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Overview of the course

1 Introduction. What is the Koopman operator? What is the DMD and
what is the connection? What is the Extended/kernel DMD? How to
use kernel trick? What is the Exact DMD?

2 Koopman mode decomposition. Least squares decomposition of the
data snapshots. Khatri–Rao structure of the LS problem.

3 Compressed DMD and the streaming DMD.

4 Physics–informed DMD. Hermitian DMD and measure preserving
(unitary) DMD. Weighted DMD.

5 Data driven system identification. SINDY and the Mauroy-Goncalves
methods. Computations with the infinitesimal generator of the
Koopman semigroup.

6 Schur–Koopman modal decomposition for non–normal cases.

7 Software development.

8 Seminar projects.
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Introduction

The “Koopmanism” has grown as a vast research subject in several
research frameworks:

Dynamical system theory.
Operator (semigroup) theory.
Ergodic theory.
Application area oriented development that requires corresponding
expertise (computational fluid dynamics, machine learning, ...)
Computational aspects – numerical methods and development
of software tools. Data driven framework.

Many misconceptions, many open problems, many applications, many
publications, ... very active area of research.

Our goal in this course

We want to understand the numerical aspects of the “computational
Koopmanism”. It is a new research field within the numerical linear
algebra. The NLA is the key for computational analysis of nonlinear
dynamics. It’s a linear world after all :)
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Continuous autonomous dynamical systems

ẋ(t) = F(x(t)) ≡

(
F1(x(t))

...
FN (x(t))

)
, x(t0) = x0, (1)

with state space X (smooth N -dimensional compact manifold, with Borel
σ algebra B; X ⊂ RN ) and vector-valued nonlinear function F : X → RN .

Exampleẋ1(t)ẋ2(t)
ẋ3(t)

 =

−10 10 0
28 −1 0
0 0 −8/3

x1(t)x2(t)
x3(t)


︸ ︷︷ ︸

x(t)

+

 0
−x1(t)x3(t)
x1(t)x2(t)

 . (2)

F1(x(t)) = −10x1(t) + 10x2(t);

F2(x(t)) = 28x1(t)− x2(t)− x1(t)x3(t);
F3(x(t)) = (−8/3)x3(t) + x1(t)x2(t)
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Task: Learn ẋ(t) = F(x(t)) from data (F unknown)(
ẋ1
ẋ2
ẋ3

)
=

(
−10 10 0
28 −1 0
0 0 −8/3

)(
x1
x2
x3

)
+
(

0
−x1x3
x1x2

)
.

complex dynamics
limited understanding
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Task: Reveal latent structure, coherent states

Figure: Use high fidelity numerical simulations to better understand physics.
(Data source: Popinet 2004, Baeza Rojo and Günther 2019.)
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Special case: Linear time invariant systems

ẋ(t) = F(x(t)) ≡ Ax(t), A =

( a11 ... a1N
... ···

...
aN1 ... aNN

)
, x(t0) = x0,

Solution: x(t0 + t) = etAx(t0). Suppose A is diagonalizable, A = SΛS−1,
Λ = diag(λ1, ..., λN ), S = (s1, . . . , sN ), Asj = λjsj ; λj = αj + iβj ∈ C
eigenvalue; sj ∈ CN eigenvector. The structure of the solution
x(t0 + t) is expressed using the spectral elements of A as follows:

x(t0 + t) = etAx(t0) = SetΛS−1x(t0) = S

(
etλ1

. . .
etλN

)
S−1x(t0)︸ ︷︷ ︸

y=(y1,...,yN )T

= s1e
tλ1y1 + s2e

tλ2y2 + · · ·+ sNe
tλN yN (x(t0+t))1

(x(t0+t))2
...

(x(t0+t))N

=

 (s1)1
(s1)2
...

(s1)N

 etλ1y1+

 (s2)1
(s2)2
...

(s2)N

 etλ2y2+· · ·+

 (sN )1
(sN )2
...

(sN )N

 etλN yN .

etλj = etαjeitβj = etαj (cosβjt+ i sinβjt)
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Discrete dynamical systems: zi+1 = T(zi)

1 2

3

4 5

1 2

3

4 5

A1 =

(
0 1 1 1 0
1 0 1 1 0
1 1 0 1 0
1 1 1 0 1
0 0 0 1 0

)
, A2 =

(
0 1 1 1 0
1 0 1 1 1
1 1 0 1 1
1 1 1 0 1
0 1 1 1 0

)
, ...

Example (Time-evolving graph)

Suppose we are given a time-evolving graph G = (G1,G2, . . . ,GM ) with
adjacency matrices A1, A2, . . . , AM . The goal is to find a low dimensional
embedding (a new coordinates system) that reveals the latent structure
(e.g. metastable behaviour). Here Gi+1 = T(Gi), but T(.) is inaccessible.
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Discrete dynamical systems: zi+1 = T(zi)

Example (Neural network training as a dynamical system)

Consider a neural network n : X × Rn −→ Rd, (x, w) −→ n(x;w), where
x is the input feature vector, w is the vector of network weights
(parameters), and n(x;w) is the output. The weights are determined by
minimizing the loss function Ltr(w) over the training data. The deployed
optimization algorithm (e.g. stochastic gradient descent) can be
represented as an iterative process wt+1 = T(wt). The mapping T(.) is
black–boxed. Goal: learn T(.) from data and e.g. prune the network
(selectively set weights to zero).

Example

Video processing: foreground-background separation Recorded video is a
sequence of frames that can be interpreted as data snapshots recorded
with fixed time lag. The goal is to separate the static background from the
dynamics on the video.
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Setting the scene: DS and the Koopman operator

ẋ(t) = F(x(t)) ≡

(
F1(x(t))

...
FN (x(t))

)
, x(t0) = x0, (3)

The solution formula (the flow map) is

x(t0 + t) = φt(x(t0)) = x(t0) +

∫ t0+t

t0

F(x(τ))dτ. (4)

Observables

The state may not be accessible. Instead, we have observables (indirect
measurements of the state) f : X → C, f ∈ F ; e.g. F ⊆ L2(X , µ).

Koopman operator semigroup (Kt)t≥0

Ktf = f ◦φt, f ∈ F . (5)
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Setting the scene: DS and the Koopman operator

Kt is linear operator

Indeed, let α, β be scalars, f , g observables. Recall,

(αf + βg)(φt(x)) = α f(φt(x)) + β g(φt(x)).

Hence,

Kt(αf + βg) = (αf + βg) ◦φt = α (f ◦φt) + β (g ◦φt)

= αKtf + βKtg.

Further, φt1+t2 = φt1 ◦φt2 = φt2 ◦φt1

φt1+t2(x(t0)) = x(t0) +

∫ t0+t1+t2

t0

F(x(τ))dτ = φt1(φt2(x(t0)))

This implies the (semi)group property:

Kt1+t2f = f ◦φt1+t2 = f ◦φt1 ◦φt2 = Kt2(f ◦φt1) = Kt2Kt1f
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Example: Koopman eigenpairs for linear systems

ẋ(t) = F(x(t)) ≡ Ax(t), A =

( a11 ... a1N
... ···

...
aN1 ... aNN

)
, x(t0) = x0,

Solution: x(t0 + t) = etAx(t0). Suppose A is diagonalizable, A = SΛS−1,
Λ = diag(λ1, ..., λN ), S = (s1, . . . , sN ), Asj = λjsj ; λj = αj + iβj ∈ C
eigenvalue; sj ∈ CN eigenvector.

A = SΛS−1 ⇐⇒ A∗ = S−∗Λ∗S∗ =WΛ∗W−1, W = S−∗ ;

W ∗S = I; w∗
jsk = δjk (wj =W (:, j)); Λ∗ = diag(λ1, ..., λN ) .

Then for any x

x = SS−1x = SW ∗x =

N∑
j=1

(w∗
jx)sj =

N∑
j=1

ψj(x)sj ,

where ψj(x) = w∗
jx = ⟨x,wj⟩.

ZD NLA for KMD and DMD 14 / 261



Overview of the course Introduction Finite dimensional computation: DMD QR compressed DMD Snapshot reconstruction – modal decomposition Exact DMD Symmetric/Hermitian DMD Measure preserving DMD Appendix 1: Review of the symmetric eigenvalue problem Appendix 2: Orthogonal Procrustes’s problem Data driven identificationMotivating examples and problems The Koopman operator Data driven framework Data driven operator compression Koopman mode decomposition

Example: Koopman eigenpairs for linear systems

Consider now ψj(x) = w∗
jx = ⟨x,wj⟩. Let us apply Kt:

(Ktψj)(x0) = ψj(x(t;x0)) = ⟨x(t;x0),wj⟩

What do we know about ψj(x(t;x0))?

d

dt
ψj(x(t;x0)) =

d

dt
⟨x(t;x0),wj⟩ = ⟨

d

dt
x(t;x0),wj⟩

= ⟨Ax(t;x0),wj⟩ = ⟨x(t;x0), A
∗wj⟩

= ⟨x(t;x0), λjwj⟩ = λj⟨x(t;x0),wj⟩
= λjψj(x(t;x0))

Hence, ψj(x(t;x0)) = eλjtψj(x0).

Eigenpairs of Kt

(Ktψj)(x0) = eλjtψj(x0)
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Example: Koopman eigenpairs for linear systems

x0 = SS−1x0 = SW ∗x0 =

N∑
j=1

(w∗
jx0)sj =

N∑
j=1

ψj(x0)sj

A spectral representation of the action of Kt is as follows:

(Ktx)(x0) = x(t;x0) = eAtx0 =

N∑
j=1

⟨eAtx0,wj⟩sj

=

N∑
j=1

⟨x0, e
A∗twj⟩sj =

N∑
j=1

⟨x0, e
λjtwj⟩sj

=

N∑
j=1

eλjt⟨x0,wj⟩sj =
N∑
j=1

eλjtψj(x0)sj

=

N∑
j=1

ψj(x(t;x0))sj ; (KtCx)(x0) =

N∑
j=1

eλjtψj(x0)Csj .
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Setting the scene: DS and the Koopman operator

Consider a discrete dynamical system zi+1 = T(zi), where T : X −→ X is
a measurable nonlinear map on a state space X and i ∈ Z. The Koopman
operator K ≡ KT for the discrete system is defined analogously by

Kf = f ◦T, f ∈ F ⊆ Lp(X , µ). (6)

It is tacitly assumed that T is regular with respect to the measure µ:

µ(S) = 0 =⇒ µ(T−1(S)) = 0.

This ensures that µ(f1 ̸= f2) = 0 =⇒ µ(f1 ◦T ̸= f2 ◦T) = 0.

Operator theoretic issues (such as e.g. choosing the function space of
observables, approximations from finite dimensional subspaces) are delicate
and are beyond the scope of this course. The important thing is that they
are properly treated in the corresponding theoretical frameworks.
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Setting the scene: DS and the Koopman operator

If we run a numerical simulation of the ODE’s (3) in a time interval
[t0, t∗], the numerical solution is obtained on a discrete equidistant grid
with fixed time lag ∆t:

t0, t1 = t0 +∆t, . . . , ti−1 = ti−2 +∆t, ti = ti−1 +∆t, . . .

In this case, a black-box software toolbox acts as a discrete dynamical
system zi = T(zi−1) that produces the discrete sequence of zi ≈ x(ti);
this is sampling with noise.
For ti = t0 + i∆t we have (using φ∆t, K∆t and the group property)

f(x(t0 + i∆t)) = (f ◦φi∆t)(x(t0)) = (Ki∆tf)(x(t0)) = (Ki
∆tf)(x(t0)),

where Ki
∆t = K∆t ◦ . . . ◦ K∆t.
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Setting the scene: DS and the Koopman operator
On the other hand, using Kf = f ◦T, zi ≈ x(ti),

f(zi) = f(T(zi−1)) = . . . = f(Ti(z0)) = (Kif)(z0), (7)

where T2 = T ◦T, Ti = T ◦Ti−1. Hence, in a software simulation of (3)
with the initial condition z0 = x(t0), we have an approximation

(Kif)(z0) ≈ (Ki
∆tf)(z0), f ∈ F , z0 ∈ X , i = 0, 1, 2, . . . (8)

This can be obviously extended to vector valued observables:

for g = (g1, . . . , gd) : X −→ Cd define Kdg =

(
g1◦T
...

gd◦T

)
=

(Kg1
...

Kgd

)
. (9)

The observables can be physical quantities (e.g. temperature, pressure,
energy) and mathematical constructs using suitable classes of functions
(e.g. multivariate Hermite polynomials, radial basis functions). In
particular, if we set d = N , gi(z) = eTi z, where z ∈ CN , ei = (δji)

N
j=1,

i = 1, . . . , N , then g(z) = z is full state observable and (Kdg)(zi) = zi+1.
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Data driven framework

Snapshot – a numerical value of a scalar or vector valued observable at a
specific instance in time. Explicit knowledge of the mappings F or T may
not be available.

For example, snapshots may be obtained as/by

high speed camera recording of a combustion process in a turbine

new cases of covid 19 infections, reported daily

wind tunnel measurements, Particle Image Velocimetry/Thermometry

numerical simulation of (3) represented by (18), (7), (8), where we
can feed an initial z0 to a software tool (representing T, or its
linearization through a numerical scheme encoded in a software
toolbox) to obtain the sequence f(z0) = (K0

df)(z0),

f(z1) = (Kdf)(z0), f(z2) = (K2
df)(z0), . . . , f(zM+1) = (KM+1

d f)(z0),

where f = (f1, . . . , fd)
T is a vector valued (d > 1) observable with

the action of Kd defined component-wise.
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Data driven framework: data snapshots

Figure: Vorticity field data snapshots.(Data source: Popinet 2004, Baeza Rojo
and Günther 2019.)

ZD NLA for KMD and DMD 21 / 261



Overview of the course Introduction Finite dimensional computation: DMD QR compressed DMD Snapshot reconstruction – modal decomposition Exact DMD Symmetric/Hermitian DMD Measure preserving DMD Appendix 1: Review of the symmetric eigenvalue problem Appendix 2: Orthogonal Procrustes’s problem Data driven identificationMotivating examples and problems The Koopman operator Data driven framework Data driven operator compression Koopman mode decomposition

Data driven framework: data snapshots

Figure: Snapshots are vectors, that are vector functions f(zi) of the states
zi = x(ti), e.g. (f(zi))j = fj(zi) = jth component of x(ti), but can use more
general function (embedding) to ensure better mathematical properties.

S = (f(z0) f(z1) ... f(zM ) f(zM+1))=

 f1(z0) f1(z1) ... f1(zM ) f1(zM+1)
f2(z0) f2(z1) ... f2(zM ) f2(zM+1)

...
...

...
...

...
fd(z0) fd(z1) ... fd(zM ) fd(zM+1)

 .

Column index :: discrete time steps counter.
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Data driven framework

Can run many simulations with different initial conditions, physical
parameters and have an abundance of data (large dimensional data
matrices). To what end? What are the goals?

1 Understand the data: reveal latent structure.

2 Devise a low-dimensional approximation for faster numerical
simulations (e.g. for online applications, or optimization over a
parameter domain, digital twin design).

3 Develop forecasting skill.

4 Use for control (Model Predictive Control, MPC).

5 Discover governing equations.

6 Optimal sensor placement in a physical domain.
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Data driven framework

Example (Time-evolving graph: Melnyk, Klus, Montavon, Conrad 2020)

Suppose we are given a time-evolving graph G = (G1,G2, . . . ,GM ) with
adjacency matrices A1, A2, . . . , AM . The goal is to find a low dimensional
embedding that reveals the latent structure (e.g. metastable behaviour).
Gi+1 = T(Gi); Kf = f ◦T:: (Kf)(Gi) = f(Gi+1).

Observable f = (f1, . . . , fd)
T maps the data to higher (including infinitely)

dimensional Hilbert space (H, ⟨·, ·⟩) using the kernel trick. Suitable kernel
function k(Gi,Gj) defines the function f and the inner product in H
implicitly by

⟨f(Gi), f(Gj)⟩ = k(Gi,Gj) = Kij .

Method: Approximate a compression of K onto the subspace spanned by
f1, . . . , fd and use its selected eigenfunctions as a basis for new
coordinates. An example of the kernel is the Gaussiam kernel

k(Gi,Gj) = exp(−∥Ai −Aj∥2/(2σ2))

ZD NLA for KMD and DMD 24 / 261



Overview of the course Introduction Finite dimensional computation: DMD QR compressed DMD Snapshot reconstruction – modal decomposition Exact DMD Symmetric/Hermitian DMD Measure preserving DMD Appendix 1: Review of the symmetric eigenvalue problem Appendix 2: Orthogonal Procrustes’s problem Data driven identificationMotivating examples and problems The Koopman operator Data driven framework Data driven operator compression Koopman mode decomposition

Data driven framework

Example (Power networks: Susuki, Mezić, Raak, Hikihara)

Model–free precursor diagnostic of instabilities in power networks.
Available data are snapshots P1, P2, . . . of physical power flow variables
(e.g. voltage magnitudes and angles) at discrete time steps at m
measurement sites (each Pi is m× 1) such as generation plants,
substations etc.
The Pi’s are determined by internal states xi of a power system (rotating
frequencies and voltages of AC generators, states of controllers in plants
and substations etc.) that are assumed to change as xi+1 = T(xi).
Again, there is associated composition operator Kf = f ◦T.
Base flow patterns as coherent spatial units of power flows identified as
spanned by eigenfunctions of K.
The 2006 European interconnected grid disturbance clearly visible in
unstable modes of K (eigenvalues outside unit circle.)
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Data driven spectral analysis - applications

Other successful applications of DMD include e.g.

aeroacoustics

computational fluid dynamics

affective computing (analysis of videos for human emotion
recognition)

robotics (filtering external perturbation using DMD based prediction)

algorithmic trading on financial markets

analysis of infectious disease spread

neuroscience

data driven learning and control of UAV’s (drones)

Theoretical contributions and applications by S. Brunton, M. Colbrook, M.
Korda, N. Kutz, A. Mauroy, I. Mezić, P. Schmid, A. Townsend, ...
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Data driven framework
Snapshot matrix S with columns f(z0), f(zk+1)=(Kdf)(zk), zk+1=T(zk):

S=(f(z0) f(z1) ... f(zM ) f(zM+1))=

 f1(z0) f1(z1) ... f1(zM ) f1(zM+1)
f2(z0) f2(z1) ... f2(zM ) f2(zM+1)

...
...

...
...

...
fd(z0) fd(z1) ... fd(zM ) fd(zM+1)

∈Cd×(M+2).

(i) The snapshots are generated by a nonlinear system.
(ii) The snapshots are a Krylov sequence f ,Kdf ,K2

df , . . ., driven by the
linear operator Kd and evaluated along a trajectory initialized at z0.

It makes sense to find a matrix A ∈ Cd×d such that

Af(zk) = (Kdf)(zk) =

(
(Kf1)(zk)

...
(Kfd)(zk)

)
= f(T(zk)), k = 0, . . . ,M. (10)

Thus, if we set X = S(1 : d, 1 :M + 1), Y = S(1 : d, 2 :M + 2), then
such an A would satisfy Y = AX, and this could be extended linearly to
the span of the columns of X by A(Xv) = Yv, v ∈ CM+1. Define A to
solve ∥Y − AX∥F → min, e.g. A = YX†. A may not be unique!
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The DMD matrix A
Flexible: can use many trajectories
In general, X and Y are not necessarily extracted from a single trajectory.
The data may consist of several short bursts with different initial
conditions, arranged as a sequence of column vector pairs of snapshots
(xk,yk), where xk = f(zk), yk = f(T(zk)) column-wise so that a kth
column in Y corresponds to the value of the observable in the kth column
of X through the action of Kd.

Existence and uniqueness of A: A = YX†

Depending on the parameters d and M , the matrices X, Y can be square,
tall, or wide. Then, we can search for a linear transformation A such that
Y = AX. Such an A may not exist.
However, we can always define a particular matrix A which minimizes
∥Y − AX∥F . Clearly, if XT has a nontrivial null-space, A is not unique;
we can choose B so that BX = 0 and thus (A+B)X = AX. An
additional condition of minimality of ∥A∥F yields the well known solution
A = YX†, expressed using the Moore-Penrose pseudoinverse X† of X.
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Compression of K
Read the information in the snapshots matrix row-wise:

Ŝ(1 :M + 1, 1 : d) =

 f1(z0) f2(z0) f3(z0) ... fd(z0)
f1(z1) f2(z1) f3(z1) ... fd(z1)

...
...

... ...
...

f1(zM ) f2(zM ) f3(zM ) ... fd(zM )

 = XT

Ŝ(2 :M + 2, 1 : d) =

 f1(T(z0)) f2(T(z0)) f3(T(z0)) ... fd(T(z0))
f1(T(z1)) f2(T(z1)) f3(T(z1)) ... fd(T(z1))

...
...

... ...
...

f1(T(zM )) f2(T(zM )) f3(T(zM )) ... fd(T(zM ))

 = YT

Consider the action of K on the space FD spanned by the dictionary of
scalar functions D = {f1, . . . , fd}. That is, we seek a matrix
representation U of the compression ΨFDK|FD : FD −→ FD, where ΨFD

is a suitable projection with the range FD. This is the standard
construction: we need a representation of Kfi of the form

(Kfi)(s) = fi(T(s)) =

d∑
j=1

ujifj(s) + ρi(s), i = 1, . . . , d, s ∈ X . (11)
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Compression of K
Given limited information, the projection is feasible only in the discrete
(algebraic) sense: we can define the matrix U = (uji) ∈ Cd×d column-wise
by minimizing the residual ρi(s) in

(Kfi)(s) = fi(T(s)) =

d∑
j=1

ujifj(s) + ρi(s), i = 1, . . . , d, s ∈ X

over the states s = zk, using the values

(Kfi)(zk) = fi(T(zk)), i = 1, . . . , d; k = 0, . . . ,M. (12)

To that end, write the least squares residual

1

M + 1

M∑
k=0

|ρi(zk)|2 =
1

M + 1

M∑
k=0

|
d∑

j=1

ujifj(zk)− fi(T(zk))|2, (13)

which is the L2 residual with respect to the empirical measure defined as
the sum of the Dirac measures concentrated at the zk’s,
δM+1 = (1/(M + 1))

∑M
k=0 δzk .
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Compression of K
Hence, the columns of the matrix representation U are defined as the
solutions of the least squares problems

∫ ∣∣∣∣∣∣
d∑

j=1

ujifj−fi◦T

∣∣∣∣∣∣
2

dδM+1=γM

∥∥∥∥∥
[(

f1(z0) ... fd(z0)

... ...
...

f1(zM ) ... fd(zM )

)(
u1i

...
udi

)
−

(
fi(T(z0))

...
fi(T(zM ))

)]∥∥∥∥∥
2

2

→min
u1i,...,udi

,

for i = 1, . . . , d; γM = 1/(M + 1). The solutions of the above algebraic
least squares problems for all i = 1, . . . , d are compactly written as the
matrix U ∈ Cd×d that minimizes ∥XTU−YT ∥F . Recall that we seek an A
such that AX = Y, i.e. ∥AX−Y∥F = ∥XTAT −YT ∥F → min. Hence,

U = (XT )†YT ≡ (YX†)T = AT , (14)

and the action of K can be represented, using (11), as

K
(
f1(s) . . . fd(s)

)
=
(
f1(s) . . . fd(s)

)
U+

(
ρ1(s) . . . ρd(s)

)
.

Assume U is diagonalizable: U = QΛQ−1, with Λ = diag(λi)
d
i=1,

Q = (q1, . . . ,qd), Uqi = λiqi.
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Compression of K
For s ∈ X ,

K
(
f1(s) . . . fd(s)

)
Q =

(
f1(s) . . . fd(s)

)
QΛ+

(
ρ1(s) . . . ρd(s)

)
Q,

and the approximate eigenfunctions of K, extracted from the span of
f1, . . . , fd, are

(
ϕ1(s) . . . ϕd(s)

)
=
(
f1(s) . . . fd(s)

)
Q, (Kϕi)(s)=λiϕi(s) +

d∑
j=1

ρj(s)Qji.

In a numerical simulation, these eigenfunctions are accessible, as well as
the observables, only as the tabulated values for s ∈ {z0, . . . , zM}: ϕ1(z0) ϕ2(z0) ... ϕd(z0)

ϕ1(z1) ϕ2(z1) ... ϕd(z1)

...
...

...
...

ϕ1(zM+1) ϕ2(zM+1) ... ϕd(zM+1)

=
 f1(z0) f2(z0) ... fd(z0)

f1(z1) f2(z1) ... fd(z1)

...
...

...
...

f1(zM+1) f2(zM+1) ... fd(zM+1)

Q=STQ.
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Koopman modes – decomposition
Let now g(s)T = (g1(s), . . . , gd(s)) be a vector valued observable and let
g(s)T = (f1(s), . . . , fd(s))Γ, Γ = (γji) ∈ Cd×d. (Take gi = fi, so Γ = Id )

g(s)T =
(
f1(s) . . . fd(s)

)
QQ−1 =

(
ϕ1(s) . . . ϕd(s)

)
Q−1, s ∈ X .

Set Z = Q−T =
(
z1 . . . zd

)
, where zi is the ith column. Theng1(s)...

gd(s)

 = Q−T︸ ︷︷ ︸
Z

ϕ1(s)...
ϕd(s)

 =

d∑
i=1

ziϕi(s).

Since (Kϕi)(s) ≈ λiϕi(s), we have Koopman mode decomposition

(Kk
dg)(s) =

(Kkg1)(s)
...

(Kkgd)(s)

 ≈ d∑
i=1

ziϕi(s)λ
k
i . (15)

AT = U = QΛQ−1 implies AQ−T = Q−TΛ, i.e. the columns of Q−T are
the (right) eigenvectors of A. Hence, for computing the Koopman modes,
we can proceed with computing the eigenvectors of A.
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DMD: A data driven spectral analysis
Now we can formulate pure matrix computational problem: Suppose we
are given a sequence of snapshots fi ∈ Cn of an underlying dynamics, that
are driven by an unaccessible black box linear operator A;

fi+1 ≈ Afi, i = 1, . . . ,m, m < n, (1)

with some initial f1 and a time lag δt. No other information is available.

The two basic tasks of the Dynamic Mode Decompozition (DMD) are

1 Identify approximate eigenpairs (λj , zj) such that

Azj ≈ λjzj , λj = |λj |eiωjδt, j = 1, . . . , k; k ≤ m, (2)

2 Derive a spectral spatio–temporal representation of the snapshots fi:

fi ≈
ℓ∑

j=1

zςjαjλ
i−1
ςj ≡

ℓ∑
j=1

zςjαj |λςj |i−1eiωςj (i−1)δt, i = 1, . . . ,m. (3)

ZD NLA for KMD and DMD 34 / 261



Overview of the course Introduction Finite dimensional computation: DMD QR compressed DMD Snapshot reconstruction – modal decomposition Exact DMD Symmetric/Hermitian DMD Measure preserving DMD Appendix 1: Review of the symmetric eigenvalue problem Appendix 2: Orthogonal Procrustes’s problem Data driven identificationA digression: SVD, low rank approximation and least squares Schmid’s DMD Data driven residuals and refined modes

Tool: Krylov subspaces

For fi+1 = Afi, i = 1, 2, . . . ,m, define the Krylov matrices

Xi =
(
f1 f2 . . . fi−1 fi

)
, Yi =

(
f2 f3 . . . fi fi+1

)
≡ AXi,

and the corresponding Krylov subspaces Xi = range(Xi) ⊂ Cn.

Assume that at the index m, Xm is of full column rank. This implies

X1 ⊊ X2 ⊊ · · · ⊊ Xi ⊊ Xi+1 ⊊ · · · ⊊ Xm ⊊ · · · ⊊ Xℓ = Xℓ+1, ,

i.e. dim(Xi) = i for i = 1, . . . ,m, and there must be the smallest
saturation index ℓ at which Xℓ = Xℓ+1.

AXℓ ⊆ Xℓ, It is well known that then Xℓ is the smallest A-invariant
subspace that contains f1.

The action of A on Xm is known, A(Xmv) = Ymv for any v ∈ Cm.
Hence, useful spectral information can be obtained using the
computable restriction PXmA

∣∣
Xm

, that is, the Ritz values and vectors
extracted using the Rayleigh quotient of A with respect to Xm.
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Tool: Krylov decomposition and Rayleigh-Ritz extraction

To that end, let the vector c = (ci)
m
i=1 be computed from the least

squares approximation

∥fm+1 −Xmc∥2 −→ min
c

(4)

and let rm+1 = fm+1 −Xmc be the corresponding residual. Recall
that, by virtue of the theorem of projection, Xmc = PXmfm+1 and
that rm+1 is orthogonal to the range of Xm, X∗

mrm+1 = 0.

Let Em+1 = rm+1e
T
m, em =

(
0, . . . , 0, 1

)T
. The Krylov

decomposition reads:

AXm = XmCm + Em+1, Cm =


0 0 . . . 0 c1
1 0 . . . 0 c2
0 1 . . . 0 c3
...

. . .
. . .

...
...

0 0 . . . 1 cm

 ,
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Rayleigh–Ritz extraction – basic properties

1 Cm = (X∗
mXm)−1(X∗

mAXm) ≡ X†
mAXm = (X∗

mXm)−1(X∗
mYm) is

the Rayleigh quotient, i.e. the matrix representation of PXmA
∣∣
Xm

2 If rm+1 = 0 (and thus Em+1 = 0 and m = ℓ) then AXm = XmCm

and each eigenpair Cmw = λw of Cm yields an eigenpair of A,
A(Xmw) = λ(Xmw).

3 If rm+1 ̸= 0, then (λ, z ≡ Xmw) is an approximate eigenpair,
A(Xmw) = λ(Xmw) + rm+1(e

T
mw), i.e. Az = λz + rm+1(e

T
mw).

The Ritz pair (λ, z) is acceptable if the residual

∥Az − λz∥2
∥z∥2

=
∥rm+1∥2
∥z∥2

|eTmw|

is sufficiently small. It holds that z∗rm+1 = 0, and

λ =
z∗Az
z∗z

= argminζ∈C∥Az − ζz∥2

(λz is the orthogonal projection of Az onto the span of z).
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Beautiful structure and bad news

The spectral decomposition of Cm has beautiful structure. Assume for
simplicity that the eigenvalues λi, i = 1, . . . ,m, are algebraically simple. It
is easily checked that the spectral decomposition of Cm reads

Cm = V−1
m ΛmVm, where Λm =

(
λ1

. . .
λm

)
, Vm =


1 λ1 ... λm−1

1

1 λ2 ... λm−1
2

...
... ...

...
1 λm ... λm−1

m

 .

The Ritz vectors are the columns of Wm = XmV−1
m ; Xm =WmVm.

Bad news: The Vandermonde matrix Vm is ill-conditioned!

The condition number κ2(Vm) ≡ ∥Vm∥2∥V−1
m ∥2 of any 100× 100 real

Vandermonde matrix is larger than 3 · 1028,
(κ2(Vm) ≥ 2m−2/

√
m,m = 100, [Gautschi]).
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Beautiful structure and bad news

The Ritz vectors corresponding to the λj ’s are then the columns of

Wm ≡ XmV−1
m ≡ (w1 . . . wm). (5)

If we define αj = ∥wj∥2, zj = wj/αj , Zm = (z1 . . . zm), then the
decomposition (6), with ℓ = m, follows from

Xm = WmVm = Zmdiag(αj)
m
j=1Vm

=
(
z1 z2 . . . zm

)( α1
α2

. . .
αm

)
1 λ1 ... λm−1

1

1 λ2 ... λm−1
2

...
... ...

...
1 λm ... λm−1

m

 .

ZD NLA for KMD and DMD 39 / 261



Overview of the course Introduction Finite dimensional computation: DMD QR compressed DMD Snapshot reconstruction – modal decomposition Exact DMD Symmetric/Hermitian DMD Measure preserving DMD Appendix 1: Review of the symmetric eigenvalue problem Appendix 2: Orthogonal Procrustes’s problem Data driven identificationA digression: SVD, low rank approximation and least squares Schmid’s DMD Data driven residuals and refined modes

Ill-conditioning of Vandermonde matrices: examples

V20, i = 1, . . . , 200
0 50 100

κ
2(V

20
)

100

105

1010

1015

1020

1025
tests #1, #2

V20, i = 1, . . . , 100
0 50 100

κ
2(V

20
)

100

1050

10100

10150

10200

10250

10300
test #3

Figure: The spectral condition number over three sets of the total of 300
Vandermonde matrices of dimension m = 20, V20(λi); (λi) = eig(A). Left
panel: First, 100 matrices are generated in Matlab as A = rand(m,m),
A = A/max(abs(eig(A))). Then, 100 matrices are generated as
A = randn(m,m), A = A/max(abs(eig(A))). Right panel: 100 samples of
V(λi) are generated using the eigenvalues of A = expm(-inv(rand(m,m))),
A = A/max(abs(eig(A))). The horizontal line marks 1/(mε) ≈ 2.25e+14.
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Caveat ill-conditioning: Hilbert matrix example

Ill-conditioning is not always obvious in the sizes of its entries – the entries
of the innocuous-looking 100× 100 Hilbert matrix Hij = 1/(i+ j − 1)

range from 1/199 ≈ 5.025 · 10−3 to 1, and κ2(H) > 10150.

One should keep in mind that the matrix condition number is a matrix
function f(A) = ∥A∥∥A†∥2, with its own condition number. By a result of
Higham, condition number of the condition number is the condition
number itself.

condition number(condition number)=condition number [Higham]

>> cond(hilb(100))
ans = 4.6226e+19

If the computed/estimated condition number is above 1/eps (in Matlab,
1/eps=4.503599627370496e+15), it might be a severe underestimate.
This may lead to an underestimate of extra precision needed to handle the
ill–conditioning.
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Exercise

Exercise

We used the fact that for the companion matrix

Cm =


0 0 . . . 0 c1
1 0 . . . 0 c2
0 1 . . . 0 c3
...

. . .
. . .

...
...

0 0 . . . 1 cm


with algebraically simple eigenvalues λ1, . . . , λm, the spectral
decomposition reads

Cm = V−1
m ΛmVm, where Λm =

(
λ1

. . .
λm

)
, Vm =


1 λ1 ... λm−1

1

1 λ2 ... λm−1
2

...
... ...

...
1 λm ... λm−1

m

 .

Prove that! Use the connection between the companion matrix and
polynomials.
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Rayleigh-Ritz extraction is better with ONB

To extract spectral information on A from the span of Xm, it is preferable
to work with an orthonormal basis for the range of Xm.

Orthonormalization via Gram-Schmidt, or the QR factorization

1 Xm = QR. Since Xm is ill–conditioned Gram–Schmidt must be
carefully implemented to make Q numerically orthogonal. Direct QR
factorization (e.g. using Householder reflectors) is an alternative. In
any case, R is ill–conditioned.

2 From AXm = Ym = AQR, Q∗AQ = Q∗YmR
−1. Since R is

ill–conditioned the data-driven formula for the Rayleigh quotient is
badly conditioned.

3 Xm can be numerically rank-deficient and noisy, so using R−1 is
ill-advised.
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Why is Xm expected to be ill–conditioned

The matrix Xm can be nearly rank defficient. To illustrate, assume that A
is diagonalizable with eigenpairs Aai = αiai, and that its eigenvalues αi

are enumerated so that 0 ̸= |α1| ≥ |α2| ≥ · · · ≥ |αn|. Let f1 be expressed
in the eigenvector basis as f1 = ϕ1a1 + · · ·+ ϕnan. Then

fi+1=Aif1 = αi
1

(
ϕ1a1 +

(
α2

α1

)i

ϕ2a2 +

(
α3

α1

)i

ϕ3a3 +· · ·+
(
αn

α1

)i

ϕnan

)
.

Hence, if e.g. |α1| ≥ |α2| > |α3|, then for j ≥ 3, limi→∞(αj/α1)
i = 0,

and thus, with big enough i the fi’s will stay close to the span of a1 and
a2, provided that ϕ1 ̸= 0, ϕ2 ̸= 0. This means that relatively small
changes of Xm can make it rank deficient; its range may change
considerably under tiny perturbations. In the context of spectral
approximations, this is desirable and we hope that the fi’s will become
numerically linearly dependent as soon as possible; on the other hand we
must stay vigilant in computing with Xm and Ym as numerical detection
of rank deficiency in the presence of noise is a delicate issue.

ZD NLA for KMD and DMD 44 / 261



Overview of the course Introduction Finite dimensional computation: DMD QR compressed DMD Snapshot reconstruction – modal decomposition Exact DMD Symmetric/Hermitian DMD Measure preserving DMD Appendix 1: Review of the symmetric eigenvalue problem Appendix 2: Orthogonal Procrustes’s problem Data driven identificationA digression: SVD, low rank approximation and least squares Schmid’s DMD Data driven residuals and refined modes

Nearly rank deficient and ill-conditioned – a connection

Suppose Xm is subject to a perturbation δXm, Xm ⇝ X̃m = Xm + δXm.
If X̃m is rank deficient, what can be said about the size of δXm? This will
be answered in detail using the SVD decomposition, but it is instructive to
analyze this directly. Since Xm is rectangular of full column rank, its
generalized inverse is X†

m = (X∗
mXm)−1X∗

m, so that X†
mXm = Im. Write

X̃m = (In + δXmX†
m)Xm.

Then ∥δXmX†
m∥ ≥ 1 in any matrix norm ∥ · ∥. (Otherwise,

∥δXmX†
m∥ < 1, then spr(δXmX†

m) < 1 and In + δXmX†
m would be

nonsingular, and X̃m of full column rank.) Hence, 1 ≤ ∥δXm∥∥X†
m∥, i.e.

∥δXm∥ ≥
1

∥X†
m∥

, i.e.
∥δXm∥
∥Xm∥

≥ 1

∥Xm∥∥X†
m∥
≡ 1

κ(Xm)
. (6)

κ(Xm) = ∥Xm∥∥X†
m∥ is the condition number of Xm in the norm ∥ · ∥.

ZD NLA for KMD and DMD 45 / 261



Overview of the course Introduction Finite dimensional computation: DMD QR compressed DMD Snapshot reconstruction – modal decomposition Exact DMD Symmetric/Hermitian DMD Measure preserving DMD Appendix 1: Review of the symmetric eigenvalue problem Appendix 2: Orthogonal Procrustes’s problem Data driven identificationA digression: SVD, low rank approximation and least squares Schmid’s DMD Data driven residuals and refined modes

Gram Schmidt: z ≡ y − Pxy, where Pxy = (xTy/xTx)x

t̃ =
xT y

xTx
(1 + εt) = t(1 + εt); z = y − tx; z̃ = y − t̃x

x�

6

yy − Pxy z̃

ϑ

φ
ϑ̃− ϑ

�
�
�
�
�
��

-�
�
�
�
�
���

�
�

�
�
�
�
�
�
��3

--

6

Pxy
(1 + εt)Pxy

tanφ =
|εt|∥Pxy∥2
∥y − Pxy∥2

=
|εt|

∥y−Pxy∥2
∥Pxy∥2

=
1

tanϑ
|εt|, tan ϑ̃ =

tanϑ

|εt|
. (7)

Nonorthogonality caused by εt depends on 1/ tanϑ.
Now it should be clear that Gram–Schmidt on the columns of Xm is
numerically not reliable.

ZD NLA for KMD and DMD 46 / 261



Overview of the course Introduction Finite dimensional computation: DMD QR compressed DMD Snapshot reconstruction – modal decomposition Exact DMD Symmetric/Hermitian DMD Measure preserving DMD Appendix 1: Review of the symmetric eigenvalue problem Appendix 2: Orthogonal Procrustes’s problem Data driven identificationA digression: SVD, low rank approximation and least squares Schmid’s DMD Data driven residuals and refined modes

SVD and best low rank approximation

Theorem

Eckart-Young-Mirsky Let the SVD of M ∈ Cn×m be

M = UΣV ∗, Σ = diag(σi)
min(m,n)
i=1 , σ1 ≥ · · · ≥ σmin(m,n) ≥ 0.

For k ∈ {1, . . . ,min(m,n)}, define Uk = U(:, 1 : k), Σk = Σ(1 : k, 1 : k),
Vk = V (:, 1 : k), and Mk = UkΣkV

∗
k . Then

min
rank(N)≤k

∥M −N∥2 = ∥M −Mk∥2 = σk+1 (8)

min
rank(N)≤k

∥M −N∥F = ∥M −Mk∥F =

√√√√min(n,m)∑
i=k+1

σ2i . (9)

Hence, if σm ≪ σ1, the condition number κ2(Xm) = ∥Xm∥2∥X†
m∥2 = σ1

σm

is large, Xm can be made singular with a perturbation δXm such that
∥δXm∥2/∥Xm∥2 = σm/σ1 = 1/κ2(Xm)≪ 1.
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Least squares problem: a review

The linear least squares problem is generically written as

∥Ax− b∥2 −→ min
x
, (10)

where A ∈ Rm×n, b ∈ Rm.

It is a computational expression of the Gauss-Markov linear model
Ax0 = b0, where b = b0 + e is assumed noisy measurement of an ideal b0,
and the measurement error vector e is assumed a random vector with
expectation zero and variance σ2Im (the errors in each measurement
(equation) are uncorrelated and with same variance).

By the Gauss–Markov theorem, if A is or rank n, the solution x of (10) is
the best linear unbiased estimator of x0.
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In the case of full column rank matrix A, the solution is uniquely
determined as the unique solution of a linear system of equation, derived
using the projection theorem. If x is optimal, then the residual Ax− b
must be orthogonal to the range of A, i.e.

AT (Ax− b) = 0,

or, equivalently, the solution vector x is the unique solution of the so
called normal equations

(ATA)x = AT b, x = (ATA)−1AT b.

The same set of equation is (of course) obtained by minimizing

F (x) = ∥Ax− b∥22

using calculus. In the numerical linear algebra, we are very careful and
avoid using normal equations.
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Läuchli’s example

Example (Läuchli: Consider the least squares problem ∥Ax− b∥2 −→ min)

A =



1 1 1 1 1
ϵ 0 0 0 0
0 ϵ 0 0 0
0 0 ϵ 0 0
0 0 0 ϵ 0
0 0 0 0 ϵ

 , b =



ϵ
0
−5
5
−5
0

 , where ϵ ∈ R is such that |ϵ| ≪ 1.

The normal equations matrix

H = ATA =

 1+ϵ2 1 1 1 1
1 1+ϵ2 1 1 1
1 1 1+ϵ2 1 1
1 1 1 1+ϵ2 1
1 1 1 1 1+ϵ2

 (11)

has eigenvalues λ1 = 5 + ϵ2, λ2 = . . . = λ5 = ϵ2; these are also the
singular values of H.
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Läuchli’s example

Example (... continued)

The singular values of A are thus σ1 =
√
5 + ϵ2, σ2 = . . . = σ5 = |ϵ|.

According to the Eckart-Young-Mirsky’s theorem, the minimal
perturbations δA, δH that make, respectively, A and H singular are of
sizes

∥δA∥2
∥A∥2

=
|ϵ|√
5 + ϵ2

,
∥δH∥2
∥H∥2

=
ϵ2

5 + ϵ2
.

This corresponds to a relation between the condition numbers,

κ2(A) =

√
5 + ϵ2

|ϵ|
, κ2(H) =

5 + ϵ2

ϵ2
= κ2(A)

2.

The extreme case is when |ϵ| is so small that the floating point value of
1 + ϵ2 is 1, so that the computed matrix H stored in the computer
memory is the rank–one matrix of all ones. To make the case even more
difficult, the vector b is selected so that (for small |ϵ|) is nearly orthogonal
to the range of A.
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Solving the LS problem using the SVD

Let A = U
(
Σ
0

)
V ∗ be the SVD of A with

Σ =

(
Σ̂ 0
0 0

)
, Σ̂ =

(
σ1 ·

σr

)
, σ1 ≥ · · · ≥ σr > 0.

The rank of A is r and in the partitions U = (Ur, Ur⊥), V = (Vr, Vr⊥), Ur

spans the range of A, and the columns of Vr⊥ are an orthonormal basis for
the null-space.
This decomposition allows for a convenient change of variable so that the
objective function of (10) becomes trivial to optimize:

∥Ax− b∥2 = ∥UΣ(V ∗x)− b∥2 = ∥Σy − c∥2 (y = V ∗x, c = U∗b)

=

∥∥∥∥( Σ̂ 0r,n−r

0m−r,r 0m−r,n−r

)(
y1
y2

)
−
(
c1
c2

)∥∥∥∥
2

−→ min .

Clearly, y1 = Σ̂−1c1 and y2 can be arbitrary (n− r)× 1. Each y gives an
optimal solution x = V y = Vry1 + Vr⊥y2 = x1 + x2, where x2 = Vr⊥y2
belongs to the null space of A. Note that ∥x∥22 = ∥x1∥22 + ∥x2∥22.
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Solving the LS problem using the SVD

If r = n, then Σ̂ = Σ, the null-space basis Vr⊥ is void and x = x1 is
uniquely determined. Otherwise, all possible solutions are a linear manifold
S = VrΣ̂

−1U∗
r b+N (A). The shortest (in Euclidean norm) vector in S is

x = VrΣ̂
−1U∗

r b, (12)

that is obtained with the shortest y, i.e. with y2 = 0 and x2 = 0. Note
that the expression (12) for x is linear in b. In the case of square full rank
A, the optimal solution x = A−1b is expressed using the SVD as
x = V Σ−1UT b, which is precisely (12). This motivates a generalization of
the matrix inverse to the case of general rectangular matrices, of arbitrary
ranks. The solution of (12), that is of minimal norm can be expressed as(

y1
y2

)
=

(
Σ̂−1c1
0n−r,1

)
=

(
Σ̂−1 0r,m−r

0n−r,r 0n−r,m−r

)(
c1
c2

)
= Σ†c,

Σ† =

(
Σ̂−1 0r,m−r

0n−r,r 0n−r,m−r

)
.
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Solving the LS problem. The Moore-Penrose pseudoinverse

The matrix Σ† ∈ Rn×m is in a sense the best that can be done in
mimicking the inverse of Σ. It represents a linear operator Rm −→ Rn

(hence of dimensions n×m) that satisfies

Σ†Σ =

(
Σ̂−1 0
0 0

)(
Σ̂ 0
0 0

)
=

(
Ir 0
0 0

)
∈ Rn×n,

ΣΣ† =

(
Σ̂ 0
0 0

)(
Σ̂−1 0
0 0

)
=

(
Ir 0
0 0

)
∈ Rm×m.

Using Σ†, the solution x from (12) can be written as

x = V y = VrΣ̂
−1UT

r b = V Σ†UT b = A†b, (13)

where A† = V Σ†UT = VrΣ̂
−1UT

r is the Moore–Penrose generalized
inverse of A. (In the case of complex matrix, A† = V Σ†U∗ = VrΣ̂

−1U∗
r .)
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On using truncated SVD
The solution formula (13) assumes a clean cut in the SVD of A so that
the rank of A is indisputable. Further, it is derived purely in the framework
of linear algebra, ignoring the fact that in an application b = b0 + e is
contaminated by noise, and that the true vector b0 is not accessible.
Writing (13) in the form (U = (u1, ..., um), V = (v1, ..., vn))

x = V Σ†UT b =

r∑
i=1

vi
uTi b

σi
=

r∑
i=1

vi(
uTi b0
σi

+
uTi e

σi
)

reveals the structure of the solution that can be leveraged to improve the
accuracy. Computational difficulties that are immediately observed are

1 The numerically computed SVD is used. If σ̃1 ≥ · · · ≥ σ̃n are the
computed singular values, the smallest ones might be computed with
large errors. (They are exact for some A+ δA.)

2 The noise vector e might have large component uTi e so that uTi b0 is
entirely overshadowed by noise. If the corresponding singular value in
the denominator is small and computed with large error, then the
solution vector has an inaccurate component in the direction of vi.
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Phillips’s example

Example (Phillips’s example: Fredholm integral equation of the first kind)

y(ξ) =

∫ b

a
K(ξ, ζ)x(ζ)dζ.

Here y denotes a function that is available as a sequence of measurements
at ξ1 < · · · < ξm, yi = y(ξi) + ei, where ei is a measurement error. The
integral with the known kernel K(ξ, ζ) models measurement apparatus, and
the goal is to find an approximation of the unknown function x(ζ), so that∫ b

a
K(ξi, ζ)x(ζ)dζ ≈ yi = y(ξi) + ei, i = 1, . . . ,m.

The integral is computed using quadrature rule with the nodes
ζ1 < · · · < ζn and weights d1, . . . , dn, and the task is to find xj ≈ x(ζj)

n∑
j=1

djK(ξi, ζj)xj ≈ yi + ϵi = y(ξi) + ei + ϵi, i = 1, . . . ,m, (14)

where ϵi denotes the error in computing the integral.
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Phillips’s example

Example (Phillips’s example ... continued)

It is clear that more measurements of y (adding more equations, i.e. larger
m) provide more information on the unknown function, and that the
equations cannot be satisfied exactly because of errors in the right hand
side. Under a realistic assumption that |ei| ≫ |ϵi|, the errors ei + ϵi are
dominated by ei for all i. To write (14) more compactly, set

y = (yi)
m
i=1, K = (K(ξi, ζj)) ∈ Rm×n, x = (xj)

n
j=1, D = diag(dj)

n
j=1.

Assuming sufficiently accurate quadrature formula, the errors ϵi are
neglected and (14) becomes a linear regression model

KDx = y + e.

The error vector e is dominated by statistically independent measurement
errors from N (0, S2), where the positive definite S = diag(si)

n
i=1 carries

standard deviations of the ei’s. A good estimate of S is usually available.
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Phillips’s example

Example (Phillips’s example ... continued)

To normalize the error variances, the model is scaled with S−1 to get

b = Ax+ e′,

where
b = S−1y, A = S−1KD, e′ = S−1e.

Note that e′ ∼ N (0, Im).
Solving the linear system Ax = b for x is illusory. A reasonable alternative
is to make the residual r = Ax− b in a suitable norm as small as possible.
In the case of the Euclidean norm, x is defined as the solution of the
problem

∥Ax− b∥2 → min
x
.
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Phillips’s example

Example (Phillips’s example ... continued)

D. L. Phillips, A Technique for the Numerical Solution of Certain Integral
Equations of the First Kind, J. ACM 9 (1) 1962, pp. 84-97.

Figure: The data for the Phillips’s example. x generated first, then b = Ax.
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Phillips’s example

Example (Phillips’s example ... continued)

Figure: The SVD solution of the “noise free” least squares problem of a Phillips’
example. The condition number of A is κ2(A) > 1013.

Now, consider b contaminated by noise and solve as x = A†b.
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Phillips’s example

Example (Phillips’s example ... continued)

Figure: The SVD solution of a noisy least squares problem of a Phillips’ example.
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Phillips’s example

Example (Phillips’s example ... continued)

Figure: The SVD solution of a noisy least squares problem of a Phillips’ example.
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Phillips’s example
Example (Phillips’s example ... continued)

Figure: The SVD solution of a noisy least squares problem of a Phillips’ example
using 50 dominant singular values, and the element-wise relative errors in the
solution vector. Compare with the first plot in Figure 8.

Exercise

Write a Matlab (or Python, R, Octave, ...) code for the Phillips’s example.
Use D. L. Phillips, A Technique for the Numerical Solution of Certain
Integral Equations of the First Kind, J. ACM 9 (1) 1962, pp. 84-97.
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Least Squares Solutions: A review

A︸︷︷︸
m×n

permutation︷︸︸︷
P = Q

(
R
0

)
, R =



■ ■ ■ ■ ■ ■
0 ■ ■ ■ ■ ■
0 0 ■ • ■ ♦
0 0 0 • ■ ♦
0 0 0 0 ■ ♦
0 0 0 0 0 ♦


Q∗Q = Im.

|Rii| ≥

√√√√ j∑
k=i

|Rkj |2, for all 1 ≤ i ≤ j ≤ n. (15)

|R11| ≥ |R22| ≥· · ·≥ |Rρρ| ≫ |Rρ+1,ρ+1| ≥· · ·≥ |Rnn| (16)

The structure (15), (16) may not be rank revealing but it must be
guaranteed by the software (e.g. LAPACK, Matlab). Implemented in
LINPACK in 1971., adopted by (Sca)LAPACK and used in many packages.
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Least Squares Solutions: A review

Let rank(A) = r,

AP = QR =

(
R[11] R[12]

0 0

)
, Qr = Q(:, 1 : r)

∥Ax− b∥2 = ∥Q
(

R[11] R[12]

0 0
0 0

)
P Tx− b∥2

= ∥
(

R[11] R[12]

0 0
0 0

)(
y1
y2

)
−
(
c1
c2

)
∥2 → min,

(
y1
y2

)
=

(
R−1

[11]c1

0

)

x = Py = P

(
R−1

[11]Q
∗
rb

0

)
. x has at least n− r zeros.

If r = n then x = A†b by virtue of uniqueness. Otherwise, this x is
different from A†b.
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Least Squares Solutions: Example, 100× 60 of rank 40

x1=A\b, x2=pinv(A)*b; norm(x1)=0.3539; norm(x2)=0.1599
norm(A*x1-b)=7.623047315933105e+00

norm(A*x2-b)=7.623047315933104e+00
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Schmid’s DMD

To avoid the ill-conditioning, Schmid used the thin truncated SVD
Xm = UΣV ∗ ≈ UkΣkV

∗
k , where Uk = U(:, 1 : k) is n× k orthonormal

(U∗
kUk = Ik), Vk = V (:, 1 : k) is m× k, also orthonormal (V ∗

k Vk = Ik),
and Σk = diag(σi)

k
i=1 contains the largest k singular values of Xm. In

brief, Uk is the POD basis for the snapshots f1, . . . , fm. Since

Ym = AXm ≈ AUkΣkV
∗
k , and AUk = YmVkΣ

−1
k , (17)

the Rayleigh quotient Sk = U∗
kAUk with respect to the range of Uk can be

computed as
Sk = U∗

kYmVkΣ
−1
k , (18)

which is suitable for data driven setting because it does not use A
explicitly. Clearly, (17, 18) only require that Ym = AXm; it is not
necessary that Ym is shifted Xm (single trajectory). Each eigenpair (λ,w)
of Sk generates a Ritz pair (λ, z) = (λ,Ukw) for A. If A∗ = A then (in
theory) S∗

k = Sk – important for Hermitian DMD.
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Schmid’s DMD

Algorithm [Zk,Λk] = DMD(Xm,Ym)

Input: • Xm = (x1, . . . ,xm),Ym = (y1, . . . ,ym) ∈ Cn×m that define a
sequence of snapshots pairs (xi,yi ≡ Axi). (Tacit assumption is that
n is large and that m≪ n.)

1: [U,Σ, V ] = svd(Xm) ; {The thin SVD: Xm = UΣV ∗, U ∈ Cn×m,
Σ = diag(σi)

m
i=1, V ∈ Cm×m}

2: Determine numerical rank k.
3: Set Uk = U(:, 1 : k), Vk = V (:, 1 : k), Σk = Σ(1 : k, 1 : k)
4: Sk = ((U∗

kYm)Vk)Σ
−1
k ; {Schmid’s formula for the Rayleigh quotient

U∗
kAUk}

5: [Wk,Λk] = eig(Sk) {Λk = diag(λi)
k
i=1; SkWk(:, i) = λiWk(:, i);

∥Wk(:, i)∥2 = 1}
6: Zk = UkWk {Ritz vectors}

Output: Zk, Λk
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Data driven (computable) residual

Not all computed Ritz pairs will provide good approximations of eigenpairs
of the underlying A, and it is desirable that each pair is accompanied with
an error estimate that will determine whether it can be accepted and used
in the next steps of a concrete application. The residual is computationally
feasible and usually reliable measure of fitness of a Ritz pair. With a
simple modification, the DMD Algorithm can be enhanced with residual
computation, without using A explicitly.

Proposition

For the Ritz pairs (λi, Zk(:, i) ≡ UkWk(:, i)), i = 1, . . . , k, computed in
the DMD Algorithm, the residual norms can be computed as follows:

rk(i) = ∥AZk(:, i)− λiZk(:, i)∥2 = ∥(YmVkΣ
−1
k )Wk(:, i)− λiZk(:, i)∥2.

(19)
Further, if A = Sdiag(αi)

n
i=1S

−1, then minαj |λi − αj | ≤ κ2(S)rk(i) (by
the Bauer–Fike Theorem).
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Bauer–Fike’s theorem

Theorem (Bauer-Fike)

Let A be diagonalizable, A = SΛS−1. If ρ is an eigenvalue of A+ δA, then
for ∥ · ∥ ∈ {∥ · ∥2, ∥ · ∥1, ∥ · ∥∞}

min
i=1:n

|λi − ρ| ≤ ∥S∥∥S−1∥∥δA∥.

Proof: Ifρ is an eigenvalue of A a well, then we are done. Otherwise,
A− ρI an Λ− ρI are nonsingular. Since S−1(A+ δA− ρI)S is singular,
Λ + S−1δAS− ρI is singular as well. Then

Λ + S−1δAS− ρI = (Λ− ρI)(I + (Λ− ρI)−1S−1δAS)

implies ∥(Λ− ρI)−1S−1δAS∥ ≥ 1 in any matrix norm ∥ · ∥. Hence, for
∥ · ∥ ∈ {∥ · ∥2, ∥ · ∥1, ∥ · ∥∞}

1 ≤ ∥S−1∥∥S∥∥δA∥∥(Λ− ρI)−1∥ = ∥S−1∥∥S∥∥δA∥ 1

mini=1:n |λi − ρ|
.

ZD NLA for KMD and DMD 70 / 261



Overview of the course Introduction Finite dimensional computation: DMD QR compressed DMD Snapshot reconstruction – modal decomposition Exact DMD Symmetric/Hermitian DMD Measure preserving DMD Appendix 1: Review of the symmetric eigenvalue problem Appendix 2: Orthogonal Procrustes’s problem Data driven identificationA digression: SVD, low rank approximation and least squares Schmid’s DMD Data driven residuals and refined modes

Commutative diagram

A • • ρ = λj + δλj , |δλj | ≤ ∥S∥2∥S−1∥2∥δA∥2
@

@
@
@
@R �

�
�
�
��
-

backward
error

exact computation of eigevalues

computed (ρ, x), Ax ≈ ρx • λj = exact eigenvalue of A

A+ δA ∥δA∥2 ≤ ∥r∥2/∥x∥2, δA = −rx∗/(x∗x)•

Figure: Commutative diagram for (A− r/(x∗x))x = ρx; r = Ax− ρx.

Error analysis

Error = distance from an approx. to an unknown object (ρ− λj).
Residual = a measure of failure to satisfy defining equation,
r = Ax− ρx.
Backward error = a contrieved change of the input data to justify the
computed result. ((A+ δA)x = ρx, δA = −rx∗/(x∗x))
Sensitivity analysis (perturbation theory): A 7→ A+ δA causes
λ 7→ λ+ δλ; |δλ| ≤ cond · ∥δA∥2. cond = κ2(S) = ∥S∥2∥S−1∥2.
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Data driven (computable) residual

Good Ritz pairs can be selected using a data driven (computable) residuals
∥Azi − λizi∥2, [Z.D., I. Mezić, R. Mohr, SISC 2018.]

Example

The well studied and understood model of laminar flow around a cylinder
is based on the two-dimensional incompressible Navier-Stokes equations

∂v

∂t
= −(v · ∇)v + ν∆v − 1

ρ
∇p, ∇ · v = 0, (20)

where v = (vx, vy) is velocity field, p is pressure, ρ is fluid density and ν is
kinematic viscosity. The flow is characterized by the Reynolds number
Re = v∗D/ν where, for flow around circular cylinder, the characteristic
quantities are the inlet velocity v∗ and the cylinder diameter D. For a
detailed analytical treatment of the problem see [Bagheri], [Glaz+et al.];
for a more in depth description of the Koopman analysis of fluid flow we
refer to [Mezić], [Rowley].
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Data driven (computable) residual
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Figure: Left: Comparison of the residuals of the Ritz pairs computed by the
DMD RRR Algorithm with velocities as observables (V-DMD, circles ◦) and with
both velocities and pressures (VP-DMD, crosses, ×). Right: Selected Ritz values
with velocities as observables (◦) and with both velocities and pressures (×).
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Refined Ritz vectors

The Ritz vectors are not optimal eigenvectors approximations from a given
subspace Uk = range(Uk). Hence, for a computed Ritz value λ, instead of
the associated Ritz vector, we can choose a vector z ∈ Uk that minimizes
the residual. From the variational characterization of the singular values, it
follows that

min
z∈Uk\{0}

∥Az − λz∥2
∥z∥2

= min
w ̸=0

∥AUkw − λUkw∥2
∥Ukv∥2

= min
∥w∥2=1

∥(AUk − λUk)w∥2 = σmin(AUk − λUk),

where σmin(·) denotes the smallest singular value of a matrix, and the
minimum is attained at the right singular vector wλ corresponding to
σλ ≡ σmin(AUk − λUk). As a result, the refined Ritz vector corresponding
to λ is Ukwλ and the optimal residual is σλ. Can be applied in data driven
setting.
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Data driven refinement of Ritz vectors

The minimization of the residual can be replaced with computing the
smallest singular value with the corresponding right singular vector of
Bk − λUk, where Bk ≡ AUk = YmVkΣ

−1
k . Compute the QRF

(
Uk Bk

)
= QR, R =

( k k

k R[11] R[12]

k′ 0 R[22]

)
, k′ = min(n− k, k)

and write the pencil Bk − λUk as

Bk−λUk = Q

((
R[12]

R[22]

)
− λ

(
R[11]

0

))
≡ QRλ, Rλ =

(
R[12] − λR[11]

R[22]

)
.

Theorem

Let for the Ritz value λ = λi, wλi
denote the right singular vector of the

smallest singular value σλi
of the matrix Rλi

. Then z = zλi
≡ Ukwλi

minimizes the residual, whose minimal value equals σλi
= ∥Rλi

wλi
∥2.
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Enhanced DMD Algorithm

[Zk,Λk, rk, ρk] = DMD RRRR(Xm,Ym; ϵ) {Refined Rayleigh-Ritz
DMD}

1: Dx = diag(∥Xm(:, i)∥2)mi=1; X
(1)
m = XmD

†
x; Y

(1)
m = YmD

†
x

2: [U,Σ, V ] = svd(X
(1)
m ) ; numerical rank: k = max{i : σi ≥ σ1ϵ}.

3: Set Uk = U(:, 1 : k), Vk = V (:, 1 : k), Σk = Σ(1 : k, 1 : k)

4: Bk = Y
(1)
m (VkΣ

−1
k ); {Schmid’s formula for AUk}

5: [Q,R] = qr(
(
Uk, Bk

)
); {The thin QR factorization}

6: Sk = diag(Rii)
k
i=1R(1 : k, k + 1 : 2k) {Sk = U∗

kAUk}
7: Λk = eig(Sk) {Λk = diag(λi)

k
i=1; Ritz values, i.e. eigenvalues of Sk}

8: for i = 1, . . . , k do

9: [σλi
, wλi

] = svdmin(
(

R(1:k,k+1:2k)−λiR(1:k,1:k)
R(k+1:2k,k+1:2k)

)
);

10: Wk(:, i) = wλi
; rk(i) = σλi

{Optimal residual, σλi
= ∥Rλi

wλi
∥2}

11: ρk(i) = w∗
λi
Skwλi

{Rayleigh quotient, ρk(i) = (Ukwλi
)∗A(Ukwλi

)}
12: end for
13: Zk = UkWk {Refined Ritz vectors}
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Residuals of refined selected pairs
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Figure: Comparison of the refined residuals of the Ritz pairs computed by the
DMD RRR Algorithm with velocities as observables (top 39 pairs in V-DMD,
circles ◦) and with both velocities and pressures (top 53 pairs in VP-DMD,
crosses, ×). The noticeable staircase structure on the graphs corresponds to
complex conjugate Ritz pairs.
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Enhanced DMD [Z.D., I. Mezić, R. Mohr, SISC 2018.]

[Zk,Λk, rk, ρk] = DMD RRR(Xm,Ym; ϵ) {Refined Rayleigh-Ritz DMD}

1: Dx = diag(∥Xm(:, i)∥2)mi=1; X
(1)
m = XmD

†
x; Y

(1)
m = YmD

†
x

2: [U,Σ, V ] = svd(X
(1)
m ) ; numerical rank: k = max{i : σi ≥ σ1ϵ}.

3: Set Uk = U(:, 1 : k), Vk = V (:, 1 : k), Σk = Σ(1 : k, 1 : k)

4: Bk = Y
(1)
m (VkΣ

−1
k ); {Schmid’s formula for AUk}

5: [Q,R] = qr(
(
Uk, Bk

)
); {The thin QR factorization}

6: Sk = diag(Rii)
k
i=1R(1 : k, k + 1 : 2k) {Sk = U∗

kAUk}
7: Λk = eig(Sk) {Λk = diag(λi)

k
i=1; Ritz values, i.e. eigenvalues of Sk}

8: for i = 1, . . . , k do

9: [σλi
, wλi

] = svdmin(
(

R(1:k,k+1:2k)−λiR(1:k,1:k)
R(k+1:2k,k+1:2k)

)
);

10: Wk(:, i) = wλi
; rk(i) = σλi

{Optimal residual, σλi
= ∥Rλi

wλi
∥2}

11: ρk(i) = w∗
λi
Skwλi

{Rayleigh quotient, ρk(i) = (Ukwλi
)∗A(Ukwλi

)}
12: end for
13: Zk = UkWk {Refined Ritz vectors}
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A synthetic example

Goal: DMD black-box software

The main goal of the modifications of the DMD algorithm is to provide a
reliable black-box, data driven software device that can estimate part of
the spectral information of the underlying linear operator, and that also
can provide an error bound.

Example (A case study)

The test matrix is generated as A = e−B−1
where B is pseudo-random

with entries uniformly distributed in [0, 1], and then A = A/∥A∥2.
Although this example is purely synthetic, it may represent a situation with
the spectrum entirely in the unit disc, such as e.g. in the case of an
off-attractor analysis of a dynamical system, after removing the peripheral
eigenvalues, see e.g. Mohr & Mezić 2014.
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Accuracy of the computed Ritz values
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Comparing residuals

Figure: Comparison of the residuals of the Ritz pairs computed by the DMD
Algorithm (pluses +) and the DMD RRR Algorithm (crosses, ×), with the same
threshold in the truncation criterion for determining the numerical rank.

ZD NLA for KMD and DMD 81 / 261



Overview of the course Introduction Finite dimensional computation: DMD QR compressed DMD Snapshot reconstruction – modal decomposition Exact DMD Symmetric/Hermitian DMD Measure preserving DMD Appendix 1: Review of the symmetric eigenvalue problem Appendix 2: Orthogonal Procrustes’s problem Data driven identificationA digression: SVD, low rank approximation and least squares Schmid’s DMD Data driven residuals and refined modes

Ritz values wit k = 27 (hard coded)
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Residuals wit k = 27 (hard coded)
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ηi =
∥(YmVkΣ

−1
k )Wk(:, i)− λi(UkWk(:, i))∥2

∥A(UkWk(:, i))− λi(UkWk(:, i))∥2
≡ 1, i = 1, . . . , k.
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Singular values of Xm computed three times

Figure: The blue circles (◦) are the values used in the DMD Algorithm and are
computed as [U,Σ, V ] = svd(Xm,

′ econ′). The red dots (·) are computed as
Σ = svd(Xm), and the pluses (+) are the results of Σ = svd(Xm(:, P )), where
P is randomly generated permutation.
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Floating point SVD

If Xm ≈ Ũ Σ̃Ṽ ∗ is the computed SVD of Xm, then there exist unitary
matrices Û , V̂ , and a perturbation δXm (backward error) such that
∥Û − Ũ∥2 ≤ ϵ1, ∥V̂ − Ṽ ∥2 ≤ ϵ2, and

Xm + δXm = Û Σ̃V̂ ∗, ∥δXm∥2 ≤ ϵ∥Xm∥2. (21)

Theorem (Weyl and Wieland-Hoffman)

Let the singular values of Xm and Xm + δXm be σ1 ≥ · · · ≥ σmin(m,n)

and σ̃1 ≥ · · · ≥ σ̃min(m,n), respectively. Then

max
i
|σ̃i − σi| ≤ ∥δXm∥2;

√√√√min(m,n)∑
i=1

|σ̃i − σi|2 ≤ ∥δXm∥F .

Hence, if we combine this Theorem with the backward stability (21), we
have that for each computed singular value σ̃i = σi + δσi

|δσi| ≤ ∥δXm∥2 ≤ ϵ∥Xm∥2; |δσi|/σi ≤ ϵ∥Xm∥2/σi. (22)
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∥δfi∥2 ≤ ∥δXm∥2 ≤ ϵ∥Xm∥2 ≤ ϵ
√
mmaxi ∥fi∥2

Bad news for small σi’s: maxi |δσi|/σi ≤ ϵκ2(Xm).
Suppose we have backward error δXm such that

∥δXm(:, i)∥2 ≤ ϵ∥Xm(:, i)∥2, i = 1, . . . ,m. (23)

In terms of the snapshots, this reads ∥δfi∥2 ≤ ϵ∥fi∥2, for all snapshots.

Theorem (Eisenstat and Ipsen)

Let σ1 ≥ · · · ≥ σn and σ̃1 ≥ · · · ≥ σ̃n A+ δA = Ξ1AΞ2 and let
ξ = max{∥Ξ1Ξ

T
1 − I∥2, ∥ΞT

2 Ξ2 − I∥2}. Then

|σ̃i − σi| ≤ ξσi, i = 1, . . . , n.

Hence, if Xm is of full column rank, Xm + δXm = (In + δXmX†
m)Xm

and n application of this theorem yields

max
i

|σi − σ̃i|
σi

≤ 2∥δXmX†
m∥2 + ∥δXmX†

m∥22.

∥δXmX†
m∥2 invariant under column scalings!
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Discussion on the SVD

Matlab uses different algorithms in the svd() function, depending on
whether the singular vectors are requested on output.

The faster but less accurate method is used in the call
[U, S, V ] = svd(Xm,

′ econ′). It is very likely that the full SVD,
including the singular vectors, is computed using the divide and
conquer algorithm, xGESDD() in LAPACK.

For computing only the singular values S = svd(X) calls the QR
SVD, xGESVD() in LAPACK.

Note that the same fast xGESDD() subroutine is under the hood of the
Python function numpy.linalg.svd.
Numerical robustness of both xGESVD(), xGESDD() depends on κ2(Xm),
and if one does not take advantage of the fact that scaling is allowed, the
problems illustrated in this example are likely to happen.
Better: Jacobi SVD (xGEJSV(), xGESVJ() in LAPACK, Drmač 2009.)
and preconditioned QR (xGESVDQ(), LAPACK, Drmač 2018.).
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Example: Flow around a cylinder

J. N. Kutz and S. L. Brunton and B. W. Brunton and J. L. Proctor:
Dynamic Mode Decomposition, Society for Industrial and Applied
Mathematics 2016.
Available online at
https://epubs.siam.org/doi/abs/10.1137/1.9781611974508.

The Matlab codes and the data used in the examples in the book are
available at
http://dmdbook.com/

Data snapshots are vorticity data of a flow around cylinder, discretized
with dimension 89351. The simulation data with δt = 0.02 are
down–sampled, and the test case contains 151 snapshot. The matrices
Xm and Ym are 89351× 150, i.e. m = 50. For more details on the data
set see Chapter 2 of the DMD book.
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Example: Flow around a cylinder. Goals:

The goals of this example are:

First contact with the DMD. Intuitive feeling – interpretation of the
data snapshots and the modes (eigenvectors) by visualisation.

Understand and see by example that not all computed eigenpairs (the
modes and the eigenvalues) deserve to be accepted.

Understand and see by example how the residuals make a difference.

Intuitive feeling – interpretation of the phrase “to reveal latent
structure”. (We will show later how this gives prediction skills.)

The DMD algorithm is oblivious to the nature of the data – the concept is
entirely data driven. It is about finding a structure and being able to
predict without knowing what it is about. Of course, expertise in a
concrete application field is essential to interpret and to apply the results.
The CFD examples are interesting because the key ideas can be nicely
visualized. We will not go into the CFD interpretation details.
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Step 1: The SVD of Xm

Condition number: κ2(Xm) ≈ 9.5e+ 06.
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Step 2: The Ritz values (DMD eigenvalues)

Are all good?
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Step 3: The residuals

Are all good? Clearly not. Some Ritz pairs are not acceptable as
approximate eigenpairs.
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Step 2: The Ritz values with residuals

Note complex conjugate pairs. (The snapshots are real.)
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Step 2: The modes with residuals
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Step 2: The modes with residuals

ZD NLA for KMD and DMD 107 / 261



Overview of the course Introduction Finite dimensional computation: DMD QR compressed DMD Snapshot reconstruction – modal decomposition Exact DMD Symmetric/Hermitian DMD Measure preserving DMD Appendix 1: Review of the symmetric eigenvalue problem Appendix 2: Orthogonal Procrustes’s problem Data driven identificationA digression: SVD, low rank approximation and least squares Schmid’s DMD Data driven residuals and refined modes

Step 2: The modes with residuals

λ5 is real and the mode is real.
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Step 2: The modes with residuals
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Step 2: The modes with residuals (large residual, bad)
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Step 2: The modes with residuals
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Exercise
Exercise

Implement the companion matrix based DMD.

Implement the Schmid’s DMD, with the residuals.

Test both implementations on the following examples:

1 Synthetic examples: first generate A and use it to generate snapshots.

2 Selected examples from http://dmdbook.com/, in particular this
cylinder flow example (The file DATA.zip).

Exercise

Select a data set from

https://cgl.ethz.ch/research/visualization/data.php

This requires some file format manipulations.

Exercise

If you have some data from your own research, try it.

ZD NLA for KMD and DMD 112 / 261

http://dmdbook.com/
https://cgl.ethz.ch/research/visualization/data.php


Overview of the course Introduction Finite dimensional computation: DMD QR compressed DMD Snapshot reconstruction – modal decomposition Exact DMD Symmetric/Hermitian DMD Measure preserving DMD Appendix 1: Review of the symmetric eigenvalue problem Appendix 2: Orthogonal Procrustes’s problem Data driven identificationStreaming QR compressed DMD

QR compressed DMD

Let n≫ m, i.e. the snapshots are high dimensional but span a low
dimensional subspace. The QR factorization can be used to generate an
orthonormal basis in the subspace that contains all data snapshots (both
X and Y). Then, the DMD is applied to a new lower dimensional
representation of the original data. More precisely, the QR factorization(

X Y
)
= Q̂

(
R[11] R[12]

0 R[22]

)
, Q̂ =

(
Q̂1 Q̂2

)
, Q̂1 = Q̂(:, 1 : m), (1)

is interpreted as a (unitary) change of coordinates, so that

X = Q̂

(
R[11]

0

)
= Q̂1R[11], Y = Q̂

(
R[12]

R[22]

)
= Q̂1R[12] + Q̂2R[22].

Now, if Rx = UxΣxV
∗
x is the SVD of the m×m matrix Rx = R[11], then

X = Q̂1UxΣxV
∗
x = UΣV ∗, U = Q̂1Ux, Σ = Σx, V = Vx, (2)

is the SVD of X.
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QR compressed DMD

We select the numerical rank k as before, but using R[11] instead of X,

and then Uk = Q̂1Uxk, where Uxk = Ux(:, 1 : k) and

Sk = U∗
kYVkΣ

−1
k = U∗

xkQ̂
∗
1(Q̂1R[12] + Q̂2R[22])VxkΣx(1 : k, 1 : k)−1

= U∗
xkR[12]VxkΣ

−1
xk . (3)

Note that here X = Q̂1R[11] is the QR factorization of X and that the

same Sk is obtained by computing Sk = (U∗
kY)VkΣ

−1
k . How do we justify

the extra effort to compute the QR factorization (1) of (X,Y)?

It starts paying off already when computing the SVD of X.

The matrix Sk can be computed with less effort, as we can use R[12].

The refinement of the Ritz vectors can also be done in the
2m-dimensional subspace.

Further advantages are ... ⇝ ...
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QR compressed DMD

The residuals are an important information and the cost of computing
the residuals is reduced because

ri = YVkΣ
−1
k wi − λiUkwi = Q̂(R[:2]VxkΣ

−1
k wi − λiUxkwi)

so that ∥ri∥2 = ∥R[:2]VxkΣ
−1
k wi − λiUxkwi∥2 is computed more

efficiently and the Ritz pairs can be selected using the computation in
the 2m-dimensional subspace. This avoids computation of the n× k
matrix YVk ((2m− 1)nk flops) and for each wi the norm ∥ri∥2 is
computed at a cost that does not involve n.

Another argument is the spatio-temporal representation of the
snapshots (6) that is accomplished by solving the structured least
squares problem. Due to the unitary invariance of the norm ∥ · ∥2, the
optimization can be done (by keeping the modes in factored form) in
the 2m-dimensional (instead of n-dimensional) space.
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QR compressed DMD

The forward-backward DMD [Dawson et al. 2016] applies DMD twice
– first with the data (X,Y) and then, backward in time, with (Y,X)
so that both the SVD of X and of Y are computed. With the
factorization (1), this means computing the SVD of
Rx = R[11] ∈ Cm×m and of Ry = R[:2] ∈ C2m×m, which is much
more efficient if m≪ n. Similar improvement of the Optimal DMD.

In the case of extremely large dimension n, when the memory capacity
and the cost of memory traffic become major issues, after computing
the out-of-core QR factorization, we can compute the DMD in
2m-dimensional subspace. On modern multi-core hardware, highly
optimized implementations of the QR factorization of tall and skinny
matrices is available [Demmel et al. 2012], [Ngyen, Demmel 2015].

Simplifies for one long trajectory F = (x1, . . . ,xm,xm+1),
X = (x1, . . . ,xm), Y = (x2, . . . ,xm+1).
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[Zk,Λk, rk, ρk] = DMDQR(Xm+1; ϵ) {QR Compressed
DMD}

Input:

Xm+1 = (f1, . . . , fm, fm+1) that defines a sequence of snapshots
pairs fi+1 = Afi. (Tacit assumption is that n is large and that
m≪ n.)

Tolerance level ϵ for numerical rank determination.

1: [Q̂f , Rf ] = qr(Xm+1, 0) ; {thin QR factorization}
2: Rx = Rf (1 : m+ 1, 1 : m), Ry = Rf (1 : m+ 1, 2 : m+ 1) ; {New

representaitons of Xm, Ym.}
3: [Ẑk,Λk, rk, ρk] = DMD(Rx, Ry; ϵ); {DMD in (m+ 1)-dimensional

ambient space}
4: Zk = Q̂f Ẑk

Output: Zk, Λk, rk, ρk
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Streaming QR compressed DMD

Suppose a block f of k ≥ 1 snapshots has been received and the QR
compressed representation F = QR needs to be updated.

Fnew = (F, f) =
(
Q (In −QQ∗)f

)(R Q∗f
0 Ik

)
. (4)

Note that f −QQ∗f is the Gram-Schmidt orthogonalization and that in
floating point computation this step should be done with
reorthogonalization. If f −Q(Q∗f) = Q1R1 is the QR factorization, then

Fnew =
(
Q Q1

)(R Q∗f
0 R1

)
= QnewRnew,

which allows for continuous use of the QR compressed DMD. In general, k
is small, e.g. k = 1, so that this step is computationally inexpensive. If
k = 1, then Rx,new = R = (Rx, R(:,m+ 1)) so that the new SVD is
computed for the matrix

Rx,new =

(
Rx R(1 : m,m+ 1)
0 Rm+1,m+1

)
.
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Streaming QR compressed DMD
Now suppose we want to discard ℓ ≥ 1 oldest snapshots, i.e.

Fnew = F(:, ℓ+1 : end) = QR(:, ℓ+1 : end) = Q

( x x x
• x x
• • x
• •
•

)
(here ℓ = 2).

Restoring the triangular factor amounts to systematical annihilation of the
positions •, using elementary unitary/orthogonal matrices. We illustrate
the process using the above small dimensional example. Start with a
unitary H1 (Householder reflector) such that

H1

( x x x
• x x
• • x
• •
•

)
=

(
x x x
0 x x
0 • x
• •
•

)
; Fnew = QH∗

1H1

( x x x
• x x
• • x
• •
•

)
= QH∗

1

(
x x x
0 x x
0 • x
• •
•

)
,

and proceed in a similar fashion with unitary H2, H3 such that

H2

(
x x x
0 x x
0 • x
• •
•

)
=

(
x x x
0 x x
0 0 x
0 •
•

)
, H3

(
x x x
0 x x
0 0 x
0 •
•

)
=

(
x x x
0 x x
0 0 x
0 0
0

)
,Fnew=Q(H∗

1H
∗
2H

∗
3 )

(
x x x
0 x x
0 0 x
0 0
0

)
.

Fnew = QnewRnew, Qnew = Q[(H∗
1H

∗
2H

∗
3 )] (:, end− ℓ). Clearly, the

product H∗
1H

∗
2H

∗
3 · · · is first accumulated and then applied using BLAS 3.
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Exercise

Exercise

Implement the QR compressed DMD and test it on the examples used
to test the DMD. (See previous Exercise.)

Implement updating/downdating. Use a sliding data window (keep
adding new and discarding old data) and update/downdate the QR
compressed representation of the snapshots.

A research project: combine this with updating the SVD of the
compressed representations. Explore the literature on the
online/streaming DMD.
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DMD: Data driven spectral analysis of f1, f2, . . . , fi+1 ≈ Afi
The two basic tasks of the Dynamic Mode Decompozition (DMD) are

1 Identify approximate eigenpairs (λj , zj) such that

Azj ≈ λjzj , λj = |λj |eiωjδt, j = 1, . . . , k; k ≤ m. (5)

Completed. (λj , zj), ∥Azj − λjzj∥2 available for j = 1, . . . ,m.

2 Derive a spectral spatio–temporal representation of the snapshots fi:

fi ≈
ℓ∑

j=1

zςjαjλ
i−1
ςj ≡

ℓ∑
j=1

zςjαj |λςj |i−1eiωςj (i−1)δt, i = 1, . . . ,m. (6)

The decomposition of the snapshots (6) reveals dynamically relevant
spatial structures, the zςj ’s, that evolve with amplitudes and frequencies
encoded in the corresponding λςj ’s. It can also be used for forecasting. It
is desirable to have small number ℓ of the most important modes
zς1 , . . . , zςℓ , ςj ∈ {1, . . . , k}. (To ease the notation, ςj = j.)
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Snapshot reconstruction – some theory

Wanted are the coefficients α1, . . . , αℓ that minimize

m∑
i=1

∥fi −
ℓ∑

j=1

zjαjλ
i−1
j ∥

2
2 −→ min . (1)

If we set Zℓ = (z1, . . . , zℓ), α⃗ = (α1, . . . , αℓ)
T , ∆α = diag(α⃗),

Λj = (λj−1
1 , . . . , λj−1

ℓ )T , and ∆Λj = diag(Λj) then the objective (1) reads

Ω2(α) ≡ ∥Xm − Zℓ∆α

(
Λ1 Λ2 . . . Λm

)
∥2F −→ min . (2)

Compute the tall QR factorization Zℓ = QR and define projected
snapshots gi = Q∗fi, then the LS problem can be compactly written as

∥g⃗−Sα⃗∥2 −→ min, g⃗ =

g1
...

gm

 , S = (Im⊗R)

∆Λ1

...
∆Λm

 ≡
R∆Λ1

...
R∆Λm

 .

Discussion: The structure of Zℓ and of the QR factorization Zℓ = QR.
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Hadamard, Kronecker and Khatri-Rao products

Hadamard matrix product C = A ∗B (C = A ◦B)

For A,B ∈ Rm×n, the Hadamard product C = A ∗B is defined by
cij = aijbij .

Kronecker matrix product C = A⊗B
For A ∈ Rm×n, B ∈ Rp×q Kronecker product A⊗B is defined as

C = A⊗B =

 a11B a12B ··· a1nB
a21B a22B ··· a2nB
...

...
. . .

...
am1B am2B ··· amnB


It is well defined for A and B of any dimensions, and A⊗B is
m · p× n · q.

( • • •
• • • )⊗

( • • •
• • •
• • •
• • •

)
=


• • • • • • • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •


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Kronecker product: basic properties

If A = (a1, . . . , am), B = (b1, . . . , bq) denote column partitions, then

A⊗B = (a1 ⊗B, a2 ⊗B, . . . , an ⊗B)

= (a1 ⊗ b1, a1 ⊗ b2, . . . , a1 ⊗ bq, a2 ⊗ b1, . . . , an ⊗ b1, . . . , an ⊗ bq)

Basic properties:

A⊗ (αB) = α(A⊗B)

(A+B)⊗ C = A⊗ C +B ⊗ C; A⊗ (B + C) = A⊗B +A⊗ C
(A⊗B)⊗ C = A⊗ (B ⊗ C)
(A⊗B)T = AT ⊗BT ; (A⊗B)∗ = A∗ ⊗B∗

(A⊗B)(C ⊗D) = (AC)⊗ (BD) (for well defined AC, BD)

(A⊗B)−1 = A−1 ⊗B−1 (for regular A, B); (A⊗B)† = A† ⊗B†

vec(CXD) = (DT ⊗ C)vec(X)

vec(xyT ) = y ⊗ x (x, y column vectors)

vec((x, x̂)
(

yT

ŷT

)
) = y ⊗ x+ ŷ ⊗ x̂
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Khatri-Rao product

Khatri-Rao product C = A⊙B
Let A = (a1, . . . , an) ∈ Rm×n, B = (b1, . . . , bn) ∈ Rp×n be column
partitions. The Khatri-Rao product of A and B is defined as

A⊙B = (a1 ⊗ b1, a2 ⊗ b2, . . . , an−1 ⊗ bn−1, an ⊗ bn)

Basic properties:

(A⊙B)⊙ C = A⊙ (B ⊙ C)
(A⊙B)T (A⊙B) = (ATA) ∗ (BTB) (here ∗ denotes the Hadamard
product)

(A⊙B)† = ((ATA) ∗ (BTB))†(A⊙B)T
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C ⊗B and C ⊙B

Small dimension example:

C =

(
c11 c12
c21 c22

)
= (c1, c2), B =

(
b11 b12
b21 b22

)
= (b1, b2)

C ⊗B =


c11b11 c11b12
c11b21 c11b22

c12b11 c12b12
c12b21 c12b22

c21b11 c21b12
c21b21 c21b22

c22b11 c22b12
c22b21 c22b22


C ⊙B is a submatrix of C ⊗B:

C ⊙B =


c11b11
c11b21

c12b12
c12b22

c21b11
c21b21

c22b12
c22b22

 =
(
c1 ⊗ b1 c2 ⊗ b2

)
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Solution(s) by generalized inverse(s)

The optimal solution is obtained as α⃗ = S†g⃗ using the explicit normal
equations formula, DMDSP [Jovanović+Schmid+Nichols]. Here S† is the
Moore-Penrose generalized inverse.
On the other hand, deploying the reflexive g–inverse of S,

S− =

∆Λ1

...
∆Λm


†

(I ⊗R−1),

we obtain interesting explicit formulas for α⃗⋆ = S−g⃗ that reveal a relation
to the Generalized Laplace Analysis, GLA, [Mezić+Mohr].

S− ̸= S†

Recall that, by definition, S− satisfies
SS−S = S, S−SS− = S−and S−S = (S−S)∗ . In fact, since
SS− ̸= (SS−)∗, we have in general that S− ̸= S†, so α⃗⋆ ̸= S†g⃗.
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α⃗⋆ = S−g⃗ solves a weighted LS problem

α⃗⋆ =

∆Λ1

...
∆Λm


†

(I ⊗R−1)

g1
...

gm

 = (

m∑
k=1

∆∗
Λk

∆Λk
)−1

m∑
i=1

∆∗
Λi
(R−1gi)

=

m∑
i=1



λ
i−1
1∑m

k=1 |λ1|2(k−1) (R
−1gi)1

λ
i−1
2∑m

k=1 |λ2|2(k−1) (R
−1gi)2

...
λ
i−1
ℓ∑m

k=1 |λℓ|2(k−1) (R
−1gi)ℓ

 =



∑m
i=1

λ
i−1
1∑m

k=1 |λ1|2(k−1) (R
−1gi)1∑m

i=1
λ
i−1
2∑m

k=1 |λ2|2(k−1) (R
−1gi)2

...∑m
i=1

λ
i−1
ℓ∑m

k=1 |λℓ|2(k−1) (R
−1gi)ℓ

 .

Theorem

Let M = I ⊗ (RR∗)−1, (x, y)M = y∗Mx, and let ∥x∥M =
√
x∗Mx. Then

α⃗⋆ is the minimum ∥ · ∥2–norm solution of the weighted least squares
problem

∥g⃗ − Sα⃗∥M −→ min . (3)
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Comparison with GLA reconstruction [Mezić+Mohr]

α⃗⋆ =



∑m
i=1

λ
i−1
1∑m

k=1 |λ1|2(k−1) (R
−1gi)1∑m

i=1
λ
i−1
2∑m

k=1 |λ2|2(k−1) (R
−1gi)2

...∑m
i=1

λ
i−1
ℓ∑m

k=1 |λℓ|2(k−1) (R
−1gi)ℓ



α⃗(GLA) =
1

m

m∑
i=1

Λ−i+1
ℓ R−1gi =


1
m

∑m
i=1 λ

−i+1
1 (R−1gi)1

1
m

∑m
i=1 λ

−i+1
2 (R−1gi)2
...

1
m

∑m
i=1 λ

−i+1
ℓ (R−1gi)ℓ

 .

Proposition

When the spectrum of A lies on the unit circle, α⃗⋆ = α⃗(GLA).

For more see recent paper [Drmač+Mezić+Mohr].
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On the numerical aspects of snapshot reconstruction

For given (λj , zj)’s and nonnegative weights wi, find the αj ’s to achieve

m∑
i=1

w2
i ∥fi −

ℓ∑
j=1

zjαjλ
i−1
j ∥

2
2 −→ min . (4)

Set W = diag(wi)
m
i=1. The weights wi > 0 are used to emphasize

snapshots whose reconstruction is more important. Let Λ = diag(λj)
ℓ
j=1,

∆α=

( α1 0 · 0
0 α2 · ·
· · · 0
0 · 0 αℓ

)
, Λi =

 λi−1
1

λi−1
2·

λi−1
ℓ

, ∆Λi =

 λi−1
1 0 · 0

0 λi−1
2 · ·

· · · 0
0 · 0 λi−1

ℓ

 ≡ Λi−1,

and write the objective (4) as the function of α = (α1, . . . , αℓ)
T ,

Ω2(α) ≡ ∥
[
Xm − Zℓ∆α

(
Λ1 Λ2 . . . Λm

)]
W∥2F −→ min, (5)

( Λ1 Λ2 ... Λm ) =


1 λ1 ... λm−1

1

1 λ2 ... λm−1
2

...
... ...

...
1 λℓ ... λm−1

ℓ

 ≡ Vℓ,m ∈ Cℓ×m. (6)
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Explicit normal equations solution: weighted case

QRF Zℓ = QR; gi = Q∗fi, g⃗
T = (g1, . . . ,gm). Solve equivalently

∥(W ⊗ Iℓ) [g⃗ − Sα] ∥2 → min, where S=(Im ⊗R)

(
∆Λ1

...
∆Λm

)
≡

(
R∆Λ1

...
R∆Λm

)
.

Observation: S = VT
ℓ,m ⊙R (Khatri-Rao product)

Theorem

With the notation as above, the unique solution α of the LSP (4) is

α = [(R∗R) ◦ (Vℓ,mW2V∗
ℓ,m)]−1[(Vℓ,mW ◦ (R∗GW))e], (7)

where G =
(
g1 . . . gm

)
, e =

(
1 . . . 1

)T
. In terms of Xm, Zℓ,

α = [(Z∗
ℓZℓ) ◦ (Vℓ,mW2V∗

ℓ,m)]−1[(Vℓ,mW ◦ (Z∗
ℓXmW))e]. (8)

This includes the DMDSP of [Jovanović+et al] and solution for scattering
coefficients in multistatic antenna array processing [Lev-Ari] as unweighted
cases. Are normal equations safe to use? Let us experiment with a small
dimension example.
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Squaring the condition number – loosing definiteness

Let W = I. Let ℓ = 3, m = 4, ξ =
√
ε, λ1 = ξ, λ2 = 2ξ, λ3 = 0.2, so

that the Vandermonde section Vℓ,m equals

Vℓ,m =
( 1 1.490116119384766e−08 2.220446049250313e−16 3.308722450212111e−24

1 2.980232238769531e−08 8.881784197001252e−16 2.646977960169689e−23
1 2.000000000000000e−01 4.000000000000001e−02 8.000000000000002e−03

)
,

R =

1 1 1
0 ξ/2 ξ
0 0 ξ

 =
(

1 1.000000000000000e+00 1.000000000000000e+00
0 7.450580596923828e−09 1.490116119384766e−08
0 0 1.490116119384766e−08

)
.

Here κ2(Vℓ,m) ≈ 109, κ2(R) ≈ 109 ≪ 1/roundoff64 ≈ 4.5 · 1015.
>> chol(Vlm*Vlm’)

Error using chol

Matrix must be ....

>> chol(R’*R)

Error using chol

Matrix must be positive definite.

>> chol((R’*R).*(Vlm*Vlm’))

Error using chol

Matrix must be positive definite.

Normal equations matrix is
not definite!
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Indefinite ◦ Indefinite = Positive Definite ?!

Use the same Vℓ,m but change the definition of R to

R =

1 1 1
0 ξ ξ
0 0 ξ/2

 =
( 1 1.000000000000000e+00 1.000000000000000e+00

0 1.490116119384766e−08 1.490116119384766e−08
0 0 7.450580596923828e−09

)
.

If we repeat the experiment with the Cholesky factorizations, we obtain
>> chol(Vlm*Vlm’)

Error using chol

Matrix must be positive definite.
>> chol(R’*R)

Error using chol

Matrix must be positive definite.

>> TC = chol((R’*R).*(Vlm*Vlm’))

TC =

1 1.000000000000000e+00 1.000000002980232e+00

0 1.490116119384765e-08 1.999999880790710e-01

0 0 4.079214149695062e-02
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How accurately we can solve with
C = (R’*R).*(Vlm*Vlm’)?

Based on [Demmel], we know that floating point Cholesky factorization
C = LL∗ (L lower triangular with positive diagonal) of C is feasible if the
matrix Cs = (cij/

√
ciicjj)

ℓ
i,j=1 is well conditioned. Further, if we solve the

linear system Cx = b ̸= 0 using the Cholesky factor in the forward and
backward substitutions, then the computed solution x̃ satisfies

∥DC(x̃− C−1b)∥2
∥DC x̃∥2

≤ g(ℓ)εκ2(Cs), (9)

where g(ℓ) is modest function of the dimension, DC = diag(
√
cii)

ℓ
i=1.

Note that this implies component-wise error bound for each x̃i ̸= 0:

|x̃i − (C−1b)i|
|x̃i|

≤
[
∥DC x̃∥2√
cii|x̃i|

]
︸ ︷︷ ︸

≥1

g(ℓ)εκ2(Cs). (10)
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Theorem

Let A ad B be Hermitian positive semidefinite matrices with positive
diagonal entries, and let C = A ◦B. If As = (aij/

√
aiiajj),

Bs = (bij/
√
biibjj), Cs = (cij/

√
ciicjj), then

max(λmin(As), λmin(Bs)) ≤ λi(Cs) ≤ min(λmax(As), λmax(Bs)). (11)

In particular, ∥C−1
s ∥2 ≤ min(∥A−1

s ∥2, ∥B−1
s ∥2) and

κ2(Cs) ≤ min(κ2(As), κ2(Bs)). If A or B is diagonal, all inequalities in
this theorem become equalities.

Corollary

Let C ≡ (R∗R) ◦ (Vℓ,mW2V∗
ℓ,m), Cs = (cij/

√
ciicjj). Further, let

R = Rc∆r and VℓmW = ∆v(VℓmW)r with diagonal scaling matrices ∆r

and ∆v such that Rc has unit columns and (VℓmW)r has unit rows (in
Euclidean norm). Then

κ2(Cs) ≤ min(κ2(Rc)
2, κ2((Vℓ,mW)r)

2).
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Example: Flow around a cylinder.

We continue with the CFD example

The goals are:

Test the LS solution procedure and confirm that the data snapshots
are reconstructed with small error. Use all computed Ritz pairs
(λj , zj), j = 1, . . . ,m.

Examine the structure of the LS solution (the coefficients αj).

Use the residuals (of the Ritz pairs) and select a subset of the Ritz
pairs for snapshots representations. Check the accuracy of such
representations.

The Ritz pairs are in general complex, and the snapshots are real.
Examine how to ensure that the reconstruction remains real?
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The residuals

Some Ritz pairs are not acceptable as approximate eigenpairs. How will
those affect the spectral representation of the data?
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The Ritz values with residuals

(The snapshots are real.)
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Example: Spectral snapshot reconstruction.

In the first experiment, we take all pairs (λj , zj), j = 1, . . . ,m = 150. The
reconstruction errors are:
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Example: Spectral snapshot reconstruction.

Now, look at the |αj |’s :

Discussion. Closed under complex conjugation (prove it!).
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Example: Spectral snapshot reconstruction.

Real parts of modes with largest |αj |’s :

Discussion. Complex conjugate pairs etc.
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Example: Spectral snapshot reconstruction.

Now, look at the |αj |’s and the residuals ∥Azj − λjzj∥2:

The residuals seem to indicate what modes are relevant.
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Example: Spectral snapshot reconstruction.

Now, look at the modes with the residuals ∥Azj − λjzj∥2 < 10−6:

Can these 9 modes represent all snapshots using only 9 coefficients
α1, . . . , α9?
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Example: Spectral snapshot reconstruction.

Reconstruction error when using the modes with residuals
∥Azj − λjzj∥2 < 10−6:
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Example: Spectral snapshot reconstruction.

The real parts of the used modes (complex conjugate pairs):
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Example: Spectral snapshot reconstruction.

The imaginary parts of the used modes (complex conjugate pairs):
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Example: Spectral snapshot reconstruction.
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Example: Spectral snapshot reconstruction.
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Example: Spectral snapshot reconstruction.
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Example: Spectral snapshot reconstruction.

ZD NLA for KMD and DMD 150 / 261



Overview of the course Introduction Finite dimensional computation: DMD QR compressed DMD Snapshot reconstruction – modal decomposition Exact DMD Symmetric/Hermitian DMD Measure preserving DMD Appendix 1: Review of the symmetric eigenvalue problem Appendix 2: Orthogonal Procrustes’s problem Data driven identificationWeighted LS. Normal equations via Khatri-Rao product

Example: Spectral snapshot reconstruction.
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Example: Spectral snapshot reconstruction.
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Example: Spectral snapshot reconstruction.

For the sake of an experiment, use the modes with residuals
∥Azj − λjzj∥2 > 10−2. There are 113 of them.
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Example: Spectral snapshot reconstruction.

Reconstruction errors when using the modes with residuals
∥Azj − λjzj∥2 > 10−2.
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Exercise

Exercise

Add snapshot reconstruction to your DMD code and repeat this
numerical experiment. Also experiment with other data sets.

Implement a QR compressed version of this reconstruction, integrated
with the QR compressed DMD.

Read on LS solution and normal equations. A good reference is

Björck, Åke : Numerical Methods in Matrix Computations, Springer
2015. (See Chapter 2.)

Experiment with examples of failure of the normal equations.
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⇚ Explicit normal equations solution: weighted case

QRF Zℓ = QR; gi = Q∗fi, g⃗
T = (g1, . . . ,gm). Solve equivalently

∥(W ⊗ Iℓ) [g⃗ − Sα] ∥2 → min, where S=(Im ⊗R)

(
∆Λ1

...
∆Λm

)
≡

(
R∆Λ1

...
R∆Λm

)
.

Observation: S = VT
ℓ,m ⊙R (Khatri-Rao product)

Theorem

With the notation as above, the unique solution α of the LSP (4) is

α = [(R∗R) ◦ (Vℓ,mW2V∗
ℓ,m)]−1[(Vℓ,mW ◦ (R∗GW))e], (12)

where G =
(
g1 . . . gm

)
, e =

(
1 . . . 1

)T
. In terms of Xm, Zℓ,

α = [(Z∗
ℓZℓ) ◦ (Vℓ,mW2V∗

ℓ,m)]−1[(Vℓ,mW ◦ (Z∗
ℓXmW))e]. (13)

To ease technical details, W = I, i.e. no weights are used and (12) is
α = (S∗S)−1S∗g⃗.
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∥g⃗ − Sα∥2 −→ min; S = QSRS, α = R−1S (Q∗Sg⃗)

Projection theorem: The residual r = g⃗ − Sα must be orthogonal to the
range of S, S∗r = 0, i.e.

S∗Sα = S∗g⃗.

Let S∗S = R∗
SRS be the Cholesky factorization; RS is upper triangular.

Then
α̃ = computed(R−1

S (R−∗
S (S∗g⃗))),

The residual is r̃ = g⃗ − Sα̃. (Note: Sα̃ = g⃗ − r̃.) A corrected solution is
obtained as follows:

δα = R−1
S (R−∗

S (S∗r̃)), α∗ = α̃+ δα. (14)

See Å. Björck, Stability analysis of the method of seminormal equations
for linear least squares problems, Linear Algebra and its Applications
Volumes 88-89, April 1987, Pages 31-48.

RS is the Cholesky factor of S∗S, or the triangular factor in the QR
factorization of S.
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∥g⃗ − Sα∥2 −→ min; S = QSRS, α = R−1S (Q∗Sg⃗)

Algorithm: Corrected semi-normal solution

Input: R, Λ, G, S
Output: Corrected solution α∗
1: Compute the triangular factor RS in the QR factorization of S.
2: gS = [(Vℓ,m ◦ (R∗G))e] {Note, gS = S∗g⃗. Use xTRMM from BLAS 3.}
3: α = R−1

S (R−∗
S gS){Use xTRSM or xTRTRS or xTRSV from LAPACK.}

4: r2 = G−R
(
α Λα Λ2α . . . Λm−1α

)
≡ G−Rdiag(α)Vℓ,m

5: rS = [(Vℓ,m ◦ (R∗r2))e] {Note, rS = S∗r. Use xTRMM from BLAS 3.}
6: δα = R−1

S (R−∗
S rS) {Use xTRSM or xTRTRS or xTRSV from LAPACK.}

7: α∗ = α+ δα

Considerably improves over normal equations, but needs QR factorization
of S = VT

ℓ,m ⊙R. How to compute it efficiently, using the structure of S?
Sometimes, getting only RS is acceptable cost, not as bad as the entire
QR factorization.
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Algorithm: Recursive QR factorization of S = VT
ℓ,m ⊙R for m = 2p

Input: Upper triangular R ∈ Cℓ×ℓ; diagonal Λ ∈ Cℓ×ℓ; number
of snapshots m = 2p

Output: Upper triangular QR factor RS = Tp of S ∈ C2pℓ×ℓ

T4 ←− T3 ←− T2 ←− T1 ←− RΛ0

0 0 0 0 ←− RΛ1

0 0 0 ←− T1Λ2 RΛ2

0 0 0 0 RΛ3

0 0 ←− T2Λ4 T1Λ
4 RΛ4

0 0 0 0 RΛ5

0 0 0 T1Λ
6 RΛ6

0 0 0 0 RΛ7

0 ←− T3Λ8 T2Λ
8 T1Λ

8 RΛ8

0 0 0 0 RΛ9

0 0 0 T1Λ
10 RΛ10

0 0 0 0 RΛ11

0 0 T2Λ
12 T1Λ

12 RΛ12

0 0 0 0 RΛ13

0 0 0 T1Λ
14 RΛ14

0 0 0 0 RΛ15

,

1 : T0 = R
2 : for i = 1 : p do

3 :

(
Ti
0

)
= qr(

(
Ti−1

Ti−1Λ
2i−1

)
)

4 : end for
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Matlab code for S = VTℓ,m ⊙R (Khatri-Rao product ⊙)
function T = QR Khatri Rao VTR 2p( R, Lambda, p )
% QR Khatri Rao VTR 2p computes the upper triangular factor
% in the QR factorization of the Khatri−Rao product
% S=Khatri Rao(Vlm.',R), where R is an <ell x ell> upper
% triangular matrix, and Vlm is an <ell x m> Vandermonde
% matrix V, whose columns are V(:,i) = Lambda.ˆ(i−1),
% i = 1,...,m, and m=2ˆp.
% Input:
% R upper triangular matrix
% Lambda vector, defines Vlm = Vandermonde matrix
% p integer >=0 defines m = 2ˆp
% Output:
% T triangular QR fator of Khatri Rao(Vlm.',R)
T = R ; D = Lambda ;
%
for i = 1 : p
[˜, T] = qr( [ T ; T*diag(D)], 0 ) ;
D = D.ˆ2 ;
end
end
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Input: Upper triangular R ∈ Cℓ×ℓ; diagonal Λ ∈ Cℓ×ℓ; m
Output: Upper triangular QR factor RS = Tj−1 of S.
1: Compute the binary representation of m:
m ≡ b = (b⌊log2 m⌋, . . . , b1, b0)2, m ≡

∑j∗

j=1 2
ij

2: Let ⌊log2m⌋ = ij∗ > ij∗−1 > · · · > i2 > i1 ≥ 0
3: T0 = R
4: if i1 = 0 then
5: T1 = T0; j = 2; ℘ = 1
6: else
7: T0 = []; j = 1; ℘ = 0
8: end if
9: for k = 1 : ij∗ do

10:

(
Tk
0

)
= qr(

(
Tk−1

Tk−1Λ
2k−1

)
) {Local triangular factor.}

11: if k = ij then
12: if Tj−1 ̸= [] then

13:

(
Tj

0

)
= qr(

(
Tj−1

TkΛ
℘

)
) {Global triang. factor.}

14: else
15: Tj = Tk
16: end if
17: j := j + 1; ℘ := ℘+ 2k

18: end if
19: end for
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Comments: condition number and implementation details

QR factorization approach to the LS reconstruction:

Provably small backward error

∥δS(:, j)∥2 ≤ η∥S(:, j)∥2, j = 1, . . . , ℓ; η ≤ f(ℓ,m)ε,

The relevant condition number is of the column scaled S:

Corollary

κ2(Sc) =
√
κ2(Cs) ≤ min(κ2(Rc), κ2((Vℓ,m)r))

≤
√
ℓmin( min

D=diag
κ2(RD), min

D=diag
κ2(DVℓ,m)).

Square root of the condition number is great advantage.

Other technical details: If the data is real, can work in real arithmetic
even if the eigenvalues are complex (conjugate pairs)
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Numerical example: limits of normal equations formula
Besides contrived examples where QRF approach outperforms the
commonly used method, it is interesting to point out that in many
interesting cases the normal equations approach fails dramatically, while
the QR based approach provably succeeds.

An example: Ikeda map

For instance, we used the Hankel matrix rearrangement of the snapshots
generated by the Ikeda map (evolution of laser light across a nonlinear
optical resonator)

xn+1 = ϕ+ ψ(xn cos(ρ− ω
1+x2

n+y2n
)− yn sin(ρ− ω

1+x2
n+y2n

))

yn+1 = ψ(xn sin(ρ− ω
1+x2

n+y2n
)− yn cos(ρ− ω

1+x2
n+y2n

))
, n = 0, 1, . . .

with ϕ = 1, ψ = 0.6, ρ = 0.4, ω = 6, and initial condition (x0, y0). We
generated 3500 snapshots and arranged them in the 5802× 600 Hankel
matrix. The widely used normal equations approach failed in double
precision (16 digits arithmetic), while the QR factorization based algorithm
can deliver accuracy to eight decimal places.
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Numerical example: effect of weighted reconstruction

Figure: In all cases, the errors of the Schmid DMD and the Krylov+DFT
algorithm (with the coefficients from the full reconstruction) are nearly the same,
so the graphs overlap. Recomputing the coefficient using normal equation
significantly reduces the error (-., Krylov+DFT+NE). The blue curve shows the
effects of weighting. Note how by choosing the weights we can enforce higher
reconstruction accuracy for snapshot in a specified (discrete time) subinterval.
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Numerical example: effect of weighted reconstruction

Figure: Example with 600 snapshots. Blue curve shows the effects of weighting.

Data: 2D model obtained by depth averaging the Navier–Stokes equations for a

shear flow in a thin layer of electrolyte suspended on a thin lubricating layer of a

dielectric fluid.1

1Thanks M.Schatz, B. Suri, R. Grigoriev and L. Kageorge from the Georgia Institute
of Technology for providing the data.
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Schmid’s DMD

Algorithm [Zk,Λk] = DMD(Xm,Ym)

Input: • Xm = (x1, . . . ,xm),Ym = (y1, . . . ,ym) ∈ Cn×m that define a
sequence of snapshots pairs (xi,yi ≡ Axi). (Tacit assumption is that
n is large and that m≪ n.)

1: [U,Σ, V ] = svd(Xm) ; {The thin SVD: Xm = UΣV ∗, U ∈ Cn×m,
Σ = diag(σi)

m
i=1, V ∈ Cm×m}

2: Determine numerical rank k.
3: Set Uk = U(:, 1 : k), Vk = V (:, 1 : k), Σk = Σ(1 : k, 1 : k)
4: Sk = ((U∗

kYm)Vk)Σ
−1
k ; {Schmid’s formula for the Rayleigh quotient

U∗
kAUk}

5: [Wk,Λk] = eig(Sk) {Λk = diag(λi)
k
i=1; SkWk(:, i) = λiWk(:, i);

∥Wk(:, i)∥2 = 1}
6: Zk = UkWk {Ritz vectors}

Output: Zk, Λk
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On the DMD matrix

In the DMD literature, the DMD matrix A is defined as the solution of the
least squares problem

∥Ym −AXm∥F → min
A
. (⇐⇒ ∥XT

mA
T −YT

m∥F → min
A

)

Clearly, if XT
m has a nontrivial null-space, A is not unique; in that case we

can choose B so that BXm = 0 and thus (A+B)Xm = AX. That is,
adding to any row of A an arbitrary vector from the left null-space of Xm

does not change the optimality. In fact, since Xm is assumed tall and
skinny, it has high-dimensional left null-space (since
Ker(XT

m) = Range(Xm)⊥) and the least squares solution is not unique.

Independent of the choice of

A ∈ argminA∥Ym −AXm∥F ,
it holds that AXm = YmPXT

m
, where PXT

m
is the orthogonal projector

onto the range of XT
m.
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On the DMD matrix

In the DMD theory, the specifications for A is strenghtened with a
constraint of minimality of ∥A∥F , which yields

A = YmX†
m,

expressed using the Moore-Penrose pseudoinverse X†
m of Xm.

The interpretability of such a constraint, besides ensuring unique least
squares solution, is rather vague. Keep in mind that the only information
contained in the data is that AX = YPXT so that A = YX† is just a
particular element in the linear manifold

[A] = {YX† +B : BX = 0}. (1)

Using the particular choice A = YX† can be useful in some estimates if
one can exploit the fact that in that case ∥A∥F is minimal.
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Exact DMD

Note that the above computation of the Ritz pairs we never used
A = YmX†

m; instead we used that

AXm = YmVrV
∗
r ,

which is equivalent to say that A is a solution to ∥Y − AX∥F → min.

The RQ Sk is obtained using the SVD for the best rank k approximation
Xm ≈ UkΣkV

∗
k , X

†
m ≈ VkΣ−1

k U∗
k , and then Ak = YmVkΣ

−1
k U∗

k .

Further, nothing is gained if we try to use the non-uniqueness and replace
A with some Ã = A+B such that BXm = 0 (i.e. Ã ∈ [A]). Then
BUk = 0, ÃUk = AUk = YmVkΣ

−1
k and

S̃k = U∗
k ÃUk = U∗

kAUk = Sk.
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Exact DMD

A variant of the DMD, proposed in [Tu, Rowley, 2014, §2.2, §2.3] and
designated as the Exact Dynamic Mode Decomposition (Exact DMD) is
entirely built on the computation of exact eigenvalues and eigenvectors of
A = YX†. Since Y is A-invariant this is possible.

The Excact DMD algorithm follows the lines 1.–5. of the DMD Algorithm,
and in the last step, instead of Zk(:, i) = UkWk(:, i), for a computed
nonzero eigenvalue λi, the corresponding eigenvector is returned as

Z
(ex)
k (:, i) = (1/λi)YmVkΣ

−1
k Wk(:, i).

Note that Z
(ex)
k (:, i) = (1/λi)AUkWk(:, i) = (1/λi)AZk(:, i).

This modification can be understood/interpreted as follows: If v is a unit
eigenvector belonging to a nonzero eigenvalue µ of a matrix M , then
ṽ = (1/µ)Mv = v. If v is only an approximate eigenvector, then Mv is
one step of the power method that may contribute (without guarantee) to
improving v in the direction of the dominant eigenvector.
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Exact DMD

Proposition

The output of the Exact DMD is independent of the particular choice
A = YX†, and it is the same for any Ã ∈ [A] = argminA∥Y −AX∥F .
The exactness of the computed spectral information (barring finite
precision limitations) holds only for A.

To see this, note that for any Ã ∈ [A]

Z
(ex)
k (:, i) = (1/λi)YVkΣ

−1
k Wk(:, i) = (1/λi)AUkWk(:, i)

= (1/λi)ÃUkWk(:, i).

An observation:

The vectors λiZ
(ex)
k (:, i), i = 1, . . . , k are computed if the residuals

∥AZk(:, i)− λiZk(:, i)∥2 for the pairs (λi, UkWk(:, i)) are requested.
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Exact DMD

Remark

The choice of scaling by 1/λi in the definition of Z
(ex)
k (:, i) does not make

Z
(ex)
k (:, i) unit vector. Indeed,

UkU
∗
kYVkΣ

−1
k Wk(:, i) = UkSkWk(:, i) = λiUkWk(:, i), ∥Wk(:, i)∥2 = 1,

so that |λi| is the norm of the orthogonal projection of YVkΣ
−1
k Wk(:, i)

onto the range of Uk. Hence, ∥Z
(ex)
k (:, i)∥2 ≥ 1, and this should be taken

into account in the latter use of Z
(ex)
k (:, i), e.g. when computing the

residuals or in the modal analysis of the data snapshots.

Exercise

Test the “exactness” of the Exact DMD by first generating A, and then
using A to generate Xm and Ym. Compare the eigenvalues and
eigenvectors computed by the Exact DMD with the corresponding values
of the true matrix A (not accessible to the algorithm).
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Symmetric DMD

Physics informed DMD (piDMD)

In a framework of physics informed DMD (piDMD), a prior knowledge of
the underlying dynamics determines that A ∈M, where a matrix manifold
M is defined by the additional (physics informed) constraints such that
e.g. A must be Hermitian, or skew-Hermitian, unitary, Toeplitz etc.

[piDMD] Baddoo P. J., Herrmann B., McKeon B. J., Kutz J. N.,
and Brunton S. L.. 2021. Physics-informed dynamic mode
decomposition (piDMD). arXiv:2112.04307

Let us consider the case whenM stands for Hermitian matrices. It is
nicely motivated by numerical examples e.g. with learning the energy
states of a quantum Hamiltonian [piDMD,§4.3.1] where it is shown that
the loss of hermiticity/symmetry may result in a non-physical and thus
inaccurate/useless results.
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Symmetric DMD

Suppose we know a priori that there is a Hermitian matrix H = H∗ such
that HX = YPX∗ , i.e. H ∈ argminA∥AX−Y∥F . Then A = YX† is in
general not Hermitian but, as we discussed earlier, since H ∈ [A], the
Rayleigh quotient satisfies Sk = U∗

kAUk = U∗
kHUk = S∗

k . Note that in
terms of the linear least squares solution manifold, [A] = [H].

This means that in an error-free setting the DMD algorithm will
automatically exploit symmetry, and the computed Ritz pairs will have the
proper structure – real Ritz values and orthonormal Ritz vectors. There is
no need to determine a Hermitian H ∈ argminA∥AX−Y∥F . Note also
that the Rayleigh quotient inherits the positive definiteness of H.

In real world applications (noisy data, finite precision), the symmetry will
be lost. This is easy to illustrate by numerical example.

ZD NLA for KMD and DMD 188 / 261



Overview of the course Introduction Finite dimensional computation: DMD QR compressed DMD Snapshot reconstruction – modal decomposition Exact DMD Symmetric/Hermitian DMD Measure preserving DMD Appendix 1: Review of the symmetric eigenvalue problem Appendix 2: Orthogonal Procrustes’s problem Data driven identificationLoss of symmetry - an analysis Symmetric Procrustes’ approach QR compressed symmetric DMD

Symmetric DMD: loss of symmetry

Figure: The structure of the computed S̃k = Ũ∗YṼkΣ̃
−1
k , visualized using

imagesc(log10(abs(S̃k))). The loss of symmetry is apparent.

To fix the problem, we first have to analyze it.
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Loss of symmetry: structure of the error

The numerically computed SVD X ≈ Ũ Σ̃Ṽ ∗ can be interpreted as

(X+ δX)Ṽ = Ũ Σ̃, ∥δX∥2 ≤ ϵx∥X∥2, (1)

where Ũ and Ṽ are numerically unitary matrices, ∥Ũ∗Ũ − In∥2 ≤ ϵu,
∥Ṽ ∗Ṽ − In∥2 ≤ ϵv, and Σ̃ = diag(σ̃j)

n
j=1. Here ϵu, ϵv, ϵx depend on the

details of a particular algorithm and its software implementation, and can
be estimated by f(m,n)ε, where f(m,n) is a modestly growing function
and ε is the round-off unit of the working precision.
Assume that X and X+ δX are of full column rank. Then PX∗ = In and

HŨ Σ̃Ṽ ∗ = Y +HδX =⇒ HŨk = YṼkΣ̃
−1
k +HδXṼkΣ̃

−1
k

=⇒ Ũ∗
kHŨk = S̃k + Ũ∗

kHδXṼkΣ̃
−1
k .

Hence, even if we could compute S̃k = Ũ∗
kYṼkΣ̃

−1
k without roundoff, it

would differ from the Hermitian Ũ∗
kHŨk, with an error δS̃k = Ũ∗

kEk,

where Ek = HδXṼkΣ̃
−1
k is the error in the approximation of HŨk.

ZD NLA for KMD and DMD 190 / 261



Overview of the course Introduction Finite dimensional computation: DMD QR compressed DMD Snapshot reconstruction – modal decomposition Exact DMD Symmetric/Hermitian DMD Measure preserving DMD Appendix 1: Review of the symmetric eigenvalue problem Appendix 2: Orthogonal Procrustes’s problem Data driven identificationLoss of symmetry - an analysis Symmetric Procrustes’ approach QR compressed symmetric DMD

Loss of symmetry: structure of the error

We can estimate Ek = HδXṼkΣ̃
−1
k as follows:

∥Ek(:, j)∥2
∥H∥2

≤ ∥δX∥2∥Ṽk(:, j)∥2/σ̃j ≤ ϵxσ1∥Ṽk(:, j)∥2/σ̃j (2)

≤ ϵx

√
1 + ϵv
1− ϵx

σ̃1
σ̃j

(3)

∥Ek(:, j)∥2
∥HŨk(:, j)∥2

≤ ∥H∥2
1/∥(H|range(Uk))

†∥2
ϵx

√
1 + ϵv√

1− ϵu(1− ϵx)
σ̃1
σ̃j
, (4)

and then the column-wise errors in S̃k as

∥δSk(:, j)∥2
∥H∥2

≤
∥Ũ∗

kH∥2
∥H∥2

ϵx

√
1 + ϵv
1− ϵx

σ̃1
σ̃j
.

These bounds indicate that the accuracy in S̃k may be deteriorating with
the increased column index, which means that the upper triangle of S̃k
may be more exposed to the effects of δX (i.e. the errors in the
computation of the SVD of X) and the column scaling by Σ̃−1

k .
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Loss of symmetry: structure of the error

Clearly, the accuracy of the computed residual will be also affected, and
the above analysis gives an estimate. This simple model can also be used
to assess the effects of the noise ∆X, ∆Y in the initial data.
Note that the above analysis does not include rounding errors in the
computation Ũ∗

kYṼkΣ̃
−1
k , because they are not the main source of the loss

of symmetry.

Motivated by the above analysis, we define a symmetrizer:

Symmetrizer of S̃k

H̃k = diag((S̃k)ii)
k
i=1 + L̃k + L̃∗

k, (5)

where L̃k is the strict lower triangle of S̃k, and we consider it as a
candidate to replace S̃k.

Let us compare the estimated and the actual error in a controlled synthetic
experiment, using S̃k (from the last Figure).
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Loss of symmetry: structure of the error

Figure: First panel: the structure of the computed S̃k = Ũ∗YṼkΣ̃
−1
k , visualized

using imagesc(log10(abs(S̃k))). The loss of symmetry is apparent. Middle
panel: the column norms of Ek and their predicted trend. Third panel: the
columns of δS̃k and their predicted trend.

Except for the error at the noise level mε, the analysis (although
simplified) correctly reveals/predicts the behavior of the error. Hence,
using the symmetrizer H̃k might work. What else could one try? For
instance, matrix theory provides provably optimal symmetric
approximation of S̃k.
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Symmetric DMD

A natural way to correct S̃k and restore hermiticity is to replace it with a
close Hermitian matrix.

Theorem (K. Fan, A. J. Hoffman. Some metric inequalities in the space of
matrices. Proc. Amer. Math. Soc. 6, 1 (1955), 111-116.)

The matrix

Ŝk =
1

2
(S̃k + S̃∗

k) (6)

satisfies, for any unitarily invariant norm ∥ · ∥,

∥S̃k − Ŝk∥ = min
H=H∗

∥S̃k −H∥. (7)

This optimality of Ŝk in a large class of norms, as well as its simple
computation (6), makes it a good candidate to replace S̃k. Is this the best
we can do? Is it superfluous to ask whether is it best to chose the optimal
approximation Ŝk, or, what could go wrong if we replaced S̃k with its
closest Hermitian matrix?
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Loss of symmetry: structure of the error

Figure: The entry-wise relative errors log10(|(Sk)ij − (S̃k)ij |/|(Sk)ij |) (first
panel) and log10(|(Sk)ij − (Ŝk)ij |/|(Sk)ij |) (second panel). Note that the upper

triangle of S̃k has large error that is symmetrized in Ŝk = 0.5(S̃k + S̃∗
k) and

transplanted into the lower triangle. The third panel shows the entry-wise errors
in H̃k, which indicates that using H̃k may be better than Ŝk. (Note that the
scale in the color bar of this panel is different from the first two.)

We note here that requiring entry-wise small relative errors is indeed too
much to ask, but nevertheless we check them to test whether the above
analysis correctly identifies the problem. The result shown in the Figure
are precisely as predicted.

ZD NLA for KMD and DMD 195 / 261



Overview of the course Introduction Finite dimensional computation: DMD QR compressed DMD Snapshot reconstruction – modal decomposition Exact DMD Symmetric/Hermitian DMD Measure preserving DMD Appendix 1: Review of the symmetric eigenvalue problem Appendix 2: Orthogonal Procrustes’s problem Data driven identificationLoss of symmetry - an analysis Symmetric Procrustes’ approach QR compressed symmetric DMD

Loss of symmetry: structure of the error

Using smaller number k of the leading singular values and vectors

produces more accurate YṼkΣ̃k
−1

, but such an aggressive truncation
causes loss of spectral information as H is compressed onto a much lower
dimensional subspace.

If H is positive (semi)definite, then Sk inherits the definiteness, but in
ill-conditioned cases a symmetrizer of S̃k is not guaranteed to be positive
(semi)definite. Under this implicit assumption on (semi)definiteness, if we
compute the spectral decomposition of H̃k (or any other symmetrizer) and
if some of the eigenvalues are negative, we can replace them with zeros,
thus implicitly replacing H̃k with the closest positive semidefinite matrix.a

Depending on the user’s preferences, all or only positive Ritz values can be
returned.

aRecall that we cannot talk about the closest positive definite matrix because the set
of positive definite matrices is open.
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Symmetric DMD – a Procrustes’ approach

Procrustes’ approach

To mitigate the problem, [piDMD] proposes selecting a DMD matrix as

A ∈ argminA=A∗∥AX−Y∥F . (8)

This is a well studied structured (symmetric/Hermitian) Procrustes
problem with an explicitly known solution by Nick Higham

Higham Nicholas J.. 1988. The symmetric Procrustes problem. BIT
28 (1988).

Orthogonal/unitary Procrustes’ problem

The orthogonal Procrustes’ problem is

∥Y −XQ∥F −→ min
Q∗Q=I

The symmetric problem (8) can be solved using the SVD of X.
ZD NLA for KMD and DMD 197 / 261



Overview of the course Introduction Finite dimensional computation: DMD QR compressed DMD Snapshot reconstruction – modal decomposition Exact DMD Symmetric/Hermitian DMD Measure preserving DMD Appendix 1: Review of the symmetric eigenvalue problem Appendix 2: Orthogonal Procrustes’s problem Data driven identificationLoss of symmetry - an analysis Symmetric Procrustes’ approach QR compressed symmetric DMD

Symmetric DMD – a Procrustes’ approach

Let X = Ux

(
Σ
0

)
V ∗ = UΣV ∗ be a full SVD of X with n× n unitary Ux.

Let r be the rank of X, Σr = diag(σi)
r
i=1, σ1 ≥ · · · ≥ σr > 0. Then

∥AX−Y∥2F = ∥AUx

(
Σ
0

)
V ∗ −Y∥2F = ∥ (U∗

xAUx)︸ ︷︷ ︸
M

(
Σ
0

)
− U∗

xYV︸ ︷︷ ︸
C

∥2F

= ∥M
(
Σ
0

)
− C∥2F = ∥

(
G L∗

L K

)(
Σ
0

)
−
(
C[1]

C[2]

)
∥2F ,

G = G∗ ∈ Cm×m, C[1] ∈ Cm×m,

= ∥GΣ− C[1]∥2F + ∥LΣ− C[2]∥2F . (9)

Clearly, K = K∗ ∈ C(n−m)×(n−m) can be taken arbitrary Hermitian, and
the optimal choice of L in the second term in (9) is

L =
(
C[2](:, 1 : r)Σ−1

r L[2]

)
, L[2] ∈ C(n−m)×(m−r) arbitrary.
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Symmetric DMD – a Procrustes’ approach

Further, taking the hermiticity into account, the first term in (9) reads

∥GΣ−C[1]∥2F =

m∑
j=1

|gjjσj − cjj |2 +
m∑
i=2

i−1∑
j=1

(|gijσj − cij |2 + |gijσi− cji|2),

which is minimized for

gii =


ℜ(cjj)
σj

, j = 1, . . . , r

arbitrary real, j = r + 1, . . . ,m
, (10)

gij = gji =


σjcij + σicji
σ2i + σ2j

, σi + σj ̸= 0

arbitrary whenever σi + σj = 0 (σi = σj = 0)
.(11)
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Symmetric DMD – a Procrustes’ approach

The structure of M can be illustrated as follows:

M=



⋆ ⋆ × × + + +
⋆ ⋆ × × + + +

× × ⊗ ⊗ ⊕ ⊕ ⊕
× × ⊗ ⊗ ⊕ ⊕ ⊕
+ + ⊕ ⊕ ■ ■ ■
+ + ⊕ ⊕ ■ ■ ■
+ + ⊕ ⊕ ■ ■ ■



Note the two levels of the non-
uniqueness in M . First, the matrix
K (elements denoted by ■) is ar-
bitrary Hermitian and this freedom
comes from m < n. If r < m, the
elements ⊗, ⊕ can be selected freely
under the constraint that the matrix
remains Hermitian (or real symmet-
ric). Setting all free entries to zero
yields the solution of minimal Frobe-
nius norm.

Any matrix A = A∗ that solves the Hermitian Procrustes problem is then
of the form A = UxMU∗

x .
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Symmetric DMD – a Procrustes’ approach

Note that A = UxMU∗
x is n× n and forming it explicitly is not needed. A

low rank approximation of A, proposed in [piDMD] is Aπ = UkGkU
∗
k ,

where Gk = G(1 : k, 1 : k) and Uk = Ux(:, 1 : k). (Note that there is no
guarantee that Aπ = A∗

π is in the solution set of (8).) Then, using the
spectral decomposition Gk =WΛW ∗, W ∗W = Ik, the Ritz vectors are
computed as the columns of UkW and the Ritz values are λi = Λii ∈ R.

A closer look at these formulas reveals that the elements cij used in (10)
to compute Gk are the entries of the matrix Ck = U∗

kYVk, which is
actually Ck = SkΣk, where Sk = U∗

kHUk is Hermitian. This implies in
(10) that, for 1 ≤ i, j ≤ k ≤ r,

gij = gji =
σjcij + σicji
σ2i + σ2j

=
σ2j sij + σ2i sji

σ2i + σ2j
=
σ2j sij + σ2i sij

σ2i + σ2j
= sij = sji.

(12)
In other words, using a low rank approximation of a solution of the
structured Procrustes problem (8) did not produce anything new if the
data is indeed generated by a Hermitian matrix.
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Symmetric DMD – a Procrustes’ approach

Check how this works on the previous synthetic example:

Figure: First panel: The entry-wise relative errors
log10(|(Ck)ij − (C̃k)ij |/|(Ck)ij |) where Ck = Ũ∗

kHŨkΣ̃k is computed explicitly

using H. Second panel: log10(|(Sk)ij − (G̃k)ij |/|(Sk)ij |), where Sk = Ũ∗
kHŨk.

Note that the large errors in the upper triangle of C̃k did not pollute the
symmetrizing matrix G̃k. The third panel shows the entry-wise difference between
H̃k and G̃k. Recall that in exact computation Hk = Gk.
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Symmetric DMD – a Procrustes’ approach

Consider now computation of the elements g̃ij in the upper triangle

(i ≤ j ≤ k) of G̃k. We continue using the simplified model of error
analysis where the only error is the one from the computed SVD of X.
The rounding errors in computing e.g. C̃k = Ũ∗

kYṼk are neglected. We

have, using Sk = S̃k + δS̃k and C̃k = S̃kΣ̃k,

g̃ij =
σ̃j c̃ij
σ̃2i + σ̃2j

+
σ̃ic̃ji

σ̃2i + σ̃2j
=

σ̃2j s̃ij

σ̃2i + σ̃2j
+

σ̃2i s̃ji
σ̃2i + σ̃2j

(13)

=
σ̃2j (sij − δs̃ij)
σ̃2i + σ̃2j

+
σ̃2i (sji − δs̃ji)
σ̃2i + σ̃2j

=
σ̃2j sij

σ̃2i + σ̃2j
+

σ̃2i sji
σ̃2i + σ̃2j

−
σ̃2j δs̃ij

σ̃2i + σ̃2j
− σ̃2i δs̃ji
σ̃2i + σ̃2j

(14)

= sij − (
σ̃2j

σ̃2i + σ̃2j
δs̃ij +

σ̃2i
σ̃2i + σ̃2j

δs̃ji) (15)
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Symmetric DMD – a Procrustes’ approach

Hence

sij = g̃ij + δg̃ij , δg̃ij = (
σ̃2j

σ̃2i + σ̃2j
δs̃ij +

σ̃2i
σ̃2i + σ̃2j

δs̃ji). (16)

Note that the entries of G̃k are computed from the entries of S̃k as convex
combinations that put more weight of the more accurate lower triangle.
Indeed, for σ̃j ≪ σ̃i, δsij is scaled with σ̃2j /(σ̃

2
i + σ̃2j )≪ 1. This is

illustrated in Figure 21.
Note the difference from the computation of Ŝk in (6) where the upper
and the lower triangle are averaged, in a convex combination with the
coefficient 1/2, i.e. Ŝk = Sk − (0.5δS̃k + 0.5δS̃∗

k). Further, H̃k computed

as in (5), is contaminated only by the lower triangle of the error in S̃k.
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Symmetric DMD – a Procrustes’ approach

Figure: The distribution of the values σ̃2
j /(σ̃

2
i + σ̃2

j ) illustrate why the large errors

in the northeastern corner of C̃k did not perturb the entries of G̃k too much. The
two triangles of Gk are differently weighted in the convex combination in relation
(12), and the expressions for the entry-wise errors (15), (16) explain the observed
accuracy and distribution of the errors in the matrix entries.
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Symmetric DMD - QR compression I

In the case of data from a single trajectory S = (z1, . . . , zm, zm+1), we
have X = (z1, . . . , zm), Y = (z2, . . . , zm+1), and the auxiliary subspace is
of dimension m+ 1. If we compute the QR factorization

(z1, . . . , zm, zm+1) = Q

(
R
0

)
= Q̂R, Q∗Q = In, Q̂ = Q(:, 1 : m+ 1),

(17)
then

X = Q

(
Rx

0

)
= Q̂Rx, Y = Q

(
Ry

0

)
= Q̂Ry,

where

R =

(× ⋇ ⋇ ⋇ ÷
⋇ ⋇ ⋇ ÷
⋇ ⋇ ÷
⋇ ÷

÷

)
, Rx = R(:, 1 : m) =

(× ⋇ ⋇ ⋇
⋇ ⋇ ⋇
⋇ ⋇
⋇
0

)
, Ry = R(:, 2 : m+1) =

(⋇ ⋇ ⋇ ÷
⋇ ⋇ ⋇ ÷
⋇ ⋇ ÷
⋇ ÷

÷

)
.

(18)
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Symmetric DMD - QR compression II

∥AX−Y∥2F = ∥AQ
(
Rx

0

)
−Q

(
Ry

0

)
∥2F = ∥Q∗AQ︸ ︷︷ ︸

M

X′ −Y′∥2F ,

X′ =

(
Rx

0

)
, Y′ =

(
Ry

0

)
.

In the new coordinates, the matrix representation of the linear operator
changes by similarity, and in the new representation we have M = Q∗AQ
and the data snapshots are

(
Rx
0

)
and

(
Ry

0

)
=M

(
Rx
0

)
. Clearly, if

H = H∗ ∈ argminA∥AX−Y∥F , then
M = Q∗HQ = M∗ ∈ argminM∥MX′ −Y′∥F . Hence, we have arrived at
an equivalent formulation of the original Hermitian DMD problem.
According to the previous discussions, if we set M = Y′(X′)†, then

M = Y′(X′)† = Q∗YX†Q = Q∗AQ,
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Symmetric DMD - QR compression III

Y′(X′)† =

(
Ry

0

)(
R†

x 0
)
=

(
RyR

†
x 0

0 0

)
.

Further, we have [A;X,Y] = Q[M;X′,Y′]Q∗. This is the situation in the
n-dimensional state space.
On the practical side, everything we need takes place in the
(m+ 1)-dimensional range of Q̂ and can be described as follows. Let
Rx = UxΣV

∗ be the economy-size SVD of Rx; Σ is r × r, and V is
m× r, where r = rank(X) = rank(Rx). Note that then X = (Q̂Ux)ΣV

∗

is the SVD of X, and that HQ̂Rx = Q̂RyV V
∗. Hence

HQ̂UxΣV
∗ = Q̂RyV V

∗ and HQ̂UxΣ = Q̂RyV. (19)

We can truncate (19) at an index k (chopping of small singular values)

HQ̂Ux(:, 1 : k)Σk = Q̂RyVk,

ZD NLA for KMD and DMD 208 / 261



Overview of the course Introduction Finite dimensional computation: DMD QR compressed DMD Snapshot reconstruction – modal decomposition Exact DMD Symmetric/Hermitian DMD Measure preserving DMD Appendix 1: Review of the symmetric eigenvalue problem Appendix 2: Orthogonal Procrustes’s problem Data driven identificationLoss of symmetry - an analysis Symmetric Procrustes’ approach QR compressed symmetric DMD

Symmetric DMD - QR compression IV

Ux(:, 1 : k)∗Q̂∗HQ̂Ux(:, 1 : k) = Ux(:, 1 : k)∗RyVkΣ
−1
k .

Since H = H∗, the matrix Sk = Ux(:, 1 : k)∗Q̂∗HQ̂Ux(:, 1 : k) is also
Hermitian.2 Sk is the Rayleigh quotient of H with respect to the range of
Q̂Ux(:, 1 : k). If Skwj = λwj , ∥wj∥2 = 1, then

(λj , zj), where zj = Q̂Ux(:, 1 : k)wj = Q

(
Ux(:, 1 : k)wj

0

)
(20)

is the corresponding Ritz pair of H. Note that (λj , Ux(:, 1 : k)wj) is a Ritz

pair for Q̂∗HQ̂ from the range of Ux(:, 1 : k).
Hence, the QR compressed DMD first compresses the underlying H onto
an (m+ 1)-dimensional subspace, computes the (m+ 1)-dimensional
DMD using the projected data and then lifts the Ritz pairs back to the
original n-dimensional state space (20). This lifting preserves the
orthogonality of the Ritz vectors.

2Here one can formulate the Hermitian Procrustes problem and proceed as before.
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The problem of non-normality

Problem of ill-conditioned modes

The DMD assumes that the Rayleigh quotient matrix is diagonalizable. In
some cases the matrix is not diagonalizable or highly non-normal so that
the Ritz vectors are badly conditioned.

Recently proposed Koopman-Schur Decomposition (KSD) solves the
problem and uses orthonormal modes with the same funcitonality (e.g.
forecasting) as the DMD. For more details see

Z. Drmač, I. Mezić: A data driven Koopman-Schur decomposition for
computational analysis of nonlinear dynamics. arXiv:2312.15837v1
[math.NA]
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Measure preserving transformation = unitary operator

Consider a DDS x(i+1) = F (x(i)) where F is measure preserving on a
probability space (Ω,B, ω) (ω(F−1(S)) = ω(S), S ∈ B).

The corresponding Koopman operator Kf = f ◦ F is an isometry on
L2(Ω, ω); the inner product and the norm are ⟨·, ·⟩ω, ∥ · ∥ =

√
⟨·, ·⟩ω. (K

has unitary extension, but those details are out of scope of this course.)

Goal: discretization that corresponds to isometry

When we compress K onto N -dimensional subspace VN ⊂ L2(Ω, ω), the
corresponding N ×N matrix K should represents a linear operator that
preserves the inner product ⟨·, ·⟩ω in VN .

This is more difficult than preserving hermiticity. (E.g. a Rayleigh quotient
of a Hermitian matrix is Hermitian, but in the unitary case this is not true.)
We go back to square one and first review the process of building the
matrix K, keeping in mind the above condition.

ZD NLA for KMD and DMD 211 / 261



Overview of the course Introduction Finite dimensional computation: DMD QR compressed DMD Snapshot reconstruction – modal decomposition Exact DMD Symmetric/Hermitian DMD Measure preserving DMD Appendix 1: Review of the symmetric eigenvalue problem Appendix 2: Orthogonal Procrustes’s problem Data driven identificationRevisiting matrix representation of the compression Adding the isometry constraint

Matrix representation of an operator compression - a
review

Consider a DDS x(i+1) = F (x(i)). Suppose we are given:

Data x(i), y(i) = F (x(i)), i = 1, . . . ,M . (Direct numerical
simulations and/or measurements.)

Basis functions (or, a dictionary) of ψ1, . . . , ψN that span an
N -dimensional subspace VN in the ambient Hilbert space L2(Ω, ω).

Goal: matrix K of the compression of the Koopman operator K to VN .

Take g ∈ VN . With fixed basis, g is identified with a vector g as follows:

g(x) =

N∑
j=1

gjψj(x) = Ψ(x)g, Ψ(x) =
(
ψ1(x) . . . ψN (x)

)
, g =

 g1
...
gN


VN ≡ CN ; g ≡ g. Kg will be represented by Kg.
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Matrix representation of a compression - a review

(Kg)(x) =
N∑
j=1

(Kψj)(x)gj =
N∑
j=1

ψj(F (x))gj

= Ψ(x)Kg︸ ︷︷ ︸
desired form

+

 N∑
j=1

ψj(F (x))gj −Ψ(x)Kg


︸ ︷︷ ︸

residual R(g;x)

The matrix K should be determined so that the residual is minimized.
Given severe restriction of data driven scenario, the minimization will only
mimic the proper construction of an operator compression in Hilbert
spaces.

Set Ψ(F (x)) = (ψ1(F (x)), . . . , ψN (F (x))).
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Matrix representation of a compression - a review

R(g;x) =

N∑
j=1

ψj(F (x))gj −Ψ(x)Kg = (Ψ(F (x))−Ψ(x)K)g

When defining K, it suffices to define over the sphere ∥g∥2 = 1. Note that

max
∥g∥2=1

|R(g;x)| = max
∥g∥2=1

|(Ψ(F (x))−Ψ(x)K)g| = ∥Ψ(F (x))−Ψ(x)K∥2.

It is desirable that∫
Ω
|(Kg)(x)−Ψ(x)Kg|2dω(x) =

∫
Ω
|R(g;x)|2dω(x).

is minimal. Note that∫
Ω
|R(g;x)|2dω(x) ≤

∫
Ω
∥Ψ(F (x))−Ψ(x)K∥22dω(x).
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Matrix representation of a compression - a review

In a data driven scenario, the integral is only approximated by a
quadrature formula that can only use the available data snapshots,
possibly with weights that improve the accuracy.

Hence, instead of the integral, we consider a weighted sum

M∑
i=1

wi∥Ψ(y(i))−Ψ(x(i))K∥22.

With the notation W = diag(w1, . . . , wM ) and

ΨX =

Ψ(x(1))
...

Ψ(x(m))

 , ΨY =

Ψ(y(1))
...

Ψ(y(m))

 , (y(i) = F (x(i)))

the problem can be compactly written as
∥W 1/2(ΨY −ΨXK)∥F −→ min

K
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Matrix representation of a compression - a review

The solution matrix K is

K = (W 1/2ΨK)†(W 1/2ΨY ).

This can also be written in a normal equations form

K = G†A, G = Ψ∗
XWΨX , A = Ψ∗

XWΨY .

Gjk ≈ ⟨ψk, ψj⟩ω, Ajk ≈ ⟨Kψk, ψj⟩ω.

Approaches to establish convergence:

random sampling

ergodic sampling (long trajectory, ergodic systems)

good quadrature formulas
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mpEDMD (M. Colbrook)

Now suppose that the compression K is constrained to correspond to a
unitary operator - i.e. it has to preserve the inner product and the
(induced) norm.

Consider two functions g, h ∈ VN , g = Ψg, h = Ψh.

⟨g, h⟩ω = ⟨Ψg, ψh⟩ω = ⟨
N∑
i=1

giψi,

N∑
j=1

hjψj⟩ω =

N∑
i=1

n∑
j=1

gihj⟨ψi, ψj⟩ω

≈
N∑
i=1

n∑
j=1

gihjGji = h∗Gg

In particular, ∥g∥2ω = ∥Ψg∥2ω ≈ g∗Gg = ∥G1/2g∥22.

Since Kg ≈ ΨKg and ∥ΨKg∥2ω ≈ g∗K∗GKg, we can mimic
∥g∥ω = ∥Kg∥ω by imposing the condition

K∗GK = G.
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mpEDMD (Colbrook)

Consider the residual over the unit sphere ∥G1/2g∥2 = 1:

max
∥G1/2g∥2=1

|R(g;x)| = max
∥G1/2g∥2=1

|(Ψ(F (x))−Ψ(x)K)g|

= ∥Ψ(F (x))G−1/2 −Ψ(x)KG−1/2∥2.

As before, consider minimizing the discretized integral of the residual

M∑
i=1

wi∥Ψ(y(i))G−1/2 −Ψ(x(i))KG−1/2∥22,

under the constraint that K∗GK = G. Note that this means that
Q = G1/2KG−1/2 is unitary and the objective is to minimize

M∑
i=1

wi∥Ψ(y(i))G−1/2 −Ψ(x(i))G−1/2Q∥22 −→ min
Q∗Q=I

.
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mpEDMD (Colbrook)

Putting all together in a compact form yields a unitary Procrustes problem

∥W 1/2ΨYG
−1/2 −W 1/2ΨXG

−1/2Q∥F −→ min
Q∗Q=I

.

This is of the form ∥A−BQ∥F → minQ∗Q=I . The optimal Q is
Q = UV ∗, where B∗A = UΣV ∗ is the SVD. (See Appendix 2.)
Once we compute Q, the matrix of the compressed unitary Koopman
operator is

K = G−1/2QG1/2.

For more details, theoretical analysis, examples and software see

M. Colbrook: The mpEDMD Algorithm for Data-Driven
Computations of Measure-Preserving Dynamical Systems. SIAM
Journal on Numerical Analysis Vol. 61, Iss. 3 (2023).
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Appendix: Review of the symmetric eigenvalue problem

Theorem

Let H be Hermitian with the eigenvalues λ1 ≥ · · · ≥ λn and the
corresponding orthonormal eigenvectors u1, . . . , un, i.e. Hui = λiui,
i = 1, . . . , n and u∗iuj = δij (ui ⊥ uj for i ̸= j). Then

λ1 = max
x ̸=0

x∗Hx

x∗x
= max

∥x∥2=1
x∗Hx = u∗1Hu1

λi = max
∥x∥2=1

x⊥u1,...,ui−1

x∗Hx = u∗iHui, i = 2, . . . , n.

Analogously, the eigenvalues are the minima of the constrained quadratic
form x∗Hx:

λn = min
x ̸=0

x∗Hx

x∗x
= min

∥x∥2=1
x∗Hx = u∗nHun

λi = min
∥x∥2=1

x⊥ui+1,...,un

x∗Hx = u∗iHui i = 1, . . . , n− 1.
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Appendix: Review of the symmetric eigenvalue problem

Theorem (Poincaré’s inequality)

Let H = H∗ ∈ Cn×n have the eigenvalues λ1 ≥ · · · ≥ λn. If S ⊆ Cn is an
arbitrary i–dimensional subspace, then for some unit vectors x, y ∈ S

x∗Hx ≤ λi, y∗Hy ≥ λn−i+1. (1)

Theorem

The eigenvalues λ1 ≥ · · · ≥ λn of H are the optimal values of a sequence
of constrained optimization problems:

λi = max
S⊆Cn

dim(S)=i

min
x∈S

∥x∥2=1

x∗Hx = min
S⊆Cn

dim(S)=n−i+1

max
x∈S

∥x∥2=1

x∗Hx, i = 1, . . . , n,

(2)
where the optima are attained at the corresponding eigenvectors,
λi = u∗iHui (Hui = λiui, u

∗
iuj = δij).
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Appendix: Review of the symmetric eigenvalue problem

Theorem (Ky Fan’s theorem)

The eigenvaluesa λ1 ≥ · · · ≥ λn of H solve the following constrained trace
optimization problem:

λ1 + · · ·+ λk = max{Trace(X∗HX) : X ∈ Cn×k, X∗X = Ik}, (3)

where the maximum is attained at the matrices of the form
X =

(
u1, . . . , uk

)
Q, where u1, . . . , uk are orthonormal eigenvectors of

λ1, . . . , λk. and Q is arbitrary k × k unitary matrix. Analogously, for the k
smallest eigenvalues

n∑
i=n−k+1

λi = min{Trace(X∗HX) : X ∈ Cn×k, X∗X = Ik}. (4)
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Appendix: Review of the symmetric eigenvalue problem

Theorem (Weyl’s theorem)

Let H be n× n Hermitian and let δH be a Hermitian perturbation. Then
the eigenvalues of H and H + δH can be compared as follows:

λj(H) + λn(δH) ≤ λj(H + δH) ≤ λj(H) + λ1(δH), j = 1, . . . , n, (5)

or, equivalently,

λj(H + δH)− λ1(δH) ≤ λj(H) ≤ λj(H + δH)− λn(δH), j = 1, . . . , n.
(6)

In particular,

max
j=1:n

|λj(H + δH)− λj(H)| ≤ max{|λ1(δH)|, |λn(δH)|} = ∥δH∥2. (7)

Further, if δH is positive semidefinite, then λj(H + δH) ≥ λj(H) for all
j = 1, . . . , n.
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Appendix: Review of the symmetric eigenvalue problem

Theorem (Hoffman-Wielandt’s theorem)

Let A and B be normal n× n matrices with the eigenvalues, respectively,
λ1(A), . . . , λn(A), and λ1(B), . . . , λn(B). There is permutation p such
that √√√√ n∑

i=1

|λi(A)− λp(i)(B)|2 ≤ ∥A−B∥F . (8)

Corollary

Let in the Hoffman-Wielandt’ theorem the matrix A be Hermitian and let
B be normal. If the eigenvalues are indexed so that λ1(A) ≥ · · · ≥ λn(A),
and ℜ(λ1(B)) ≥ · · · ≥ ℜ(λn(B)) then√√√√ n∑

i=1

|λi(A)− λi(B)|2 ≤ ∥A−B∥F .
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Appendix: Residual bounds for the symmetric eigenvalue
problem

Theorem (Kahan’s theorem)

Let H be n× n Hermitian matrix with eigenvalues λ1 ≤ · · · ≤ λn and let
X be an n× ℓ orthonormal matrix. If µ1 ≤ · · · ≤ µℓ are the eigenvalues of
M = X∗HX, then there are ℓ eigenvalues λi1 , . . . , λiℓ of H such that

max
j=1:ℓ

|λij − µj | ≤ ∥R∥2, (9)

√∑
j=1:ℓ

|λij − µj |2 ≤ ∥R∥F , (10)

where R = HX −XM .
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Appendix: Residual bounds for the SEVP

Proof

Let X⊥ be an orthonormal matrix that spans X⊥ and let

H ′ =
(
X X⊥

)∗
H
(
X X⊥

)
=

(
M K∗

K W

)
, (11)

where M = X∗HX, W = X∗
⊥HX⊥, K = X∗

⊥HX.
The trick is to us the backward error framework. With
δH = RX∗ +XR∗, X becomes an invariant subspace of H̃ = H − δH.

H̃ ′ =
(
X X⊥

)∗
(H − δH)

(
X X⊥

)
=

(
M 0
0 W

)
. (12)

The eigenvalues of M are some ℓ eigenvalues of H̃ ′, and this reduces the
problem to spectral perturbation theory, i.e. to comparing the eigenvalues
λ1 ≥ · · · ≥ λn of H ′ (unitarily similar to H) and the eigenvalues
λ̃1 ≥ · · · ≥ λ̃n of H̃ ′.
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Appendix: Residual bounds for the SEVP
... proof ... continued ...

A direct application of the Weyl’s and Wieland-Hoffman theorems yields

max
i=1:n

|λ̃i − λi| ≤ ∥H ′ − H̃ ′∥2,

√√√√ n∑
i=1

(λ̃i − λi)2 ≤ ∥H ′ − H̃ ′∥F .

It only remains to compute the norm of the perturbation H ′ − H̃ ′.

H ′ − H̃ ′ =

(
0 K∗

K 0

)
, ∥H ′ − H̃ ′∥2 = ∥K∥2, ∥H ′ − H̃ ′∥F =

√
2∥K∥F .

Due to unitary invariance, the spectral norm of K equals

∥K∥2 = ∥X⊥X
∗
⊥HX∥2 = ∥(In −XX∗)HX∥2 = ∥HX −XM∥2 = ∥R∥2,

and, in the same way, ∥K∥F = ∥R∥F . Since µj = λij for some indices

i1, . . . , iℓ, the proof of (9) is completed, and for (10) the extra factor
√
2

must be removed using another approach. Note that analogous error
estimates hold for the eigenvalues of W .
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Appendix: Orthogonal Procrustes’s problem

Orthogonal Procrustes problem

For A,B ∈ Cm×n find a unitary matrix Q that minimizes

min
Q∗Q=In

∥A−BQ∥F . (1)

If A and B are real, the optimal Q should be real orthogonal.

This problem arises in applications e.g. in computer vision, robotics,
photogrammetry, psychometrics, radiostereometric and morphometric
analysis in biomedical engineering.

Pioneering work on the solution of this problem was done by Green 1952
and Schöneman 1966.

In the applications of DMD/Koopman operator for numerical analysis of
nonlinear dynamics, (1) is the key for measure preserving/unitary cases.
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Appendix: Orthogonal Procrustes’s problem

Theorem

A solution of the problem (1) is

UV ∗ ∈ arg min
Q∗Q=In

∥A−BQ∥F , (2)

where B∗A = UΣV ∗ is the SVD of B∗A. This solution is unique if and
only if B∗A is nonsingular. If A and B are real, then the optimal Q is real
orthogonal.

Proof

Since
∥A−BQ∥2F = ∥A∥2F + ∥B∥2F − 2ℜTrace(Q∗B∗A),

any optimal Q that minimizes (1) maximizes ℜTrace(Q∗B∗A).
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Appendix: Orthogonal Procrustes’s problem

... proof ... continued ...

If B∗A = UΣV ∗ is the SVD of B∗A, Σ = diag(σi)
n
i=1, then

Trace(Q∗B∗A)=Trace(Q∗UΣV ∗)=Trace(V ∗Q∗UΣ)=

n∑
i=1

(V ∗Q∗U)iiσi,

and thus (since |ℜ(V ∗Q∗U)ii| ≤ |(V ∗Q∗U)ii| ≤ 1 for all i)

ℜTrace(Q∗B∗A) =
n∑

i=1

ℜ(V ∗Q∗U)iiσi ≤
n∑

i=1

σi. (3)

The above inequality becomes an equality if ℜ(V ∗Q∗U)ii = 1 for all
i = 1, . . . , n. If all σi’s are positive (i.e. B∗A is nonsingular) then this
condition is also necessary (

∑n
i=1 σi(1−ℜ(V ∗Q∗U)ii) = 0⇐⇒

ℜ(V ∗Q∗U)11 = · · · = ℜ(V ∗Q∗U)nn = 1). Since V ∗Q∗U is unitary, this is
possible only if V ∗Q∗U = In, i.e. Q = UV ∗.
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Z. Drmač, I. Mezić, and R. Mohr. Data driven Koopman spectral
analysis in Vandermonde-Cauchy form via the DFT: numerical method
and theoretical insights. SIAM Journal on Scientific Computing, 41(5):
A3118-A3151, 2019.
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Problem: Learning equations from data

Now assume that the system ẋ(t) = F(x(t)) is accessible only through
snapshots from a sequence of trajectories with different (possibly
unknown) initial conditions. More precisely, we are given

(xk,yk) ∈ Rn × Rn, k = 1, . . . ,K,

where
yk = φt(xk) (1)

In a real application, t is a fixed time step, and it is possible that the time
resolution precludes any approach based on estimating the derivatives by
finite differences; the dataset could also be scarce, sparsely collected from
several trajectories/short bursts of the dynamics under study.

The task is to identify F and express it analytically, using a suitably
chosen class of functions. Our focus is on the computing engine – robust
numerical method that translates into reliable numerical software.
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Example: Learn ẋ(t) = F(x(t)) from data snapshots(
ẋ1
ẋ2
ẋ3

)
=

(
−10 10 0
28 −1 0
0 0 −8/3

)(
x1
x2
x3

)
+
(

0
−x1x3
x1x2

)
. (2)
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log10 ϵk, where ϵk = maxi=1,2,3
|F̃i(xk)−Fi(xk)|

∥F(xk)∥∞
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Mauroy and Goncalves: learn the semigroup generator

Mauroy and Goncalves method for learning F from the data. Step 1:
Let X ⊂ Rn be compact, forward invariant – big enough to contain
all data snapshots. (What happens in X stays in X.)

Consider the semigroup Ktf = f ◦ φt of Koopman operators acting
on a space of scalar observables f ∈ F , where e.g. F = L2(X).

Select a suitable (finite) N -dimensional but rich enough subspace
FN ⊂ F , and its basis B = {℘1, . . . ,℘N}. The observables are
(OX)ij = ℘j(xi) ∈ CK×N , (OY )ij = ℘j(yi) ∈ CK×N .

Compute (a data driven) compression ΦNKt
|FN

: FN −→ FN and its

matrix representation UN (in the basis B)
Show that UN ≈ eLN t, i.e. LN ≈ (1/t) logUN , where LN is the
compression of the infinitesimal generator K defined by

Kf = lim
t→0+

Ktf − f
t

, f ∈ D(K).

(Kt strongly continuous in L2(X): limt→0+ ∥Ktf − f∥2 = 0).
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Mauroy and Goncalves: learn the semigroup generator

Mauroy and Goncalves method for learning F from the data.
Step 2:

Recall the fact that

Kf = F · ∇f =

n∑
i=1

Fi
∂f

∂xi
, f ∈ D(K). (3)

If we assume Fi =
∑

k ϕki℘k, then the action of K to the basis’s
vectors ℘k can be computed, using (3), by straightforward calculus,
and its matrix representation will, by comparison with (1/t) logUN ,
reveal the coefficients ϕki.

An analysis of convergence (with probability one as t→ 0, N →∞,
K →∞) and numerical experiments provided by Mauroy and
Gonsalves show that this approach works well.
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Example

F(x) =


∑NF

k=1 ϕk1x
s
(k)
1

1 x
s
(k)
2

2 ···xs
(k)
n

n

...∑NF
k=1 ϕknx

s
(k)
1

1 x
s
(k)
2

2 ···xs
(k)
n

n

 =

(
F1(x)

...
Fn(x)

)
, Fj(x) =

NF∑
k=1

ϕkjx
s(k) ,

(4)

where xs(k) = x
s
(k)
1
1 x

s
(k)
2
2 · · ·xs

(k)
n
n are monomials written in multi-index

notation and have total degree of at most mF .

FN =span(B),B={xs11 · · ·x
sn
n : si ∈ N0, s1+. . .+sn ≤ m}, N=

(
n+m

n

)
≥ NF .

(5)
Let ℓ be the index of xj in the grlex ordering, i.e. ℘ℓ(x) = xj ;
ℓ = n+ 2− j. Then the application of K to ℘ℓ reads

(K℘ℓ)(x) = (F · ∇℘ℓ)(x) =
n∑

i=1

Fi(x)
∂

∂xi
℘ℓ(x) = Fj(x) ≡ Fn+2−ℓ(x).
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Example

Hence K℘ℓ = Fn+2−ℓ. If LN = ΦNK|FN
, then also LN℘ℓ = Fj

(Fj(x) =
∑NF

k=1 ϕkjx
s(k) ∈ FN ). Hence, in the basis B we have

[LN ]B(:, ℓ)=[ΦNK℘ℓ]B=[Fj ]B=


ϕ1j

ϕ2j

...
ϕNF j

0N−NF

 , j=n+2−ℓ, ℓ=2, . . . , n+1.

In other words, the coordinates of Fj are encoded in [LN ]B(:, n+ 2− j).

Convergence theory (Mauroy & Goncalves)

[LN ]B = lim
t→0+

1

t
[log ΦNUt

|FN
]B = lim

t→0+

1

t
log[ΦNUt

|FN
]B

and it follows that, for t small enough,

[LN ]B ≈
1

t
logUN ≡

1

t
logO†

XOY . (6)
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Koopman semigroup generator - data driven identification

The method (Mauroy and Gonsalves, 2018)

1 Compress Kt onto a suitable finite dimensional but rich enough
subspace FN of F is computed. In a convenient basis B of FN , this
compression is executed in the discrete least squares setting, yielding
the matrix representation UN = [ΦNKt

|FN
]B ∈ Rn×n. For example,

UN = O†
XOY , where OX , OY are the observables.

2 [LN ]B ≈ 1
t [log ΦNKt

|FN
]B = 1

t log[ΦNKt
|FN

]B = 1
t logUN

3 Recall, K = F · ∇ =
∑n

i=1 Fi
∂
∂xi
.

4 Assume polynomial field, Fj(x) =
∑NF

k=1 ϕkjx
s(k)

5 [LN ]B(:, ℓ) = [LN℘ℓ]B = [Fj ]B =
(
ϕ1j ϕ2j . . . ϕNF j 0N−NF

)T
,

where j = n+ 2− ℓ, ℓ = 2, . . . , n+ 1.

The problem: Numerical stability issue in logUN ≡ log(O†
XOY )
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Matrix logarithm

For this scheme to work, UN must be nonsingular, otherwise logUN does
not exist. Further, to have the primary value of the logarithm (as primary
matrix function, i.e. the same branch of the logarithm used in all Jordan
blocks), the matrix must not have any real negative eigenvalues. Only
under those conditions we can obtain real logarithm as primary function.

Theorem

Let A be real nonsingular matrix. Then A has real logarithm if and only if
A has an even number of Jordan blocks of each size for every negative
eigenvalue.

Theorem

Suppose that n× n complex A has no eigenvalue on (−∞, 0]. Then a
unique logarithm of A can be defined with eigenvalues in the strip
{z ∈ C : −π < ℑ(z) < π}. It is called the principal logarithm and denoted
by logA. If A is real, then its principal logarithm is real as well.
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An Example

A good way to test robustness of a numerical algorithm is to push it to its
limits. In this case, we choose a difficult test case and let the dimensions of
the data matrices grow by increasing the total degree m of the polynomial
basis (and thus the dimension N) and matching that with increased K so
that K > N . The main goal is to provide a case study example.

Consider the Lorenz systemẋ1ẋ2
ẋ3

 =

−10 10 0
28 −1 0
0 0 −8/3

x1x2
x3

+

 0
−x1x3
x1x2

 . (7)

The exact coefficients, ordered to match the grlex ordering of the
monomial basis are

1 x3 x2 x1 x2
3 x2x3 x2

2 x1x3 x1x2 x2
1

F1: 0 0 1.0000e+1 −1.0000e+1 0 0 0 0 0 0
F2: 0 0 −1.0000e+0 2.8000e+1 0 0 0 −1.0000e+0 0 0
F3: 0 −2.6667e+0 0 0 0 0 0 0 1.0000e+0 0

.
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An Example

To collect data, we ran simulations with 55 random initial conditions and
from each trajectory we randomly (independently) selected 55 points,
giving the total of K = 3025 pairs (xk,yk). The simulations were
performed in Matlab, using the ode45() solver in the time interval [0, 0.2]
with the time step δt = 10−3. We computed the logarithm in Matlab in
two ways, as logm(pinv(OX) ∗OY ) and as logm(OX\OY ),

3 and
obtained nearly the same matrix. The computed approximations of the
coefficients of (7), with m = 3, N = 20 and mF = 2, are

1 x3 x2 x1 x2
3 x2x3 x2

2 x1x3 x1x2 x2
1

F1: e−5 e−6 1.0000e1 −1.0000e1 e−7 e−6 e−7 e−6 e−6 e−7

F2: e−5 e−6 −1.0000e0 2.8000e1 e−6 e−5 e−9 −1.0001e0 e−6 e−6

F3: e−4 −2.6667e0 −5.5e−6 e−6 e−6 e−6 e−8 e−5 1.0000e0 e−6

.

3Of course, using the pseudoinverse explicitly is not recommended. We use it here for
illustrative purposes only.
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m = 3; ϵk = maxi=1,2,3 |F̃i(xk)− Fi(xk)|/∥F(xk)∥∞
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An Example

Now we use the data snapshots from the previous example, and increase
the total degree to m = 9, thus increasing N from N = 20 to N = 220.
Recall that K = 3025. Surprisingly, the computed coefficients are all
complex, and are completely off; the euclidean norms of the real and the
imaginary parts of the vector of the computed coefficients are O(106).
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Figure: log10 ϵk. Left panel: m = 3. Right panel: m = 9.
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logUN ≡ log(O†XOY ) is difficult

Computing the matrix logarithm becomes difficult, in particular when
the dimensions increase (for better approximation).

Hence, the better the method theoretically, the more numerically
unstable it becomes for practical computation.

Numerical implementation (available in the literature) fails even when
using state of the art tools (Matlab). Often it works only for small
time intervals with high resolution sampling.

However, the approach is appealing as it does not use the derivatives
and it is better suited for real applications where the sampling may
not be fine enough for sufficiently accurate approximations of the
derivatives.

Warning: Principal matrix logarithm is not defined for A

with nonpositive real eigenvalues. A non-principal matrix

logarithm is returned.
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logUN ≡ log(O†XOY ) is difficult to compute
A closer inspection of the eigenvalues of UN confirms that UN has
problematic (real negative) eigenvalues.
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(m = 9, N = 220.) Left panel: The (computed) eigenvalues of the matrix
representation of the computed compression UN = pinv(OX) ∗OY of Kt.
The red cross at the origin indicates a cluster of eigenvalues. Right panel:
Zoomed neighborhood of the origin, showing many absolutely small
eigenvalues, quite a few of whom are negative real. OX\OY even worse.
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Even O†XOY may be difficult to compute

Using pinv() is not advisable. What if we use direct LS solver (Matlab’s
backslash). One conspicuous difference is that instead of the cluster of
absolutely small eigenvalues of pinv(OX) ∗OY , OX\OY has zero
eigenvalue of multiplicity 56. This multiple zero eigenvalue is a
consequence of the sparsity structure of OX\OY .
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Figure: The sparsity structure of pinv(OX) ∗OY and OX\OY . The backslash
operator uses the rank revealing (column pivoted) QR factorization and, by
truncation, returns sparse rank deficient solution. As a result, computation of the
matrix logarithm fails.
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Even O†XOY may be difficult to compute

In this example we use monomials and the first basis vector is the constant.
Since Kt℘1 = 1 · ℘1, [ΦNKt

|FN
]B[℘1]B ≡ UNe1 = e1 = 1 · [℘1]B, which

clearly follows from the solution of the least squares problem. On the
other hand, the first column of UN is computed as shown in the Figure.
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Figure: (m = 9.) Left: the first column of UN , computed in Matlab as
pinv(OX) ∗OY . Its norm is ∥UN (:, 1)∥2 ≈ 5.7007e− 05. Right: the first column
of UN = OX\OY , with norm ∥UN (:, 1)∥2 ≈ 6.6258e− 05. The true value of
UN (:, 1) should be e1 = (1, 0, . . . , 0)T .
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logUN ≡ log(O†XOY ) is difficult
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(Lorenz, m = 9.) The (computed) eigenvalues of the matrix LN . Note
that some of them are at the boundary of the strip
{z ∈ C : −π/δt < ℑ(z) < π/δt}, i.e. the eigenvalues of logUN are at
the boundary of {z ∈ C : −π < ℑ(z) < π}. The right panel shows te
distribution of the eigenvalues closer to the origin.
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Computing logUN with preconditioning

If S is any nonsingular matrix, then

log(O†
XOY ) = S log(S−1(O†

XOY )S)S
−1 ≡ S log((OXS)

†OY S)S
−1. (8)

Note that replacing O†
XOY with the similar matrix S−1(O†

XOY )S
corresponds to changing the basis for matrix representation of the
compressed Koopman operator. Clearly, the key is to compute the
preconditioned matrix S−1(O†

XOY )S without first computing O†
XOY .

(Once we compute and store O†
XOY explicitly in floating point arithmetic,

it may be then too late even for exact computation.)

The conditions on S are:

(i) it should facilitate more accurate computation of the argument

S−1(O†
XOY )S = (OXS)

†OY S for the matrix logarithm;
(ii) it should have preconditioning effect for computing the logarithm of

S−1(O†
XOY )S;

(iii) the application of S and S−1 should be numerically efficient.
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Simple diagonal preconditioning

Algorithm: [LN ] = Inf Generator QRSC(OX , OY , T,N)

Input: OX , OY , T
1: S = diag(1/∥OX(:, i)∥2)
2: [QX , R̂X ] = qr(OXS){QR factorization}
3: ÛN = QT

X(OY S)R̂
−1
X {ÛN is similar to O†

XOY .}
4: L̂N = log(ÛN )
5: LN = (1/T )S(R̂−1

X L̂N R̂X)S−1

Output: L = (1/T ) log(O†
XOY )

Simple to deploy.

It is a simple preconditioner for LS solvers used to compute O†
XOY .

Useful in many cases but of limited use in more difficult cases.

Must be careful when scaling noisy data.
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Preconditioning using RR QR factorization
[LN ] = Inf Generator QRCP(OX , OY , T,N)

Input: OX , OY , T
1: Reorder the snapshots by simultaneous row permutation of OX and
OY ; see the remark below.

2: [QX , RX ,ΠX ] = qr(OX){Rank revealing QR factorization}
3: ÛN = QT

X(OY ΠX)R−1
X {ÛN is similar to O†

XOY .}
4: L̂N = log(ÛN )
5: LN = (1/T )ΠX(R−1

X L̂NRX)ΠT
X

Output: L = (1/T ) log(O†
XOY )

Remark on row pivoting in the QR factorization

For the numerical accuracy of the QR factorization, an additional row pivoting
may be needed to obtain the rows ordered so that their ℓ∞ norms are decreasing,
see e.g. Cox and Higham (1998). If Ψ is a permutation matrix that encodes the

row pivoting, then (ΨOX)† = O†
XΨT , so that (ΨOX)†(ΨOY ) = O†

XOY . This
means that the row pivoting in the QR factorization is equivalent to a reordering
of the data. The column pivoting corresponds to reordering the basis’ functions.
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Test Example; m = 9 revisited
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Figure: Left panel: The (computed) eigenvalues of UN ∈ R220×220 (×), and the
eigenvalues of exp(δtLN ) (◦). The maximal relative difference between the
matching eigenvalues is computed as 8.1 · 10−9. Here UN is computed as
UN = ΠR−1QTOY without any truncation of R. The diagonal entries of R span,
in absolute value, the range between 1.9 · 1016 and 1.0 · 101. This reveals the
condition number of UN which is computed as 7.4 · 1016 by the Matlab function
cond(). Right panel: The values of log10 ϵk for 12000 randomly selected points
in the box [−20, 20]× [−20, 20]× [0, 50].
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Dual formulation (Mauroy and Gonsalves)

N > K

Large dimension N of FN , number of snapshots K < N .

OX=
(
■ ■ ■ ■
■ ■ ■ ■

)
, OY =( • • • •

• • • • ), O
†
XOY =

(
♦ ♦
♦ ♦
♦ ♦
♦ ♦

)
( • • • •
• • • • )=

(
⋆ ⋆ ⋆ ⋆
⋆ ⋆ ⋆ ⋆
⋆ ⋆ ⋆ ⋆
⋆ ⋆ ⋆ ⋆

)
︸ ︷︷ ︸

logUN does not exist

OX

UN︷ ︸︸ ︷
O†

XOY O
†
X=
(
■ ■ ■ ■
■ ■ ■ ■

)( ♦ ♦
♦ ♦
♦ ♦
♦ ♦

)
( • • • •
• • • • )

(
♦ ♦
♦ ♦
♦ ♦
♦ ♦

)
=( • • • •

• • • • )

(
♦ ♦
♦ ♦
♦ ♦
♦ ♦

)
=OYO

†
X

Dual formulation is based on the logarithm of UK = OYO
†
X .

The matrix UK is the matrix Rayleigh quotient of UN with respect to the
range of O†

X , i.e. UK = OXUNO
†
X and UNO

†
X = O†

XUK .
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Learning better subspaces

The dual formulation is based on a particular K-dimensional subspace
of FN (the span of ℘1, . . . ,℘N ).

The problem of numerical ill-conditioning of the compression of the
infinitesimal generator remains the key issue in both formulations.

We can setup a more general framework:

Seek other subspaces, and not necessarily of dimension K.

Both the subspace and its dimension N̂ should be determined with
respect to the numerical conditioning of the matrix representations at
the finite sequence x1, . . . ,xK .

A basis of such a N̂ -dimensional subspace F
N̂

of FN is written as

(ψ1, . . . ,ψN̂
) = (℘1, . . . ,℘N )S, where S is N × N̂ selection

operator, i.e. matrix, of rank N̂ .
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Pruning the dictionary

[S, ℓ̂, r̂,Π1,Π2] = Subspace Selection(OX ,S0, N̂ , tol)

1: Reorder the snapshots: simultaneous row permutation of OX , OY ;
2: Bring the selected functions forward to the leading ℓ positions: QX = QXS0.

Implement S0 as a sequence of swaps to avoid excess data movement (in the
case of large dimensions).

3: [Q1, R1,Π1] = qr(OX(:, 1 : ℓ)) {Rank revealing QR factorization with column
pivoting. Overwrite R1 = (RT

11,0)
T over the leading ℓ columns of OX .}

4: Determine the numerical rank ℓ̂ of R11 and in the case ℓ̂ < ℓ set
R11(ℓ̂+ 1 : ℓ, ℓ̂+ 1 : ℓ) = 0.

5: OX(:, ℓ+ 1 : N) = Q∗
1OX(:, ℓ+ 1 : N).

6: [Q2, R2,Π2] = qr(OX(ℓ̂+ 1 : K, ℓ̂+ 1 : N)). {Rank revealing QR
factorization with column pivoting. R2 = (R22, R23) overwrites

OX(ℓ̂+ 1 : K, ℓ̂+ 1 : N)}
7: Determine the numerical rank r̂ of R22. Set Ñ = ℓ̂+ r̂.
8: S = (S0(Π1 ⊕ IN−ℓ)(Iℓ̂ ⊕Π2))(:, 1 : min(N̂ , Ñ));
Output: S
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Example (dual method)

The errors ϵ
(i)
k for the intervals [0, 0.1] and [0, 0.18]; in the case of the time

interval [0, 0.19], the method broke down and the reconstructed values
were computed as NaN’s.
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Figure: The errors ϵ
(i)
k = |F̃i(xk)−Fi(xk)|

∥F (xk)∥∞
. Left panel: time interval [0, 0.1]. Right

panel: time interval [0, 0.18]. δt = 0.001.
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Example (new, pruning+preconditioning)
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Figure: First row: The time stamps of x1, . . . ,x360, illustrated on the first out of
12 generated trajectories. Three consecutive snapshots, with time lag 0.01, are
taken at ten randomly selected and fixed time instances. Second row: The first

plot shows the relative errors ϵ
(i)
k with δt = 0.01, and the second plot for δt = 0.1.
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Other approaches: SINDY

Sparse Identification of Nonlinear Dynamics (SINDy) is a popular method
for data driven identification. For details see

Steven L. Brunton, Joshua L. Proctor, and J. Nathan Kutz:
Discovering governing equations from data by sparse identification of
nonlinear dynamical systems, PNAS, vol. 113, no. 1, April 12, 2016,
pp. 3932-3937.

https://faculty.washington.edu/kutz/page26/

Exercise

Read he above paper on SINDY and use the software toolbox to test it on
your favorite data set.
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