most N —2
dimensions, and the lines which intersect X transversally form the non-empty open
subset E\p(C).

1.6. Let G C Py be a projective line which intersects X transversally and avoids
the singular set, so that in particular G N X =@ if dim X =< N —2. Let {H,},cc denote
the corresponding pencil of hyperplanes in Py with axis A.

(1.6.1) The axis A intersects X transversally. Therefore the exceptional subsets
X'=XNA and Y'=p (X')= X'x G are non-singular and have n —2 resp. n— 1
dimensions.
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(1.6.2) The modification Y of X along X' is irreducible and non-singular.

(1.6.3) The projection f: Y - G has r = class X critical values, namely the points of
X N G. There are the same number of critical points, i.e. no two lie in the same fibre of

f.

(1.6.4) Every critical point is non-degenerate, i.e. with respect to local holomorphic
coordinates the Hessian matrix of the second derivatives of f has maximal rank n at
the critical point.

These results will be proved in §2.5 and §2.6. The topological investigations begin in
the third section. In order to understand them the following §2 can be omitted.

§2. THE DUAL VARIETY
2.1. Let X CPy denote a closed irreducible subvariety of n dimensions which

may have singularities, and let X, C X denote the non-empty open subset of its simple
points. Define

Vi={(x,y) EPy X Py |x € X, and H, is tangent to X at x}.

This is a quasi-projective subset of Py XxXPy, because the set V=
{(x,y) EPy X Py |x € X, x is singular or H, is tangent to X at x} is closed in Py X Py
and Vi is open in V. The first projection

m: Vx> X,, (x,y)—>x
fibres Vi locally trivially. The fibres are (isomorphic to) (N —n — 1)-dimensional
projective subspaces of Py, in particular: If X is an hypersurface (n = N — 1), 7, is an
isomorphism. Hence Vi is irreducible and has N — 1 dimensions. The same holds true
for the closure Vy of Vi in Py X Py. It is called the tangent hyperplane bundle of X.
The first projection maps Vy onto X,

m:Vx=>X, (x,y)—> x.
Consider now the second projection

m: Vx> Py, (X, y) —> .
Its image X= m(Vyx) is a closed irreducible subvariety of Py of at most N —1
dimensions, the so called dual variety of X. This definition of X coincides with the
definition of §1 when X has no singularities. In general X has singularities even if X
does not. The reason why the dual variety has been defined for singular varieties too
is the following;

2.2. DuaLITY THEOREM. The tangent hyperplane bundles of X and X coincide

Vx = Vx and hence )% = X,

2.3. In order to prove this theorem and also the results of §1 the bundle

2.3.1) W={(x,y)EPy xPy|xE X NH,}
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of all hyperplane sections of X will be used. By the first projection
p:W-X, pilx,y)=x,

W is locally trivially fibred over X with the hyperplanes of Py as fibres. For an
explicit trivialization see (2.6.3) below. Hence W is closed in Py X Py, irreducible, and
has N + n — 1 dimensions. Obviously Vy C W and 7, = p,| Vx. The open set of simple
points is W, = p,”'(X,). At a simple point (c, b) € W the second projection

P2 W—ﬂv)N, pAx,y)=y

has maximal rank (= N) if and only if H, intersects X at ¢ transversally, in other
words Vx is the set of simple points of W which are critical with respect to p,.

Before using W for the announced proofs another easy but important application
will be made. For this assume X C Py to be smooth. Remove the dual variety X and
its inverse image p, (X). Then P2 W\p, (X)) > Py\X is a proper mapping which
everywhere has maximal rank = N. Therefore according to Ehresmann’s fibration
theorem (see §3.0 below) W\pz"()? ) is a C* locally trivial fibre bundle over f’N\X.
Since Py\X is path-connected all fibres of W\p, (X)), i.e. all transversal hyperplane
sections X, of X are diffeomorphic to one another. If this is applied to the Veronese
variety X = v(Py) C Py of degree d (see 1.3.) we get the remarkable result:

(2.3.2) All smooth hyperfaces of Py which have the same degree d are diffeomor-
phic to one another.

2.4. Proof of the Duality Theorem 2.2. Consider the subset U C Vy consisting of
all points (c, b) such that c € X,, b € X,, and m, = p2| Vx has maximal rank ( = dim X)
at (c, b). This set is open in Vyx and non-empty. It is sufficient to prove that U C Vy
because this implies Vyx C Vy. Since dim Vx =dim Vy and X and hence Vjy is
irreducible, Vx = V. In order to prove U C Vy let (¢, b) € U. The definition of W
implies {c}x .H C W. Here .H C Py is the hyperplane of Py which corresponds to
¢ € Py. Therefore T, ,({c} X H)C T ,,W (here T, means the tangent space at a) and

(Tp X T, p({c} X H)) C(TpXT (.5 W).
The projection p, maps {c} X .H isomorphically onto .H, hence

(TPZ)( T‘(c, b)({c} X cH)) = Tb(cH)'

At (c, b) the rank of p, is < N. The preceding formulas show: The rank is = N — 1,
more precisely

(Tp T, W) = T, (H).
On the other hand Vy C W implies T, Vx C T, W, hence
(24.1) (T )T, 5y Vi) C(Tp N T,y W) = Ty (H).
Since ;, = p,| Vx has maximal rank ( = dim X) at (¢, b) and b € X is simple,
(2.4.2) ToX = (Tr)(Te.y Vx) C To(H),

i.e. H is tangent to X at b and thus (¢, b) € Vy by the definition of Vy.
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2.5. The bundle W, see 2.3., contains the modification Y of X along X:
Y=p,(G) and f=p,)|Y:Y->G.

If class X =0, i.e. dim X < N —2 the results of 1.6 follow now easily: In this case G
does not meet X, i.e. all hyperplanes of the pencil {H,},c, intersect X transversally.
Hence so does the axis A. Since all points of G are regular values of p,, Y = p, (G)
has n dimensions at every point, in particular there are no singular points. The same
reason implies that f has no critical points. It remains to prove that Y is irreducible:
Since X is irreducible the open subset X\ X' is irreducible; hence so is Y\Y' because
this is isomorphic to X\X' under p. The closure of Y\Y’' in Y is an irreducible
component of Y. The other components of Y (if there are any) must be contained in
Y'. Now dim .Y =n at every point z € Y, i.e. every component of Y has n dimen-
sions and cannot be contained in Y’ which has only n — 1 dimensions.

2.6. If class X >0, i.e. if X C Py is a hypersurface the proof of the results of 1.6 is
more complicated. The complications are caused by the points b € G N X C X,. There
is exactly one point ¢ € X such that (¢, b)E V = Vx = Vy, because V; is mapped
isomorphically onto X, by m,, see §2.1. The following tangent spaces are equal:

(2.6.1) T,(H) = (Tp ) Te.y W) = (Tm) (T ) V) = T, X
because of (2.4.1 and 2.4.2).

Proof of (1.6.1). If A did not intersect X transversally, there would be a hyper-
plane H, of the pencil {H,},c; tangent to X at a point ¢ € A. This means (¢, b)E V.
On the other hand ¢ € A C H, dualizes to .H D G 3 b. Since G intersects X trans-
versally, so does .H, that means (c, b)  V by the duality Theorem 2.2.

The projection p,: W—>I3N is transversal to G, i.e. if (¢,b))EW and b € G the
tangent space T,Py is spanned by (Tp,)(T. ,,W) and T,G.

Proof. If p, has maximal rank N at (c, b), (Tp:X(Te y W) = T,Px alone suffices.
Otherwise, (c,b) € V (see 2.3.) and therefore (TpX(T(.., W)= T.X by (2.6.1). The
result follows now because G intersects X transversally at b.

Proof of (1.6.2). Since p, is transversal to G, the modification Y = 7, '(G) has n
dimensions at every point; in particular Y has no singularities. From this it follows
that Y is irreducible by exactly the same argument as in the case class X = 0: see the
last part of 2.5.

Proof of (1.6.3). At every point (¢, b)E Y.
(2.6.2) (THTe.yY) = (Tp )T (e, s W) N T,G.

If b € G\X, then (c, b) € V, hence (Tp,)(T(..»y W) = T, Py and (2.6.2) shows that f has
maximal rank 1 at (c,b). If bEGN X the point (¢, b) lies in V therefore (Tp,)
(T, W)= T,X by (2.6.1). Since G intersects X transversally at b, the intersection
(2.6.2) is the 0-space, i.e. (c, b) is a critical point of f. At the beginning of this §2.6 it
has been remarked that for every b € G N X there is exactly one (c, b) € V. Therefore
no two crifical points lie in the same fibre of f.
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Proof of (1.6.4). A coordinate description of f in a neighbourhood of a critical
point (c, b) will be calculated. Since (c, b) is critical, (¢,b)E V and b€ G. The

so that G C Py is given by y, = - - - = yx_, = 0. The following explicit trivialization of
pi: W X over U ={x € X|x,% 0} will be used:

(2.6.3) UXxPy_—p \(U),

(x,2) v—><x, <—i X;Zi i XoZ1: ... :xozN>>

i=1
Here z =(z;: . ...:2v) EPn_y. Let (41, .. . ,t,) be local holomorphic coordinates of X in
a neighbourhood of ¢. They together with the affine coordinates ¢ :ZZ—‘, e =
N

IN-1
ZN
neighbourhood of (c, b). In a neighbourhood of b € Py the affine coordinates T =

of Py_, vield the homomorphic coordinates (¢,...,t, £1,...,{n-1) of W in a

% of Py_, yield the holomorphic coordinates (f,...,t, ¢i,...,{n-1) of W in a
N

The projection p,: W — Py has now the following coordinate description:

(2.6.4) m=gt7y0, m=4,... v = It

Here g(t, {) is a certain holomorphic function and
(2.6.5) t> gt,0), t=(t,....t,)

is a coordinate description of f: Y — G in a neighbourhood of (¢, b). The Jacobian of
D> (2.6.4) is

% ... 98 o
at, at,
(2.6.6) o .o 01

Hence the subset V of W where p, fails to have maximal rank is given by

2.6.7) 98 _ ... ._9%_,
at, at, )

Now m, = p,| V has rank N —1 at (c, b) (see (2.6.1)). Therefore the Jacobian of the
defining eqns (2.6.7) of V together with the Jacobian (2.6.6) of p, must have rank
N + n — 1. This big matrix is

g d'g
it at, ot,
2 2
‘g d°g " i
at,at, at’
0 0 P
0 0 1\
0 0 1]
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It has rank = N + n —1 if and only if the rank of the Hessian matrix of the second
derivatives of ¢t +~> g(t,0) has maximal rank n, i.e. if and only if (c, b) is a non-
degenerate critical point of f.

§3. THE HOMOLOGY OF HYPERPLANE SECTIONS
3.0. Singular homology with coefficients in an arbitrary principal domain (like Z or

the fields F,, Q, R, C) will be used. The following excision property will be very
convenient:

Let f: (X, A)— (Y, B) be a continuous mapping between pairs of compact Eucli-
dean neighborhood retracts (ENR), such that f: X\A— Y\B is a homeomorphism.
Then f induces an isomorphism

of the relative singular homology.

This follows for example from Proposition IV, 8.7 of Dold’s book[6]. All spaces
which occur in the following are ENR’s because they can be embedded in some R’,
they are locally compact and locally contractible, see e.g. [6] IV, 8.12. A Cech type
homology theory could also be used. It has the advantage that the excision property
stated above holds true for arbitrary pairs of compact Hausdorff spaces.

Many of Lefschetz’ intuitive arguments will be made precise by

EHRESMANN’S FIBRATION THEOREM[7]. Let f: E— B be a proper differentiable map-
ping between differentiable manifolds E and B without boundary such that rkf =
dim B everywhere. Then f fibres E locally trivially over B, i.e. for every point b € B
there is a neighborhood U and a fibre preserving diffeomophism ®: f™(b)x U =
f(U). If E has a boundary 3E and in addition rk(f|3E) = dim B everywhere f fibres
the pair (E, 3E) locally trivially, i.e. ® is a fibre preserving diffeomorphism between the
pairs (fFY(b)Yx U, (fY(BYNIE)x U)=(f(U), f\(U)NIE). Similarly if there is a
closed submanifold E'C E and in addition rk(f|E')=dim B then f fibres the pair
(E, E’) locally trivially.

For a proof of the absolute version which can easily be adapted to the relative
cases see e.g. [19].

3.1. Let p: Y - X be the modification of X along X', as in §1.2. The homology of
Y and X will now be compared. By (1.2.1) and the Kiinneth theorem there is a
canonical isomorphism
(B.1.1)  Hy(X) @D H;oX") = Hy(X") @ Hy(G) D Hy-o(X") ® HAG)
~ H,(X'x G) = H(Y").

Therefore by restriction to H, ,(X') and composition with the inclusion Y/ & Y
there is a canonical homomorphism «: H, (X"} > H,(Y).

(3.1.2) The sequence 0> H, ,(X") - H,(Y) SN H,(X)—0 is exact and splits for
every q.



24 KLAUS LAMOTKE

Proof

I First it is shown that p, has a right inverse: For a given x € H,(X) let
u € H*9(X) be its Poincaré-dual, i.e. x = u N[X], where [X] &€ H,,(X) is the orien-
tation class. Then p*(u)N[Y]€ H,(Y) and pu(p* () N[YD=uNp[Y]=uN[X]=
X.

II. The exact homology sequences of (Y, Y') and (X, X’) are compared:

Hy(Y) > Hyn(Y, Y')—> Hy(X')® H, (X~ H(Y) > Hy(Y, Y")

Ix
Hyii(X) = Hyoo(X, X') — Hy(X) ————  H(X)— H,(X, X").

Here p4 is an isomorphism because p’ is a relative homeomorphism, see (1.2.2) and
§3.0. Furthermore H,(Y’) has been replaced by H, (X" @ H, (X'} using (3.1.1).
Diagram chasing (here “p, is epimorphic” is quite important) yields the desired result.

3.2. Consider now f: Y - G as in §1.2. Decompose the projective line G (which is
a two-sphere) into two closed hemispheres D, and D_ such that the critical values of f
are contained in the interior D,. Denote

(321) G=D,UD., S'=D,ND., Y.=fD.), Yo=f'(S").

Choose a base point b & S'.
Through Lefschetz does not state it explicitly the following main lemma is a
precise formulation of many of his arguments.

(3.2.2) MAIN LEMMA. H(Y,, Y,)=0 if g#n=dim X =dim Y, H,(Y,, Y,) is free
of rank r = class X.

This lemma will be proved in §5. We shall now show how many of Lefschetz’s
results follow from this lemma using standard techniques of homology theory, in
particular the exact sequences for pairs and triples of spaces.

3.3. To begin with consider the exact homology sequence of the triple YD Y. D
Y,. The homology H,(Y, Y,) which occurs in it will be replaced by H, ,(X,) by means
of the following isomorphism

(3.3.1) ». L any
Hy(Y, Y.) ——— H,(Y_, Y = Hy(X, X (D_, ") ———— H,(X,).

For the excision isomorphism see §3.0. Since f has no critical values within D_ the
Ehresmann fibration theorem (also in §3.0) shows that there is a diffeomorphism

(3.3.2) b:Y =X, xD_

which yields ®, in (3.3.1). Finally the canonical orientation of G determines a
generator [D.] of Hy(D_, S"). The cross-product with it is an isomorphism because of
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the Kiinneth formula. The homology sequence of (Y, Y,, Y,) thus becomes the exact
sequence

(333) > Hp(Yar Yo) = Hyut(Y. Yo) = Hoo(X,) > Hy(Ya, Yy)— - -
Because of (3.2.2) this sequence decomposes into the isomorphisms

(3.3.4) L:H, (Y,Y,)=H,(X,), q#n~1,n
and a 5-term exact sequences containing H,(Y,, Y}).

3.4. The first application of (3.3.4) is a Bertini type theorem:

(3.4.1) The generic hyperplane section X, is non-singular and irreducible provided
dimX =n=2.

Proof. Generic means b& X, hence X, is non-singular because of (1.4.2). Thus
“irreducible” is the same as ‘“‘connected”. Since n =2 (3.3.4) yields H(Y,Y,)=
H(Y,Y,) =0, thus Hy(Y,) = Hy(Y). This implies X, = Y, is connected because Y is
connected according to (1.6.2).

3.5. The second application is to the Euler-Poincaré characteristics e of X, Y, X,
and X'. Using the fact that the alternating sum of the ranks of the modules of a finite
exact sequence is zero, (3.1.2) yields

(3.5.1) e(Y)=e(X)+e(X"),

and (3.3.3) yields e(Y)—e(Y,) = e(Y, Y,) = e(X,) +(— 1)"r, hence
(3.5.2) e(Y)=2e(Xp)+(—1)'r
(3.5.3) e(X)=2e(X,)—e(X)+(— D", r =class X,

(compare Lefschetz [L], Chap. III, §11 (n =2) and Chap. V, §9, Théoréme XII for
arbitrary n). According to Lefschetz, for n =2, this formula is due to J. W. Alex-
ander. For n =1, i.e. for a curve X C P,, the result (3.5.3) is still non-trivial but much
older as will now be explained: There is a projection Py — P, such that the image of X
is a plane curve C which has no singularities but ordinary double points. Let d denote
the degree of C and v the number of double points, let g be the genus of C = genus of
X. Then by definition e(X) =2 —2g, furthermore e(X,) = d because X, consists of d
points, ¢(X') = 0 because X' is empty. Finally, X and C have the same class

r=d(d—-1)-2wv.

(This is one of Pliicker’s formulas, see e.g. Walker’s book[17, Chap. IV, 6.2 and Chap.
V, 8.2.1) Therefore the result (3.5.3) becomes a well known formula for the genus:

= W_ v (Clebsch 1864),

see e.g. [17, Chap. VI, Theorem 5.1.].
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3.6. The third application yields Lefschetz’s famous
THEOREM ON THE HOMOLOGY OF HYPERPLANE SECTIONS.
3.6.1) H, (X, X,)=0 forallg=n—1, n =dim X,

in other words: The inclusion X, & X induces isomorphisms of the homology groups
in all dimensions strictly less than n — 1 and an epimorphism of H,_,.

The proof requires a modification of §3.3 which replaces Y, and Y, by their union
with Y'. Then (3.3.1) becomes an isomorphism

3.6.2) H,(Y,Y,UY")=H, X, X').
Furthermore the excision theorem of §3.0 implies that

(3.6.3) P« H(Y, Y, UY')= H (X, X,;)
is an isomorphism and finally

3.6.9) H(Y,UY,Y,UY)=H (Y, Y,)

induced by the composed inclusions (Y,, Y,) &G (Y,, Y, UYD G (Y,U Y, Y, U Y.
Since Y, = X, x{b}is a deformation retract of Y, U Y}, = X, x{b}U X' x D,, the first
inclusion induces an isomorphism in the homology, and so does the second one
because of the excision property (see §3.0). Thus the homology sequence of (Y, Y, U
Y', Y, U Y’") is transformed into the exact sequence

(3.6.5) oo Hyo( Yo, Yo)—s Hpol X, Xp) —

Hy(Xp, X')—— Hyr(Ys, Yy) > - o,

which replaces (3.3.3). This sequence decomposes into the isomorphisms
(3.6.6) L': Hy(X, Xp) = H, (X5, X7), qg#n—1,n

and a 5-term exact sequence containing H,(Y,, Y,).

The Lefschetz Theorem (3.6.1) follows now by induction on n =dim X: The
beginning n =1 is trivial. Induction from n — 1 to n(n = 2): The hyperplane section X
is an (n — 1)-dimensional, irreducible closed subvariety without singularities in H, =
Pyn_; (see (3.4.1)), and X' = X, N A is a transversal hyperplane section of X,. Hence
the induction hypothesis applies for (X,, X'), i.e. H,(X,, X')=0 for g=<n —2. The
isomorphisms (3.6.6) then yield (3.6.1).

When the universal coefficient theorem is applied to (3.6.1) the corresponding
result for the cohomology follows:

(3.6.7 HY(X, X,)=0forq=n—1, n =dim X,

in other words: The inclusion X, induces isomorphisms of the cohomology groups in
dimensions strictly less than n — 1 and a monomorphism of H""'.
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The universal coefficient theorem furthermore shows that the natural epimorphism
(R the coefficient ring)

(3.6.8) H"(X, X,; Ry= Hom(H,(X, X;), R)

is an isomorphism, and hence H"(X, X,,; Z) is free. By the Poincaré-Lefschetz duality
theorem these results are equivalent to

(3.6.9) H,(X\Xy;)=0 forq=n+1 and H,(X\X,, Z) is free.

This proof of (3.6.1) is essentially Lefschetz’s original proof as in [L] Chap. V, §3.
Lefschetz’s proof is difficult to understand because he did not use exact sequences.
He constructed L (3.6.6) or rather L™! quite explicitly for chains. He calls L™'(x) the
“locus of x as b varies”: see [L] Chap. II, §11 (n = 2) and Chap. V, §3-5 (n arbitrary).

3.7. Using 1.3 the results about hyperplane sections can be generalized to hyper-
surface sections. To be more precise:

(3.7.1) Let X CPy be a smooth irreducible n-dimensional variety, let F CPy be a
hypersurface such that all points of F N X are simple points of F and F intersects X
transversally. Then H(X, X N F)=0 for g=n-1, ie., the inclusion XNF G X
induces isomorphisms of all homology groups in dimensions =n —2 and an epimor-
phism in dimension = n —1.

Using (3.7.1) the topology of complete intersections can be compared with the
topology of projective spaces: A subset Y C Py is called a smooth complete inter-
section, if Y = F,N---NF, is the intersection of hypersurfaces F,... ,F, C Py such
that F, is smooth, the points of F, N F, are simple points of F, and F, intersects F;
transversally, the points of F,N F>N F; are simple points of F; and F; intersects
F,N F, transversally and so on. In this case Y is a smooth (N — r)-dimensional
variety. Apply now (3.7.1) first to X =Py and F = F, then to X = F, and F = F,, then
to X =F,NF,and F = F; and so on:

(3.72) If YCPy is an n-dimensional smooth complete intersection, then
H, Py, Y)=0 forq=n,ie Y > Py induces isomorphism of all homology groups in
dimensions <n —1 and an epimorphism in dimension = n.

This imposes strong topological restrictions on n-dimensional varieties Y which
can be embedded as smooth complete intersections: Except in the middle dimension n
the homology groups of Y and Py are isomorphic (for dimensions > n this follows by
Poincaré duality). Furthermore if n is even the nth Betti number of Y is = 1. If, e.g.
C is a smooth curve of genus >0 the product C X P,, n =1, is not a smooth complete
intersection because its first Betti number is >0, the products P, xP, except for
P, X P, are not smooth complete intersections because their second Betti number is 2
and not 1.

3.8. Consider the connecting homomorphism 35 H(Y,, Y,)—>

H,_(Y),) = H, (X,). Its image

V=0«H,(Y,, Y}))
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is called the module of “vanishing cycles”. The exact homology sequences of (Y., Y,,)
and (X, X,) form the following commutative diagram

Oy
H,(Y,,Y,))— H, .(Yy)— H,«(Y,)—> 0

(3.8.1) ¢ ak i

A i
Hn(Xa Xb)'—) Hn—l(Xb) — Hn—l(X) — 0.
All vertical homomorphisms are induced by restrictions of p: Y — X. The left hand
one p, is epimorphic because it occurs in the exact sequence (3.6.5) and the following
term H,_,(X,, X')=0 according to (3.6.1). The middle one p, is an isomorphism.
Hence the Five Lemma implies that p; is also an isomorphism. This diagram shows
that

(3.8.2) V = image (34: Hy (X, Xp) > H,-1(X}))
= kernel (iy: H,_((Xp) > H, (X)),

and
(38.3) rk H,,_l(Xb) =rkV+rk H,,_](X).

3.9. When §3.8 is translated into cohomology we get the commutative diagram
with exact lines

8,
HY Y., Y,) «—H"(Y,) «——H"(Y,)«—0
1 N )[ iy ]
H"(X, X,) «— H"'(X,) — H"'(X) «<——0.

This diagram shows (if X, and Y, are identified as usual)

3.9.1) I'*: = kernel (§*%: H" (Y,)» H (Y., Y}))
= kernel (6*: H" (X,)—» H"(X, X};))

= image (i*: H™(X)—-» H" '(X,)).

I'* 1s called the modulé of “invariant cocycles”. The module I of invariant cycles is
defined to be the Poincaré dual of I*, i.e.

(3.9.2) I'={un[X,]|u€I*}C H,_(X,).
The last description of I'* yields by Poincaré duality
3.9.3) I =image (i;: H,,(X)— H,_(X})).

Here i denotes the Umkehr homomorphism (transfer), i.e. the Poincaré dual of i*, see
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e.g. Dold[6, Chap. VIII, 10]. Since i* is injective, i, is also injective, in particular
(3.9.4) rank I =rank H,.(X)=rank H,_(X).

The last equality comes from Poincaré duality. The first description of I* (3.9.1)
together with H"(Y,, Y,) =Hom (H,(Y,, Y,), R) (here R denotes the coeflicient ring
and the isomorphism comes from the universal coefficient theorem because
H, (Y., Y,)=0 according to 3.2.2) yields I*={u€ H"'(Y,)|{u,x)=0 for every
x €V} Here (—, —) denotes the Kronecker pairing between cohomology and
homology. By Poincaré duality the Kronecker pairing becomes the intersection form

Hn—l(Xb) X Hn—l(Xb)_) Ra
which will also be denoted by (—, —); thus:
(3.9.5) I={yeH, (X,)l{y,x)=0 forevery x€ V}.

If coefficients in a field are taken, the intersection form is non-degenerate by Poincaré
duality. Hence (3.9.5) implies

(3.9.6) rank I +rank V =rank H, (X,).

The rank formulas (3.8.3), (3.9.4) and (3.9.6) can be found in [L] Chap. III, §3 (n =2)
and Chap. V, §6 (n arbitrary).

§4. THE HARD LEFSCHETZ THEOREM
Lefschetz derives the rank formulas (3.8.3), (3.9.4) and especially (3.9.6) from a

much stronger result namely: H,_(X,) is the direct sum of I and V. (This would
follow from (3.9.5) if the intersection form were definite.) This stronger result is
nowadays called the “Hard Lefschetz Theorem”. In this chapter several equivalent
formulations of this theorem and consequences of it will be discussed. A proof will
not be given.

4.1. Let u € H¥(X) denote the Poincaré dual of the fundamental class [X,] €
H,,_»(X) of the hyperplane section X,, i.e.

uN[X]=[X].

The homological expression for the intersection with X, is the cap-product with u. It
factors through X,, i.e.

(411) un-:--: Hq(X)——f‘—) Hq_z(Xb) ;) Hq(X)

THEOREM. If field coefficients are chosen, the following statements are equivalent:

4.12) vnI=0

4.13) V@ I=H, (Xp)

4.1.4) i, H, (X,)> H, (X) maps I isomorphically onto H,_(X).
(4.15) H,.(X)=H, (X), x> uNx, isan isomorphism.
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(4.1.6) The restriction of the intersection form (—, —) from
H,_(X,) to V remains non-degenerate.
(4.1.7) The restriction of (—, —) to I remains non-degenerate.

Proof of the equivalences: (4.1.2) and (4.1.3) are equivalent because of (3.9.6).
Since iy: H, (X,)— H,_ (X) is epimorphic (3.8.1) and maps V to 0 (3.8.2), the
statement (4.1.4) follows from (4.1.3). According to §3.9 i, is monomorphic and image
iy=1I; thus u N---=iyi is monomorphic because of (4.1.4). Then (4.1.5) follows
because H,,(X) and H, (X) are isomorphic by Poincaré duality. Vice versa: If
(4.1.5) holds true, i4(I) = H,_(X), therefore i4|I is an isomorphism because of (3.9.4).
Hence (4.1.4) follows from (4.1.5). Since i,(V) =0 (4.1.4) implies (4.1.2). Thus (4.1.2—-
§) are equivalent.

(4.1.3) and (3.9.5) imply that the intersection form (—, —) on H,_(X,) splits into
the direct sum of its restrictions to V and I,

('—’ —>=<_’ —)V®<——’_>I'

Since (—, —) is non-degenerate by Poincaré duality, the direct summands must also
be non-degenerate. Thus (4.1.6) and (4.1.7) follow from (4.1.3). Vice versa (4.1.6) or
(4.1.7) implies (4.1.2): Assume z € VNI Then (z, v) =(z, v)y = 0 for every v € V and
{c,z)={c,z); =0 for every ¢ €I according to (3.9.5). The first statement together
with (4.1.6) or the second statement together with (4.1.7) both imply z =0, i.e.
VvNnI=0.

(4.1.8) THE HARD LEFSCHETZ THEOREM. The statements (4.1.2)—(4.1.7) are true if
coefficients in a field of characteristic zero are chosen.

Lefschetz claims that (4.1.2) and (4.1.3) hold true for integer coefficients, see (L]
Chap. 11, 8§13 and 18 for n =2 and Chap. V, §7 for arbitrary n. But his proof is difficult
to understand and seems to be incomplete even for field coefficients. At present I
don’t know a complete topological proof. The only complete proof comes from
Hodge’s theory of harmonic integrals (forms), see §4.6 below, where the cohomolo-
gical version is presented.

The other statements (4.1.4), (4.1.6) and (4.1.7) are also due to Lefschetz [L], Chap.
II, §19 and Chap. II, §3 and §5. For (4.1.5) Lefschetz has a better version: see (4.3.2)
below.

For the rest of this §4 coefficients in a field of characteristic zero are chosen so that
the statements (4.1.2)-(4.1.7) hold true.

4.2. Iterate the sequence X D X, D X' to
4.2.1) X=Xy2X, =X DX;=X'D2X;2X,02X,,,=0
so that X, is a generic hyperplane section of X,_,, hence
dim X, =n-—gq.
Denote the inclusions by

it X, & X,
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Define the submodule
I(X;) C H,_o(X,)

of invariant “cycles” for the pair X, C X, , in the same way as for the pair X, C X,
see §3.9. Then (3.9.3), (4.1.4) and (4.1.7) can be generalized to

(4.2.2)  (ig)e: Hyio(X) = H,_o(X,) maps H,,,(X) isomorphically onto I(X,).
(4.2.3) (ip)%: Hu-o(Xy) = H,—o(X) maps 1(X,) isomorphically onto H,_,(X).

4.2.4) The restriction of the intersection form (—, —) from
H,_,(X,) to I(X,) remains non-degenerate.

The isomorphism (i, )«: I(X;) > H,_,(X) carries this form to a non-degenerate bilinear
form Q on H,_,(X). The form Q is symmetric if n — q is even and skew-symmetric if
n —q is odd. Since non-degenerate skew symmetric forms can only exist on even-
dimensional vector spaces the following consequence is obtained:

4.2.5) The odd-dimensional Betti numbers of X are even.

This result and its proof are essentially due to Lefschetz, see [L.] Chap. II, §19. As
Lefschetz already points out this result shows: In contrast to real surfaces, for [ > 1
not every closed oriented 21-dimensional real manifold is homeomorphic to a complex
projective manifold. Even certain compact complex manifolds like the Hopf mani-
folds (see [3, p. 3]) which are homeomorphic to $?"~! x S! are excluded this way.

43. The g-th power u?€ H*(X) is Poincaré dual to the fundamental class
[X,] € Hj,-2,(X) of X,. Therefore the decomposition (4.1.1) generalizes to

4.3.1) a ) (igh ligh
uinN--- IIk(X)"———) Hk_zq(Xq)—) Hk‘zq(X),

and (4.2.2) and (4.2.3) imply the following generalization of (4.1.5):

(4.3.2) For every q=1,...,n the cap-product with the qth power u? is an isomor-
phism

H, o X)—> H,_(X), x> u'Nx.

This version of the Hard Lefschetz Theorem and its proof are essentially due to
Lefschetz himself [L] Chap. V, §8, Théoréme VII and VIII. The foliowing refor-
mulation is due to Hodge[9, Chap. 1V, No. 44].

4.4. An element x € H,.,(X), 0=<q < n, is called primitive if u?"'Nx=0. (u?N

x =0 would imply x =0 by (4.3.2).) The result (4.3.2) and hence the Hard Lefschetz
Theorem is equivalent to the following

PRIMITIVE DECOMPOSITION. Every element x € H,,,(X) can be written uniquely as

(4.4.1a) x=xo+tuNx;+uNx,+---

TOP Vol. 20, No. 1—C
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and every element x € H,_,(X) as

(4.4.1b) x=uINxg+u™'Nx;+u?™Nx,+---
where the x; € H,.,.2{(X) are primitive, and q = 0.

Proof. The cap-product with u? obviously transforms (4.4.1a) into (4.4.1b). Since
the representations are unique, #?N--- is an isomorphism and thus (4.4.1a) and
(4.4.1b) implies (4.3.2). Vice versa (4.4.1a) follows from (4.3.2) by induction beginning
with g =n and q =n —1 where every element is primitive. For the induction step
from n+q+2 to n+q it suffices to show that every x € H,.,(X) can be written
uniquely as

4.4.2) x=xo+uNy with x, primitive,

because the induction hypothesis applied to y then yields the decomposition (4.4.1a).
In order to prove (4.4.2) consider u?*' N x. According to (4.3.2) there is exactly one
¥y € H,,ps2(X) with 49Ny = 49" N x, and thus xo = x — u N y is primitive. In order to
show the uniqueness assume 0= x,+u Ny with xo primitive. Then u?'Nx,=0,
hence ¥u?*?Ny =0, and (4.3.2) implies y =0, hence x, = 0. The isomorphism u?N - - -
(4.3.2) applied to the unique decomposition (4.4.1a) yields the unique decomposition
(4.4.1b).

The primitive decomposition shows that the homology of X is completely deter-
mined by the submodules P,,,(X)C H,,,(X), 0=g =<n, of the primitive elements.
The intermediate result (4.4.2) implies

(4~4~3) dim Pu+q = bn+q - bn+q+2 = bn—q - bn*q—Z

(b; = i-th Betti number of X). Since dim P,.,=0, the Betti numbers form two
increasing sequences

I=by<by<::-<by, for every i with2i<n
4.4.49
bi<by<---<by,, for every i with2i+1=<n

Like (4.2.5) this obviously restricts the topological possibilities for projective mani-
folds.

Remark. Our (4.4.1) is not exactly Hodge’s formulation because he uses the
“effective cycles” y € H,_,(X), defined by u Ny =0, rather than the primitive ele-
ments x € H,, . (X). Since u? N - - - is an isomorphism (4.3.2) and x is primitive if and
only if #u?Nx is effective it is easy to translate (4.4.1) into a formulation using
“effective cycles”. The term primitive is due to Weil[17].

4.5. The Lie algebra sl, of all (2 x 2)-matrices with trace zero is three dimensional
and has a basis consisting of

“lo o] 7

i o]

[o -1}
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Its commutor relations are ([xy] = xy — yx):
4.5.1) [eh]=—2e, [fh]=2f, lefl=h.

Its representations are well known, see e.g. Jacobson[10, Chap. III, §8].
Consider now the endomorphisms of H .(X)

f: H(X)— H;_y(X), fx=unx
(4.5.2)
h: H(X)— H(X), hx = —n)x.

Obviously [fh]=2f. The primitive decomposition and hence the Hard Lefschetz
Theorem is equivalent to:

(4.5.3) There is an homomorphism e: H{(X)— H;,»(X) which together with f, h
(4.5.2) satisfies all commutator relations (4.5.1), in other words: H«(X) is an sl,-
module.

Proof. Using the primitive decomposition (4.4.1) it suffices to consider elements of
the form

u' Nx, x€P,(X),
in order to define ¢ and to check (4.5.1). The definition is
(4.5.4) e(wNx)=rig—r+Du""Nx,

and the checking is easy. Vice versa the representation theory of sl, implies the
primitive decomposition (4.4.1) in the following way: Like any s/,-module H .(X) is a
direct sum of irreducible sl,-modules A, @- - ‘@ A,. Up to isomorphism an irreducible
sl,-module is determined by its dimension: Let dim A; = d;+ 1. Then there is an
element x; € A; so that {x; fx;....f%x} is a base of A, f*'x; =0 and hx; = dx;. The

definition (4.5.2) implies that f'x; € H,.4_,/(X). Thus H,(X) = QS} H,(X)N A; has ‘the
i=1
basis {f%x;|d; —2q; = p}. This yields the primitive decomposition.
Remark. The (d + 1)-dimensional irreducible s/,-module occurs dim P,,4(X) times
as direct summand in H ,(X). Therefore (4.4.3) may be interpreted in the following

way: The Betti numbers of X and the structure of H,(X) as sl,-module (up to
isomorphism) determine one another.

4.6. The three versions (4.3.2), (4.4.1) and (4.5.3) of the Hard Lefschetz Theorem
are easily translated into cohomology by the Poincaré duality theorem. Then they run
as follows:

(4.6.1) ~(4.3.2) For every q=1,...,n the cup product with the q-th power of
u € H¥X) is an isomorphism

H™X)—> H"™X), x> u'Ux.

A cohomology class x € H"%(X) is called primitive if the Poincaré dual homology
class x N [X]€ H"9(X) is primitive, i.e. if u?"'Ux =0.
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(4.6.2) ~(4.4.1) Primitive decomposition: Every element x € H" %(X) can be writ-
ten uniquely as

xX=xo+tuUx;+uUx,+---,
and every element x € H"*9(X) as
x=u'Uxo+u®'Ux,+u'Ux+ o,
where the x; € H" 9 %(X) are primitive.
The Poincaré duals of the endomorphisms e, f, h: H (X)— H .(X), see §4.5, are

(4.6.3)

AMH(X)-H™X), u"Ux—>rig—r+hHu™"'Ux, x€ H"4X) primitive
L:H(X)->H™*X), x> uUx

H:H(X)->H/(X), x> (n—)x.

(4.6.4) ~(4.5.1) and (4.5.3): [AH]=2A, [LH]=-2L, [AL]=H, ie. H¥*(X) is an
sl,-module.

Hodge proves (4.6.2) for the coefficient field C using his theory of harmonic
integrals: see [9, Chap. IV, §42-44]. For a more modern presentation which explicitly
includes (4.6.1), (4.6.2), the operators (4.6.3) and their commutators (4.6.4) see
Weil[17, Chap. 1V, Nos. 6 and 8]. Chern[4] seems to be the first who saw the
representation theoretical aspect of this theory. See also Cornalba-Griffith[5] for a
recent survey of transcendental methods.

§5. THE TOPOLOGY OF HOLOMORPHIC FUNCTIONS WITH
NON-DEGENERATE CRITICAL POINTS

This chapter deals with the holomorphic analog of the (finite dimensional) Morse
theory. Actually the holomorphic case is older than the real Morse theory because all
ideas occur already in [L].

5.1. Let f: Y - G be a holomorphic mapping between an n-dimensional compact
complex manifold Y and a projective line G, such that all critical points x;, ... ,x, of f
are non-degenerate and no two lie in the same fibre, compare 1.2 and 1.6. Decompose
G into the closed upper and lower hemispheres D, and D_ so that all critical values
t),...,t, of f are interior points of D,. A regular value b € 4D, serves as base point.
Let

Y.=f!D,) and Y,=f"(b).
In this situation the Main Lemma of §3.2 holds true:
(5.1.1) H(Y,,Y,)=0if qg#n
(5.1.2) H, (Y., Y,) is free of rank r.

The following proof of (5.1.1) and (5.1.2) will also be the starting point for the
investigation of invariant and vanishing cycles in the following chapters.
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5.2. By choosing a suitable holomorphic coordinate ¢t the hemisphere D, is
identified with the closed unit disk in C so that b corresponds to 1. Small disks D; with
center f, i =1,...,r, and radius p are chosen so that they are mutually disjoint and
contained in D,, see Fig. 1. The investigation of (Y., Y,) is carried through in three
steps: First (Y., Y,) is reduced by a localization in the base to (T, F,) where

(5.2.1) T,=f'D) and F,=f"'(t;+p).
Then one localizes in the total space: Since x; is a non-degenerate critical point of f in

a neighbourhood B of x; local holomorphic coordinates (z,,...,z,) of Y can be
chosen so that f| B has the coordinate description

(5.2.2) f(2y=t;+z2+ - +z2
The pair (T, F)) is reduced to (T, F) where
(5.2.3) T=TiNB and F=FNB,

see Fig. 2 below. Finally the homology and homotopy of (T, F) is computed using the
explicit coordinate description (5.2.2).

5.3. In D, C*-embedded intervals I; from b to t; + p are chosen so that [ = LrJ l; can
i=1

be contracted within itself to {b} and D, can be contracted to k =1/U U D, see the
i=1

following figure (r = 3):

(5.3.1) The fibre Y, is a strong deformation retract of L =f"'(I) and K = f'(k) is a
strong deformation retract of Y., hence the inclusions

(Y., Y))—(Y,, L) «—(K, L)

induce isomorphisms of all homology and homotopy groups.

Fig. 1 Fig. 2
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Proof. According to Ehresmann’s fibration theorem f: Y \f Y¢#,....t,}>
D\, ... .t} is a C” locally trivial fibre bundle. Since | C D,\{¢;,....t,} f: L—>1is a
subbundle. The homotopy covering theorem, see e.g. Steenrod[14, §11.3], implies:
The contraction from ! to {b} can be lifted so that Y, becomes a strong deformation

retract of L. Similarly the contraction of D\{f,,....t,}to l U LrJ (D:\t;) can be lifted so
i=1

that LU U (TAf\(t)) becomes a strong deformation retract of Y \f7{¢,... .t}
i=1

Since the t; are interior points of k the singular fibres can be filled in so that K is a
strong deformation retract of Y,.

In order to reduce the investigation from (Y., Y,) to (T, F;), see (5.2.1), observe

that the inclusion (U T;, U F))—(K, L) is an excision, i.e. induces an isomorphism in

i=1 i=1

homology. Since the union is disjoint, (5.3.1) finally yields:

(5.3.2) The inclusions induce isomorphisms
@ Hu(T, F)—> Hu(Y., L) —— Hy(Y.. Yy).

5.4. There is exactly one critical point x; of f within T;. In a neighbourhood of x;
holomorphic coordinates (zy,...,z,) of Y are chosen so that x; =(0,...,0) and f is
described by (5.2.2). If € >0 is small enough the ball

B={zeCrlef=laf+  +[af < €]

is contained in the range of the coordinates. In the following the corresponding subset
of Y will also be denoted by B. The radius p of D; must be shrunk so that p < €”. The
result of the second localization step from (T;, F)) to (T, F), see (5.2.3), is

(5.4.1) The inclusion (T, F)—(T,, F,) induces isomorphisms for the homology.

Proof. Let B={z€B]||z|=€}, T"=TNdB and F' =FNJB. Consider the
diagram of inclusions

(T, F)— (T, F)

(T, TTUF)— (T, T\BU F).

The bottom inclusion is an excision. The following result (5.4.2) implies that both
vertical inclusions also induce isomorphisms for the homology. Hence (5.4.1) follows.

(5.4.2) F\Bisa strong deformation retract of T\B and F' is a strong deformation
retract of T'.

The real analytic mapping f has maximal rank =2 everywhere on TA\B and its
restriction f|dB has also maximal rank =2 on the (partial) boundary T,NdB = T".
Hence Ehresmann’s fibration theorem for manifolds with boundary yields a fibre
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preserving diffeomorphism between the pairs ( T,-\I§, aT) and (F\B, 0F) x D.. Since D;
can be contracted onto f; + p, this implies (5.4.2).

5.5. For the final step the following explicit coordinate descriptions will be used
(This description is due to J. Leray. It has first been published by Fary[8], §6.):

(5.5.1) T={z EC"H21|2+~ . '+IZ,JZS62 and |z +- - - + 2,7 < p}
(5.52) F:{Zelelz+...+Z"2:p}
(553) f(z) = t‘. + Z]2+ e e an-

(5.5.1) shows that T can be linearly contracted onto the origin. Therefore the
connecting homomorphism

(5.5.4) 34t Hy(T, F)—; H, (F) forq+0

1s an isomorphism and Hy(T, F)=0.
There is a well known real analytic diffeomomorphism between F and the space

(5.5.5) Q={u, ) ER"xR"|[ull =1, [of=1, (u,v)=0}

of all tangent vectors of length <1 of the unit sphere S"™' in R". Here (u, v) = > uv,
v=1

denotes the usual Euclidean inner product and |lul=+/(u, u) the corresponding
norm. This diffeomorphism is given in the following way: Decompose z, = x, + iy, into
its real and imaginary part. Let x =(x,,...,X,) and y = (y,...,y,) ER". Then from
(5.5.1) and (5.5.2) F ={(x, y) ER" X R"||x[P+[ly[> = &, llx[P—[ly[F = p, {x, y) = O}. This

2
implies [y[ < \/<E 5 p> =:g. Then F = Q is given by

(556) u+iv= —x—+j; y, inverse: x + iy = \/(o?|o|f + p) - u +iov.

[l

This diffeomorphism maps the real part of F, namely the sphere
(5.5.7) St t={z € Flall z, real}

onto the zero section Q= {(u,0) € Q} of Q. Therefore S"! is a strong deformation
retract of F and the homology of F is

(5.5.8) H,_((F)=0 for q#1, #n, H(F) and H, (F) are free of rank 1, an
orientation of S"' determines a generator of H,_(F).

Using (5.5.4) this is translated into the relative homology:

(5.5.9) H/(T, F)=0 for q# n, H,(T, F) is free of rank 1 and an orientation of the
real n-disk

A={z € T|all z, real}

represents a generator of H,(T, F).
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The results (5.1.1) and (5.1.2) are now easily deduced from (5.5.9), (5.4.1) and (5.3.2).

Remark. Later, for the proof of (6.5.2) an explicit retraction R: T' - F'( & F), see
(4.4.2) will be needed: The coordinate description
T'={zeC"||z)}+ - - +|z. =€’ and |2*+ - - + 2} = p}
F={zeT|z}?+---+2z=p}
is used. Let z € T' be given. Represent f(z) = t; + r - ¢ in polar coordinates, define

z' = e ™z (so that f(z') = r). Decompose z’' = x’+ iy’ into real and imaginary part and
define

x} !

. ! = g™ L
R:T'-»Q, R(z)=e <ﬂx’ll+'lly’ll)'

Here the points of Q (5.5.5) are denoted by u + iv. (Observe that R’ does not depend
on the choice of ¢.) Then

R:T'-Q=F

is the composition of R’ with the diffeomorphism (5.5.6).

§6. THE PICARD-LEFSCHETZ FORMULAS
6.1. Let f: Y > G be as in 5.1. When the singular values ,,...,t, of f: Y = G are
removed from G,

(6.1.1) G* = G\{th e atr}s
and the corresponding singular fibres are removed from Y,
(6.1.2) Y*=Y\f'{1,....1},

a locally trivial fibre bundle f: Y* - G* with typical fibre Y, = X, remains according
to Ehresmann’s fibration theorem. The fundamental group =,(G*, b) acts on the
homology of Y,. This action is called the monodromy of f: Y — G. It will be studied in
§6 and §7. The main results are the Picard—Lefschetz formula (6.3.3) which holds in
general and the semi-simplicity of the monodromy (7.3.3) which holds in the special
situation described in §1.2 above.

Let ¢t be a local coordinate of G in a neighbourhood of ¢,. Choose p >0 so small
that the disk D, with centre ¢, and radius p does not meet any ¢,, u# v. Let [, be any
path in G* from b to t, + p and let

(6.1.3) w,(s)=1t,+pe’™, 0=s=1,
be the path which encircles ¢, once. Then
(6.1.4) w,=1L"" w1

is called an elementary path encircling ¢,, see Fig. 3 and also Fig. 1 in §5.3.
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Fig. 3

The fundamental group =(G*, b) is a free group generated by the homotopy
classes [w,],...,[w,]} of the elementary paths. If the ¢, are suitably ordered and the |/,
are suitably chosen there is exactly one relation

[wi] - [ws]- - -[w, ] =1

The Picard-Lefschetz formula describes the action of the elementary paths w; on
H,(Y}). 1t requires special elements of H,_(Y,) and H,(Y,, Y,) which will now be
defined using the results of §5.

6.2. Consider the following sequence of homomorphisms induced by inclusions
(6.2.1) Hy(T, F)————> Hy(T}, F) ——> H(Y,, L) ——> H,(Y., Y;).
(5.4.1) (5.3.2) (5.3.1)

According to (5.5.9) an orientation of the disk A determines a generator [A] of
H, (T, F). The monomorphism (6.2.1) transforms [A] into an element A; € H,(Y,, Y,).
The elements A,,...,A, generate H,(Y,, Y,) freely. The connecting homomorphism
ds: H,(Y,, Y,)—> H,_(Y,) transforms A; into

(622) 8,' = 3*A, c Hn—l(Yb), i= 1, N

Lefschetz [L]) Chap. II, §13 and Chap. V, §6, calls §; a vanishing cycle and A; the
corresponding thimble: The geometric boundary dA = S""'C F C F; is an embedded
(n — 1)-sphere in F; (see, 5.5.7). Since the inverse image f'(l;) is trivially fibred there
is an embedding

(623) j: FxL—>Y, jFxl)=f"), jy,t:+p)=yandfej(y,A)=2Afory€
E and A € l,'

Then the thimble
(6.2.4) C,=AUjS"'x1)

represents A;. Its boundary 4C; is an embedded (n — 1)-sphere in Y,, which represents
5;: see Fig. 4.

When the sphere C; is pushed along the thimble from Y, following I; into F,=Y,,,
and further into the singular fibre Y, it vanishes at the critical point x;, hence the name
“vanishing cycle”.

6.3. A tubular neighbourhood of $"' in F,; is F, and S$"! lies in F as the zero
section Q, lies in the tangent bundle Q of the (n — 1)-sphere, see (5.5.5)-(5.5.7). The
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self-intersection number of Qq in Q (i.e. the Euler number of S"”') is known to be 0 or
2 depending on whether n is even or odd. This number is calculated with respect to
the usual orientation of Q (first an orientation of Q, and then the corresponding
orientation of a fibre). The complex structure of F induces another orientation of Q. It
differs from the usual one by the factor (— 1)"""*~22 apnd hence the self-intersection
number of S"' in F is (— 1@ ™22 _(-1)"). The orientation preserving
diffeomorphism

(6.3.1) hi:F;=Y,, h(y)=j(y,b), y€EF,
maps S"”! onto C;. Hence:

(6.3.2) The normal bundle of the vanishing cycle C; in Y, is isomorphic to the
tangent bundle of the (n — 1)-sphere. The self-intersection number is

0 , neven
(8, 8;) = {(__ 1)("*‘)/2 -2, nodd

(6.3.3) THE PICARD-LEFSCHETZ FORMULA. If q#n—1 the fundamental group
m(G*, b) acts trivially on H,(Y,). For q =n —1 the elementary path w; see (6.1.3)
and (6.1.4), acts by

(w)a(x) = x + (= D" VXx, §)8, x € H,- (V).

For n =2 the formula (6.3.3), up to the coefficient {x, §;), is due to Picard{12, Tome I,
p. 95]. The coefficient (x, §;) was first obtained by Lefschetz. In his book [L] (6.3.3) is
the *“théoréme fondamentale”, Chap. I1, §9, upon which he builds the investigation of
algebraic surfaces. Later in [L], Chap. V, Nos. 6 and 7, he generalizes the result from
surfaces to higher dimensional manifolds. The following sections contain the proof of
(6.3.3).

6.4. This section contains topological preliminaries. Let f: A —> B be a continuous
mapping and B* C B a subspace such that f fibres E = f'(B*) locally trivially over
B*. The fibre over y € B is denoted by F, = f"'(y). Let w: I =[0, 11> B* be a path
from a = w(0) to b = w(1). The induced bundle w*E over [ is trivial, in other words:
There is a continuous mapping

(6.4.1) W F,xXI-EG A
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with the following properties:
foW(x,t)=w(t) and W(x,0)=x forxe F,, t€L
For any fixed t eI W, F,=F,, x —» W(x, 1), is a
homeomorphism; for any L with F, U F, C L C A the lifting
W is a mapping between pairs
W:F,x(,3l)>(A,L).
The homotopy class of the path w determines W up to homotopy relative to I and L
and determines W;. F,=F, up to isotopy. Since the induced isomorphism in
homology (W)),. depends only on w, it will be denoted by
(6.4.2) Wy = (W) FL(F,) = H y(F,).

If wis closed, W, is called a geometric monodromy and w, the algebraic monodromy
along w. Let

v € H(I, oI)

be the canonical generator. Then

w,
(643) To! Hq(Fa)—-) Hq+l(Fu X (l, (91))—) Hq+l(A, L)

X —=»Xx Xt

is called the extension along w. It depends only on the homotopy class of w. Further
properties of the extension are:

(6.4.4) If LD ! (image of w), then r,, = 0.

(6.4.5) NATURALITY. A commutative diagram

with ¢(B*)C B% and ¢(L)C L, induces the commutative diagram

@2,
H,(F) — H(F1,p)
l d). l
Hy (A, LYy—— H, (A, Ly)
(6.4.6) If d4: H 11(A, L)— H, (L) denotes the connecting homomorphism, then
(= DYsr.(x) = wy(x)—x,  x € H,(F,).

Here the image of x under F, - L is also denoted by x, and similarly for w(x).
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(6.4.7) CoMposSITION. If w is a path from a to b and v is a path from b to c and if
LDOF,UF,UF. then

Toow — Tp°Wx + 7y and (UOW)* = UyOWy.
A relative version is also needed: Let A’ C A be a subspace, denote

E'=ENA and F,=F,NA.

Assume: (1) f fibres the pair (E, E’) locally trivially over B* and (2) F, is a strong
deformation retract of A’. Then

W (F,F)x(oh=(F,xLF,xdlUF,xI)—>(A,LUA’)

and the relative extension is defined to be

W,
(6.4.8) 7w Hy(F, Fo) = Hy (Fy, F) X (1, 01)) — H,i(A, L U A)
X xXu T ine.
Hg(A, L)

Mutatis mutandis the results (6.4.4)-(6.4.7) remain true in the relative case.
The extension along the elementary paths (6.1.4) will now be calculated. The
procedure is the same as in §4 but in reversed order.

6.5 First the situation of §5.5. is studied, f: T->D={t€C||t|=p}, f(2)=
22+ -+ -+ 22, with D* = D\0, typical fibre F. This is a relative situation due to T’
(5.4.2). Both assumptions for (6.4.8) are fullfilled, (1) because of the relative version of
Ehresmann’s fibration theorem and (2) because of (5.4.2). Therefore the relative
extension

Tw- Hn—l(F9 F’)_)Hn(T’ F)

along the path w:I— D\0, w(t) = pe’™, is defined. The other dimensions # n are
uninteresting because then the homology of (7, F) vanishes (5.5.9). Let s = d¢[A] =
[S*'1€ H,_,(F). Choose ¢ € H, |(F, F') so that (¢, s) = 1. Then

(6.5.1) 1.(c) == (= """ V2[A]

This is the main result of this section. In its proof explicit geometric considerations
will play an essential role. Since H,(T, F) is generated by [A], “7,(c) = y°[A] with
y €Z” is obvious. It remains to prove

(6.5.2) y=—(=)re-vr,

For this purpose the following diagram is considered:

H,(FxI,3(Fx1)-¥> H,(T, T'U F)-%=> H (T, F)
s 1 I
H, (3d(FxD) %> H, (T'"UF) 2> H, (F)¥2 H, (S"™
(5.5.6) l ) R (5.5.6)
Hy_1(3(Q X 1)) £ > H,_(Qy)

H,(a(C x 1)) = H,-((Qo).
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In the diagram the following spaces and mappings occur:

W FXxI->T,(x,t)—>e™- 2

R: T"UF—-F, R|F = idr and for R| T’ see the end of §5.5.
Re = real part

Q and Qyasin §5.5, Q' ={(u, v) € Q||v||=1}
2:3QxD=Q'xIUQx3I->Q,, (u+iv,t) > Re(e™(u+iv))
C={e+iv|v ER", vle}, where e,=(1,0...0)ER"

In the following other unit vectors e, will also occur.

All partial diagrams commute; this is mostly obvious, with () it must be checked
by comparing the mappings ReoReW and g explicitly. Starting from ¢ X¢ €
H,(F, 3(F x I)) the upper line of the diagram yields 7,(c) = y * [A]. The isomorphisms
of the right boundary transform this element into y-[Qyl. Here Q,=
{(u, 0) € R" X R"| ||lu|| = 1} is oriented as the unit sphere of the canonically oriented R”".
The commutativity of the diagram implies that the isomorphisms of the left boundary
applied to ¢ % ¢ followed by gy yield vy - [Qg], too. In order to determine y two things
must be checked: Which orientation of 4(C X I){(=S8""") is determined by ¢ X ¢, and:
What is the mapping degree of g: 3(C X I} > Qy?

{6.5.3) The orientation of the coordinate system (v, ...,v,) on C differs from the
orientation which ¢ € H,_|(F, F’) determines by the factor

( _ l)n(n—l)IZ.

This is proved by considering a neighbourhood of e, in F. Here (v,,...,v,) followed
by the positively oriented coordinate system (u,,...,u,) of Qy form the coordinate
system (vs, ... ,v,, Us, ... ,u,) of F. Since (¢, s) =1 the orientation of (v,,...,v,) differs
from the orientation of ¢ by the same factor as the orientation of
(v, ...,V U, ...,u,) differs from the canonical orientation of F. The latter is deter-
mined by any complex coordinate system, e.g. by (4, + iv,, . . . ,u, + iv,) which yields
the positively oriented real system (us, v,, ... ,U,, v,). Its orientation differs from the
one of (vs,...,0,, Us,...,u,) by the sign of the corresponding coordinate permutation,
ie. by (_ ])n(n—l)/z'

The degree of g:a(C xI)— Q, is calculated in the following way: The point

| . . . .
<e, + ie,, §) € 9C X I C 3(C x I is the only inverse image point of — e, € Q,. Therefore

v equals the local mapping degree of g at (e, + ie,, %) The orientation of C given by

(vy,...,v,) followed by the canonical orientation of I determines an orientation of
C x1I and hence of 3(C xI). With respect to this orientation (vs;,...,v,,t) Is a

positively oriented coordinate system of 3(C X I) in a neighbourhood of (e1 + iez,%).

In a neighbourhood of —e¢, in Q, the positively oriented coordinate system
(uy, us, . . . ,u,) is chosen. With respect to these coordinates g(vs,...,v,, t) = (cos mt,

—sin 7wt - vy, ...,—sin 7t - v,). The Jacobian of this system at <e1 + ie,, %) is negative;

hence with respect to these orientations the degree of g equals — 1. This together with
(6.5.3) yields v as in (6.5.2).
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6.6. Following the procedure of §5 in reversed order f: T,—> D, as defined by
(5.2.1) must be considered next. Here D* = D,\t, and t,+ p is the base point. The
(absolute) extension along the path w, (6.1.2) is

(6.6.1) Tt Hioo(F) > H(T,, F)), x = —(=1)""""%x, 5) - [A]

Here H, (T, F,) is freely generated by [A] according to (5.4.1) and (5.5.9) and
s = d4[A]l € H, |(F,). As in 5.4 this formula is proved by reduction to the case (T, F).
Let r: (F,,#) & (F,, F\B) be the inclusion. Because of (5.4.2) the relative extension
Tu,: Ho o (F, FV\I§)——>H,,(T,, F,) is also defined. The naturality of the extension (6.4.5)
makes the following diagram commutative:

H,_(F,) ———> H,_(F,, F\B) «————— H,_(F, F")

o Ta, (6.5.1)

v

Hll—](Tvs Fu) (_“—_:L Hn(T’ F)

The homomorphism of the top line transforms x € H,.(F,) into (x,s)-c€&
H,_(F, F'). The desired result (6.6.1) follows now from (6.5.1) applied to c.

6.7. Still following the procedure of §5 in reversed order the starting point
f: Y.—> D, with D¥=D\{t,,...,t} is now reached: The extension along the elemen-
tary path w; (6.1.4) will be calculated. Using the notation of 6.2 the result is

(6.7.1) Tw: Hoot(Yp) > Ho (Y., Yy), x> —(=1D)""D2(x 5 - A,
In order to prove (6.7.1) consider the following diagram

((HN
Hn—l(Yb) -7 n—l(E)

H,(Y,, Y)) —> H,(Y,, L) «— H,(T, F).

Both lower triangles are commutative because the extension is natural (6.4.5). Using
(6.47) 7o H,(Yy)>H,(Y,,L) is calculated as follows: 7, =71, =
Ti-ewpoli, + 7,0l + 7. The first and third summands are zero because image [; C L, see
(6.4.4). Thus 7,, = 7,,°li. remains, i.e. the upper triangle of the diagram commutes, too.
The result (6.7.1) follows now from (6.6.1).

If (6.4.6) is applied to (6.7.1) the Picard-Lefschetz formula (6.3.3) follows im-
mediately.

§7. THE MONODROMY
7.1. In the previous §6 the monodromy has been introduced and studied for an
arbitrary meromorphic function f: Y -> G with non-degenerate critical values as
described in §5.1. This investigation will now be continued for the more special
situation of §1.2: Here Y is the modification of a projective manifold X along the axis
of a pencil of hyperplanes {H,},cg, and f assigns to every y € Y the hyperplane H,
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through y. For the regular value b € G the hyperplane section X, = X N H, and the
fibre Y, = f!(b) will be identified: see (1.2.3).

7.2. The module I C H,_\(Y,) of invariant cycles as defined in §3.9 is exactly the
submodule of those elements of H,_(Y,) which are invariant under the action of
7T1(G*, b)

This justifies the name ‘“‘invariant”. The proof is a combination of known facts:
The homotopy classes of the elementary paths w,,...,w, generate m,(G*, b) accord-
ing to §6.1. Therefore y € H,_(Y,) is invariant under the action of =, if and only if

y=wiu(y)=y*(y,8)8, ie (y,6)=0 fori=1,...,r

Here the Picard-Lefschetz-formula (6.3.3) has been used. On the.other hand [ =
{y|{y, x) =0 for every x € V} according the (3.9.5). Since V is generated by §,,... .5,
(see §3.8 and 86.2), I ={y|[{y, &)=0 fori=1,...,r} and the result follows.

7.3. The main result of this §7 is the

MonobroMY THEOREM. For coefficients in a field the following results are
equivalent:

7.3.1) The Hard Lefschetz Theorem, i.e. the equivalent results (4.1.2)—(4.1.7).
(7.3.2) V =0 or V is a non-trivial simple m-module.
(7.3.3) H,_(Y,) is a semi-simple w-module.

Here 7 = 7 (G*, b).

Proof that (7.3.2) implies (7.3.3): Consider the m-invariant submodule TNV of V.
Since V is simple, INV =0 or= V. The latter is impossible because 7 acts non-
trivially on V and trivially on INV: hence TNV =0. This together with the
dimension formula (3.9.6) shows that H, (Y,)=1& V is the direct sum of a trivial
(hence semi-simple) and a simple 7-module. Therefore H,_(Y,) itself is a semi-simple
sr-module.

Proof that (7.3.3) implies (4.1.7) and hence (7.3.1): The restriction of (—, —)to I is
non-degenerate. Let I denote the dual module of I It suffices to show that I — 1,
z +> (z, —), is epimorphic: Let ¢ € I be given. Since H,_,(Y,) is semi-simple I has a
complementary w-invariant submodule M C H,_((Y,) so that ] @ M = H,_(Y,). This
makes it possible to extend ¢ to a linear form ¢ on H,_,(Y,):

p(x+y)=9x), xe€I, yeEM.

Since (—, —) is non-degenerate on H,_((Y,) there is exactly one z € H,_(Y,) with
(z, =) =¢(—), i.e. there is exactly one z € H,_,(Y,) with

(7.3.4) (z,x+y)=¢(x) foreveryx€l and yeM.
When :z is replaced by az, a €m, (7.3.4) remains true because (az,x+y)=

(z,a W (x+ y))=(z,x +a”'y) = @(x). Since z is uniquely determined by (7.3.4) z = az
for every a € w, 1.e. zE€ I and (z, x) = ¢(x) for every x € L
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Proof that (4.1.6), and hence (7.3.1), implies (7.3.2): Let F#0 be a w-invariant
submodule of V and 0 # x € F. Since by (4.1.6) (—, —) is non-degenerate on V and V
is generated by the vanishing cycles 8, ... ,5, there is a §, with (x, 5,) #0. Let w, be a
corresponding elementary path according to the Picard-Lefschetz-formula (6.3.3):
Was(X) = x £(x, §,)8,. Therefore = acts non-trivially on x and 8, belongs to F. But
then all vanishing cycles §;,...,5, and hence all of V are contained in F because of
the following result:

(7.3.5) If the coefficients are a field then for any two vanishing cycles §,, 8, there is
an a E 7 witha - 8, ==*3,.

The Monodromy Theorem and its proof have been adapted from [22] Exposé
XVIII. The following sections are devoted to the proof of (7.3.5).

7.4. Let X CPy be a hypersurface (possibly with singularities) and G CPy a
projective line in general position with respect to X, i.e. G avoids the singularities of
X and intersects X transversally. Then G N X ={t,,...,t} is finite and r = degree of
X. Choose a base point b € G\ X.

(7.4.1) The embedding G\X & Py\X induces an epimorphism of the fundamental
groups.

Let E be a projective subspace with G C E C Py. Then (7.4.1) implies that the
embedding E\X G Pu\X induces an epimorphism of the fundamental groups. Zariski
in [21] proved even more: When dim E =2 and the position of E with respect to X is
suitably general, 7 (E\X)— 7(Py\X) is an isomorphism. Since Zariski’s proof is not
quite satisfactory, Hamm and Lé&[8a] present a modern but rather long proof of
Zariski’s result. In order to make our presentation selfcontained here is a much
shorter proof of the weaker result (7.4.1) following the ideas of Zariski:

All lines through b form a subspace Py, of the dual projective space Py. A base
point a € Py_, is chosen so that the corresponding line is G, = G. (In general the line
through b which corresponds to z EPy_, is denoted by G,) The point b in Py is
blown up:

Q = {(x, Z)EPN X 13N_|lx (S Gz}-

Then there are two projections
4 f o

Py —Q—> Py
The inverse image of b is

pl(b) ={b}x Py_,.
The complement

p: Q\p7\(b) =Py\{b}
is mapped isomorphically. Let

Y = p7I(X).



THE TOPOLOGY OF COMPLEX PROJECTIVE VARIETIES AFTER S. LEFSCHETZ 47

Since b& X, p(b)NY =@. The second projection f: Q—>Py_, fibres Q locally
trivially with typical fibre G. Let C C Py_, consist of all lines through b which are not
in general position with respect to X. This C is a proper algebraic subset, see 1.5.
When C and f~'(C) are removed, the pair

Q*=Q\f(O), Y*=Y\f(O)

is locally trivially fibred by f over Py_\C. This follows from the relative version of
Ehresmann’s fibration theorem because Y* is smooth and f|Y* has maximal rank
everywhere. Hence the difference Q*\Y* is fibred locally trivially over Py_\C by f
with typical fibre G\X. The upper line of the following commutative diagram is part of
the exact homotopy sequence of this fibration:

A .
m(G\X, b) — m(Q*\Y*,(b, a)) —> m(Pn-\C, a)

m(Q\Y, (b, a))

Py

W](PN\X, b)

This diagram shows. In order to show that i, is epimorphic it suffices to find a
counterimage B € i (Q*\Y*) with f.(B) =1 for every a € m(Py\X). Now p4 and j,
are both epimorphic. For p, this is shown most conveniently using a base point
b’ % b. Then every element in 7 (Py\X, b) is represented by a path which avoids b
and such a path can (uniquely) be lifted to Q\Y because p: Q\(Y Up (b)) =
Py\(X U{b}) is an isomorphism. Similarly it is shown that j, is epimorphic: Since
p (C)N(Q\Y) has real codimension 2 every path in Q\Y can homotopically be
deformed so that it avoids p~'(C) and thus is contained in Q*\Y*. Let 8’ € m,(Q*\Y*)
be an arbitrary counterimage of «, but eventually f.(8)# 1. There is a path u in
{b} x (P,_\C)C Q*\Y* with [feul=f4B'. Then B =pg'[u]l" is a counterimage of «a
with f.(B) =1 because pejou is constant.

7.5. Let X C Py be a hypersurface (possibly with singularities) and let G, and G,
be two lines in general position with respect to X which have the point b& X in
common (possibly G, = G,). Let v, and v, be elementary paths in Go\X (respectively
G\ X) from and to b.

(7.5.1) When X is irreducible the homotopy classes [vo] and [v\] are conjugate
elements in m(Py\X, b).

Proof. Let vy encircle the point ¢o€ GoN X and v, encircle ¢, € G,N X. The
subset Z C X consisting of all points x such that the line through b and x is not in
general position is proper and algebraic. Since furthermore X is irreducible there is a
path w in X\Z from ¢, to ¢,. Let G, be the line through b and w(t), 0 <t < 1. Choose
the isomorphisms ®,: C = G\{b} so that C x [0, 1]=>Py, (x, t) +> &,(z), is continuous.
Let w*(t) = ®,(w(t)). If p is sufficiently small the disk in G, with centre w(t) and
radius p intersects X only in w(f). Then (¢, s) — @ (w*(t)+p - ), 0<s,t<1,is a
free homotopy in Py\X between the paths wo(s)=w*(0)+p - e> and w(s)=
w*(1)+ p - e*™, which encircle ¢, (respectively c;) once. This implies that vy = I woly
and v, = |, 'w,/, are conjugate in m,(Py\X, b).

TOP Vol. 20, No. 1--D
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7.6. Proof of (7.3.5). Let w,, w, be the elementary paths which belong to §, and
5,. Let X be the dual variety (see (1.4.1)). The homotopy classes [w.] and [w,] are
conjugate in m(Py\X) by (7.5.1), and since 7w (G*)— m(Py\X) is epimorphic (7.4.1)
there is a path u in G* such that

(7.6.1) [u] - [(w,1=I[w,] [u] in m(Py\X).

Consider the locally trivial fibre bundle p,: W\p, '(X)—Py\X as in §2.3. The fibre
bundle f*: Y*— G* is obtained from it by restriction to G* C Py\X. Therefore the
action of 7,(G*) on H,_,(Y,) factors through 7(Py\X), and thus (7.6.1) implies that
UxoW, x = W, xollx. When this is applied to an arbitrary element x € H,_(Y,) the
Picard-Lefschetz-formula (6.3.3) yields

(7.6.2) (x, 8, )u+(8,) = (uw(x), 8,)8,.

The intersection form (—, — ) is non-degenerate by Poincaré duality. Therefore either
8, =0, and hence §, =0, or there is an element x such that (x,8,) 0, i.e. uy(8,)=
c-8, with c¢€Ecoefficient field. Then (7.6.2) implies (u4(x),$5,)8, =
(us(x), us(8,)u(8,) = cXux(x), 8,)8,; hence ¢ = = 1.

§8. HOMOTOPY RATHER THAN HOMOLOGY
8.1. In 1957 Thom suggested that Lefschetz’s theorem on the homology of

hyperplane sections (3.6.1) could be proved quite differently using real Morse theory. This
idea was elaborated in two papers by Andreotti-Frankel[1] and Bott[2]. The latter
observed that this method even yields a better result, namely (using the notation of
§3.6):

(8.1.1) The pair (X, X,} is (n — 1)-connected.

In his book[11, §7] Milnor presents Andreotti-Frankel’s proof adapted to this stronger
result.

The stronger version (8.1.1) of (3.6.1) yields of course stronger versions of the
results in §3.7: In (3.7.1) the conclusion “H,(X,X NF)=0 for g=n—1" can be
improved to “The pair (X, X N F) is (n — 1)-connected” and in (3.7.2) “H,(Py, Y) =0
for g = n” can be imprived to “(Py, Y) is n-connected.”

In the following sections it will be shown how Lefschetz’s original method also yields
the stronger result (8.1.1).

8.2. Two facts in homotopy theory will be used which I have not been able to find
explicitly in the literature:

(8.2.1) Let (X, A) and (Y, B) be r- respectively s-connected’ relative CW-com-
plexes with finitely many cells. Then (X, A)X(Y,B)=(XXY,XXBUAXY) is
(r+ s+ -connected.

Proof. If X\A has no cells in dimensions less than r+ 1 and Y\B has no cells in
dimensions less than s+ 1, X X Y\(X XBU A X Y) has no cells in dimensions less
than r+ s+2. Hence (X, A)X(Y, B) is (r+ s+ 1)-connected. The general case is
reduced to this special case in the following way: By attaching finitely many cells to A
and X a new relative CW-complex (X', A’) is obtained such that X'\ A’ has no cells in
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dimensions less than r+1 and such that (X', A") collapses to (X, A), see e.g.
Switzer[15, 6.13). Similarly (Y, B) is replaced by (Y’, B’). Then (X', A)x(Y’, B') is
(r+ s + I)-connected and it collapses to (X, A) X (Y, B) so that (8.2.1) follows in general.

(8.2.2) Let f:(X, A)—>(Y, B) be a relative homeomorphism. If (X, A) is an n-
connected relative CW-complex, then (Y, B) is also n-connected.

Proof. The relative CW-decomposition of (X, A) is mapped isomorphically onto a
relative CW-decomposition of (Y, B). “Isomorphically”” means: The mapping e—
f(e) is a dimension preserving bijection between the cells e of X\A and the cells of
Y\B and, if y is the characteristic mapping of e then foy is the characteristic mapping
of f(e). Since (X, A) is n-connected cells can be attached to A and X in such a way
that the new relative CW-complex (X', A’) collapses to (X, A) and X'\ A’ has no cells
in dimensions less than n+ 1. Since (Y, B) has an isomorphic CW-decomposition
cells can be attached in the same way to Y and B as to X and A. Then the new
relative CW-complex (Y, B') collapses to (Y, B) and Y'\B' has no cells in dimensions
less than n + 1. Therefore (Y’, B') is n-connected and hence so is (Y, B).

8.3. Proof of (8.1.1). By induction from n —1 to n: As in homology the beginning
n =1 is trivial. Consider now the following sequence of pairs of spaces and con-
tinuous mappings which has occurred already in the definition of L', (3.6.5):

b exc i
(Xp X)X (D_, S) =(Y_, YU Y)—> (Y, Y. U Y") ——(Y, Y, U Y') —> (X, X;).

By the induction hypothesis (X,, X') is (n —2)-connected. Therefore (X, X') X
(D_, 8" is n-connected by (8.2.1). Since ® is a homeomorphism the same holds true
for (Y_, Y,U Y’). The homotopy excision theorem, see, e.g. Switzer[15, 6.21], implies
that (Y, Y, U Y’) is also n-connected. As in homology the next step is the exact
homotopy sequence where j, occurs,

83D, (YUY, Y,UY)— m (Y, Yy U Y)—ms (Y, Y, U ¥ —> - - .

In §8.4 below the following result, which should be compared to (3.2.2), will be
proved:

(8.3.2) The pair (Y., Y,) is (n — 1)-connected.

Consider now the inclusions (Y,, Y,) G (Y, Y, UY) G (Y, UY', Y,UY’. Since
Y, is a deformation retract of Y, U Y| the first inclusion induces isomorphisms of all
homotopy groups. In particular (Y., Y, U Y}) is (n — 1)-connected because of (8.3.2).
The second inclusion is an excision, hence by the homotopy excision theorem
(YUY Y,UY") is (n—1)-connected. Since (Y, Y, U Y’) is also (n — 1)-connected
(even n-connected, as has been shown above), the exact sequence (8.3.1) implies that
(Y, Y, U Y')is (n — 1)-connected. Then (X, X,) is also (n — 1)-connected because p is a
relative homeomorphism, and thus (8.2.2) can be applied.

8.4, Proof of (8.3.2). The contractibility of T (5.5.1) and the fact that F (5.5.2) has
a (n — 1)-sphere as deformation retract imply that (T, F) is (n — 1)-connected. Since F
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is a deformation retract of T'U F (5.4.2), the pair (T, T'U F) is also (n — 1)-con-
nected. Then the homotopy excision theorem, see e.g. Switzer[15, 6.21], is applied to
(T, T"UF) > (T, T\BUF,), so that (T, TA\B U F,) is (n — 1)-connected. Then (T, F,)
is (n — 1)-connected because F; is a deformation retract of T,\é UF; (54.2).

Let k,=LUD, K,=f"'k) and L;=f"'(l) (see Fig. 1 in §5.3). The (n—1)-
connected pair (T}, F;) is a deformation retract of (K, L;), and so the latter is also
(n — D-connected. Since Y, is a deformation retract of L; the pair (K, Y,) is
(n — 1)-connected. This implies inductively that

8.4.1) (K,U---UK,, Y,) is (n—1)-connected.

The induction step from s to s+1 (s=1,...,r—1) is as follows: The assumption
“(K;U---UK,,Y,) is (n —1)-connected” implies because of the homotopy excision
theorem that (K,U---UK,., K,+;) is (n—1)-connected. The exact homotopy
sequence of the triple

Wq(KsH, Y,)— 7Tq(K1 U-- UK, Yp)— ‘”q(Kl U UKo, Kei)

yields the (n — 1)-connectivity of (K;U---U K, Y,) and thus completes the in-
duction step.

In (8.4.1) K=K,U---UK, can be replaced by Y, because it is a deformation
retract of Y, as has been observed in (5.3.1). This yields (8.3.2).
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