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Overview of the course
Overview of the course

o

© 00

Introduction. What is the Koopman operator? What is the DMD and
what is the connection? What is the Extended/kernel DMD? How to
use kernel trick? What is the Exact DMD?

Koopman mode decomposition. Least squares decomposition of the
data snapshots. Khatri—Rao structure of the LS problem.

Compressed DMD and the streaming DMD.

Physics—informed DMD. Hermitian DMD and measure preserving
(unitary) DMD. Weighted DMD.

Data driven system identification. SINDY and the Mauroy-Goncalves
methods. Computations with the infinitesimal generator of the
Koopman semigroup.

Schur-Koopman modal decomposition for non—normal cases.
Software development.

Seminar projects.
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Overview of the course
Introduction

The “Koopmanism"” has grown as a vast research subject in several
research frameworks:

@ Dynamical system theory.
Operator (semigroup) theory.
Ergodic theory.
Application area oriented development that requires corresponding
expertise (computational fluid dynamics, machine learning, ...)
Computational aspects — numerical methods and development
of software tools. Data driven framework.
Many misconceptions, many open problems, many applications, many
publications, ... very active area of research.

Our goal in this course

We want to understand the numerical aspects of the “computational
Koopmanism”. It is a new research field within the numerical linear
algebra. The NLA is the key for computational analysis of nonlinear
dynamics. It's a linear world after all :)
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Introduction Motivating examples and problems The Koopman operator Da

Continuous autonomous dynamical systems

F1(x(1))
x(t) = F(x(t)) = ( : ) x(to) = o, (1)

with state space X (
X C RN) and vector-valued nonlinear function F : X — R,

i”l(t) —10 10 0 $1(7f) 0
(i‘Q(i)) = ( 28 —1 0 ) (l’g(t)) + (l‘l(t)xg(t)) . (2)
x3(t) 0 0 -=8/3) \x3(t) x1(t)z2(t)
—_————

x(t)
Fi(x(t)) = —10z1(t) + 10z2(t);
Fo(x(t)) = 28z1(t) — x2(t) — z1(t)ws(t);

F3(x(t)) = (=8/3)a3(t) + 21 (t)z2(t)
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. Learn &(t) = F(z(t)) from data (F unknown)

complex dynamics
limited understanding

10

| Fi (i) — Fi (x|

logqq €k, where €, = max;—123 PO o
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Task: Reveal latent

Introduction

Motivating examples and problems The Koopman operator

structure, coherent states
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Figure: Use high fidelity numerical simulations to better understand physics.
(Data source: Popinet 2004, Baeza Rojo and Giinther 2019.)
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Special case: Linear time invariant systems

(1) = F(x(t)) = Ax(1) A=< o ) x(to) = xo.

GN1 .- ANN

Solution: x(to 4 t) = e*4x(ty). Suppose A is diagonalizable, A = SAS™1,
A= diag(/\l, ...,)\N), S = (Sl, e ,SN), ASj = )\ij; /\j =a; + i,@j eC
eigenvalue; s; € CN eigenvector. The structure of the solution

x(to +t) is expressed using the spectral elements of A as follows:

etM
x(to+1t) = e“x(to) = Se" S x(tg) = S ( g ) S™x(to)
AN ———
y=y1,-yn)T
= Slet/\lyl + Sget)‘QyQ + -+ sNet/\NyN
S (R L () o
X(to+t S S s
O: 2 — 1 2 et>\1y1+ 2 2 et>\2y2+. 4 N 2 €t>\NyN-
(x(to+1)) N (s1)n (s2)n (sn)

et>‘j — el eitﬁj — et (COS 5]t +isin ﬁjt)
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Motivating examples and problems The Koopman operator Da

Introduction

Discrete dynamical systems: z; . ; = T(z;)

1 2 1 2

Example (Time-evolving graph)

Suppose we are given a time-evolving graph G = (G1,Ga, ..., Gar) with
adjacency matrices Ay, Ao, ..., Apr. The goal is to find a low dimensional
embedding (a new coordinates system) that reveals the latent structure
(e.g. metastable behaviour). Here G;1; = T(G;), but T(.) is inaccessible.
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Discrete dynamical systems: z; . ; = T(z;)

Example (Neural network training as a dynamical system)

Consider a neural network n: X x R" — R?, (x,w) — n(x;w), where
X is the input feature vector, w is the vector of network weights
(parameters), and n(x;w) is the output. The weights are determined by
minimizing the loss function L, (w) over the training data. The deployed
optimization algorithm (e.g. stochastic gradient descent) can be
represented as an iterative process w1 = T(w;). The mapping T(.) is
black—boxed. Goal: learn T(.) from data and e.g. prune the network
(selectively set weights to zero).

Video processing: foreground-background separation Recorded video is a
sequence of frames that can be interpreted as data snapshots recorded
with fixed time lag. The goal is to separate the static background from the
dynamics on the video.
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Setting the scene: DS and the Koopman operator

Fy(x(t))
X(t) = F(x(t)) = ( ; ) . x(to) = %o, (3)
Fn(x(t))
The solution formula (the flow map) is
to+t
X(to+0) = @'(x(to) = x(to) + [ Fx(r)dr. (@

Observables

The state may not be accessible. Instead, we have observables (indirect
measurements of the state) f: X — C, f € F; eg. F C L?(X, ).

Koopman operator semigroup (K:):>0

Kif = fo¢', feF. (5)
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Setting the scene: DS and the Koopman operator

IC; is linear operator

Indeed, let «, B be scalars, f, g observables. Recall,

(af 4+ Bg)(¢'(z) = a f('(z)) + Bg(#'(z)).

Hence,

Ki(af +89) = (af +Bg)op' =a(fop")+pB(goe")
= alkif + LKy

Further, (‘ot1+t2 — QDtl o (pt2 — (,Ot2 o ‘ptl

ot to+t1+t2
1112 (x(t)) = x(to) +/ F(x(7))dr = ¢" (¢"(x(to)))
to
This implies the (semi)group property:
ICt1+t2f =fo 90t1+t2 =fo (ptl © (ptz = ICtQ(f © (ptl) = Ktzlchf
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Introduction Motivating examples and problems The Koopman operator Da

Example: Koopman eigenpairs for linear systems

ail ... Q1N
() = F(x(t) = ax(t), A=( ¢ .
aN1 - GNN
Solution: x(tg + t) = e*4x(ty). Suppose A is diagonalizable, A = SAS™!,
A= diag(/\l, ...,)\N), S = (Sl, . ,SN), ASj = )\ij; /\j =a; + i,@j eC
eigenvalue; s; € CN eigenvector.

). o) =xo

A=8AS7' = A* = STA*S = WAWL, W=5"%;

W*S =1I; wisy = djy (wj =W(,j)); A* = diag(A1, ..., AN) .
Then for any x

N

X:SSAX:SW*x:Z wWiX)s; = Zw] X)s;,

j=1
where ¢;(x) = wix = (x,w;).
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Example: Koopman eigenpairs for linear systems

Consider now 9;(x) = wix = (x,w;). Let us apply K¢:

(Kiibj)(x0) = 9;(x(t;%0)) = (x(t;%0), Wj)
What do we know about v;(x(t;x0))?

d

Di(xlie)) = Oxltx0), w) = {x(tsx0), w5)

dt
= (Ax(t;x0), w;) = (x(t;%0), A"W;)
= (X(t;xo),xjwﬁ = \j(x(t;%0), W;)

= Aj(x(t%0))

Hence, 1 (x(t; x0)) = eVt (xo).

Eigenpairs of Iy

(Ke;)(x0) = *9'1;(x0)
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Example: Koopman eigenpairs for linear systems

N
x0 =SS 'xg = SW*xo = Z w 'X0)Sj = Z?/)] X0)s
j=1
A spectral representation of the action of C; is as follows:
N
(Kix)(x0) = x(t;x0) = etxg = Z(eAtxo,wj>sj
j=1
N N B
= > (x0, e tw))s; = Z(Xo,ekthﬂ S;
Jj=1 =il
N N
= ZeAj X0, Wj)Sj = Z th (x0)s
j=1 =1
= Zw] (t;x0))sj; (K:Cx)(x0) = Ze)‘jtwj(xo)Csj.
j=1

D NLA for KMD and DMD 16 /261



Introduction Motivating examples and problems The Koopman operator Da

Setting the scene: DS and the Koopman operator

Consider a discrete dynamical system z;;1 = T(z;), where T : X — X' is
a measurable nonlinear map on a state space X and ¢ € Z. The Koopman
operator IC = K for the discrete system is defined analogously by

Kf=foT, feFCILPX,p). (6)

It is tacitly assumed that T is regular with respect to the measure pu:

u(S) = 0= u(T~}(S)) = 0.

This ensures that u(f1 # fo) = 0= u(fioT # fo0oT)=0.

Operator theoretic issues (such as e.g. choosing the function space of
observables, approximations from finite dimensional subspaces) are delicate
and are beyond the scope of this course. The important thing is that they
are properly treated in the corresponding theoretical frameworks.
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Setting the scene: DS and the Koopman operator

If we run a numerical simulation of the ODE'’s (3) in a time interval
[to, t«], the numerical solution is obtained on a discrete equidistant grid
with fixed time lag At:

to, t1 =tog+ AL, ..., ti_1 =ti_o+ A, t; = t;_1 + At,

In this case, a black-box software toolbox acts as a discrete dynamical
system z; = T(z;_1) that produces the discrete sequence of z; ~ x(t;);
this is sampling with noise.

For t; = to + iAt we have (using ¢!, Ka; and the group property)

F(x(to +iAt)) = (f 0 p™)(x(to)) = (Kiaef)(x(to)) = (Kiarf) (x(t0)),

where Ki, = Kato...0Kas.

NLA for KMD and DMD 18 /261
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Setting the scene: DS and the Koopman operator
On the other hand, using Kf = fo T, z; =~ x(t;),

f(zi) = f(T(zi-1)) = ... = f(T(20)) = (K'f)(20), (7)

where T2 = To T, T? = T o T~!. Hence, in a software simulation of (3)
with the initial condition zg = x(to), we have an approximation

(K f)(z0) ~ (Ko f)(z0), fEF, o€ X, i=0,1,2,...  (8)

This can be obviously extended to vector valued observables:

g1oT Kg1
for g = (g1,...,94) : X — C? define /Cdg:< : ):( : > (9)

9aoT Kga

The observables can be physical quantities (e.g. temperature, pressure,
energy) and mathematical constructs using suitable classes of functions
(e.g. multivariate Hermite polynomials, radial basis functions). In
particular, if we set d = N, g;(z) = el z, where z € CV, ¢; = ((Sji)é\]:l,
i=1,...,N, then g(z) = z is full state observable and (K4g)(zi) = zi+1.
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Data driven framework

Snapshot — a numerical value of a scalar or vector valued observable at a
specific instance in time. Explicit knowledge of the mappings F or T may
not be available.

For example, snapshots may be obtained as/by
@ high speed camera recording of a combustion process in a turbine
@ new cases of covid 19 infections, reported daily
@ wind tunnel measurements, Particle Image Velocimetry/Thermometry

e numerical simulation of (3) represented by (18), (7), (8), where we
can feed an initial zy to a software tool (representing T, or its
linearization through a numerical scheme encoded in a software
toolbox) to obtain the sequence f(zo) = (K9f)(zo),

f(z1) = (Kaf)(20), £(22) = (KIF)(20), - .., f(zar41) = (K T) (o),

where f = (f1,..., f4)" is a vector valued (d > 1) observable with
the action of K; defined component-wise.
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Data driven framework: data snapshots

snapshot index 320, original dim=67500

s snapshot index 350, original dim=67500

problems The Koopman operator
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Figure: Vorticity field data snapshots.(Data source: Popinet 2004, Baeza Rojo

and Giinther 2019.)
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Introduction examples and problems The Koopman operator Da

Data driven framework: data snapshots

snapshot index 409, original dim=51200 snapshot is a vector

o o o
SN e

Figure: Snapshots are vectors, that are vector functions f(z;) of the states
z; = x(t;), e.g. (£(z;)); = fj(z:;) = jth component of x(¢;), but can use more
general function (embedding) to ensure better mathematical properties.

f1(zo) fi(z1) ... fi(znm) fi(zrr41)

f2(zo) f2(z1) ... fa(zm) fo(zarta)
S = (f(z0) f(z1) ... f(znr) f(zar41)) = ] T ] :
fa(zo) fa(z1) - fa(znr) fa(zarir)
Column index :: discrete time steps counter.
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Data driven framework

Can run many simulations with different initial conditions, physical
parameters and have an abundance of data (large dimensional data
matrices). To what end? What are the goals?

@ Understand the data: reveal latent structure.

@ Devise a low-dimensional approximation for faster numerical
simulations (e.g. for online applications, or optimization over a
parameter domain, digital twin design).

Develop forecasting skill.
Use for control (Model Predictive Control, MPC).

Discover governing equations.

© 000

Optimal sensor placement in a physical domain.
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Data driven framework

Example (Time-evolving graph: Melnyk, Klus, Montavon, Conrad 2020)

Suppose we are given a time-evolving graph G = (G1,Ga, ..., Gyr) with
adjacency matrices Ay, Ao, ..., Apr. The goal is to find a low dimensional
embedding that reveals the latent structure (e.g. metastable behaviour).
Giv1 =T (Gi); Kf = fo T (Kf)(Gi) = f(Git1)-

Observable f = (f1,..., f4)7 maps the data to higher (including infinitely)
dimensional Hilbert space (H, (-, -)) using the kernel trick. Suitable kernel
function k(G;, G;) defines the function f and the inner product in H
implicitly by

(£(Gi), £(9))) = k(Gi,Gj) = Kij-

Method: Approximate a compression of /C onto the subspace spanned by
fi,.-., fa and use its selected eigenfunctions as a basis for new
coordinates. An example of the kernel is the Gaussiam kernel

k(Gi, G;) = exp(= [l 4; — 4;]*/(20%))

zD NLA for KMD and DMD 24 /261
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Data driven framework

Example (Power networks: Susuki, Mezi¢, Raak, Hikihara)

Model—free precursor diagnostic of instabilities in power networks.
Available data are snapshots P;, Ps, ... of physical power flow variables
(e.g. voltage magnitudes and angles) at discrete time steps at m
measurement sites (each P; is m X 1) such as generation plants,
substations etc.

The P;'s are determined by internal states x; of a power system (rotating
frequencies and voltages of AC generators, states of controllers in plants
and substations etc.) that are assumed to change as x; 1 = T(z;).
Again, there is associated composition operator ICf = f o T.

Base flow patterns as coherent spatial units of power flows identified as
spanned by eigenfunctions of K.

The 2006 European interconnected grid disturbance clearly visible in
unstable modes of K (eigenvalues outside unit circle.)
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Data driven spectral analysis - applications

Other successful applications of DMD include e.g.

@ aeroacoustics

@ computational fluid dynamics

e affective computing (analysis of videos for human emotion
recognition)
robotics (filtering external perturbation using DMD based prediction)
algorithmic trading on financial markets

analysis of infectious disease spread

neuroscience
@ data driven learning and control of UAV's (drones)

Theoretical contributions and applications by S. Brunton, M. Colbrook, M.
Korda, N. Kutz, A. Mauroy, I. Mezi¢, P. Schmid, A. Townsend, ...

D NLA for KMD and DMD 26 /261



Introduction Motivating examples and problems The Koopman operator Da

Data driven framework
Snapshot matrix S with columns f(zo), f(zx+1) = (Kaf)(2), Zk+1="T(21):

fi(zo) fi(z1) ...

)
fi(zm+1)
f2(zo) f2(21) fa

1(zn)
) fa(zar41) € Cax(M+2).

2(zm

S

S:(f(zo) f(z1) ... f(zpm) f(zM+1)):
fd(z()) fd(Zl) fd(ZM) fa(zrr41)

(i) The snapshots are generated by a nonlinear system.
(ii) The snapshots are a Krylov sequence f,ICdf,ICCQlf, ..., driven by the
linear operator K; and evaluated along a trajectory initialized at zg.

It makes sense to find a matrix A € C%*? such that

(Kf1)(zk)

Af(zk) = (lCdf)(zk) = ( ) = f(T(Zk)), k= 0, ey M. (10)
(Kfa)(zk)

Thus, if weset X =S(1:d,1: M +1), Y =8(1:d,2: M +2), then

such an A would satisfy Y = AX, and this could be extended linearly to

the span of the columns of X by A(Xv) = Yv, v € CM*!. Define A to

solve ||[Y — AX||r — min, e.g. A =YX A may not be unique!
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The DMD matrix A

Flexible: can use many trajectories

In general, X and Y are not necessarily extracted from a single trajectory.
The data may consist of several short bursts with different initial
conditions, arranged as a sequence of column vector pairs of snapshots
(XK, Yk), where x; = f(2z1), yr = £(T(zx)) column-wise so that a kth
column in Y corresponds to the value of the observable in the kth column
of X through the action of Cy.

Existence and uniqueness of A: A = YXT

Depending on the parameters d and M, the matrices X, Y can be square,
tall, or wide. Then, we can search for a linear transformation A such that
Y = AX. Such an A may not exist.

However, we can always define a particular matrix A which minimizes

Y — AX]||r. Clearly, if X has a nontrivial null-space, A is not unique;
we can choose B so that BX = 0 and thus (A + B)X = AX. An
additional condition of minimality of ||A||F yields the well known solution
A =YX, expressed using the Moore-Penrose pseudoinverse X of X.

ZD NLA for KMD and DMD 28 /261
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Compression of K

Read the information in the snapshots matrix row-wise:

A 8 - 2
§(1:M—{—1,1:d) _ 1-Z1 2-Z1 3-21 d(.zl) :XT

f1( znr) fa(zar) f3(zar) - fa(zar)

A AR A - A

/S\(2:M+2,1:d) _ Z 2 .z1 3 .z1 . fa .z1 :YT

A(T (zA4>)f@(T%zA4>>fs(T%zA4» o fa(T(zar))
Consider the action of K on the space Fp spanned by the dictionary of
scalar functions D = {fi,..., f4}. That is, we seek a matrix
representation U of the compression ¥z, K|z, : Fp —> Fp, where ¥ r,
is a suitable projection with the range Fp. This is the standard
construction: we need a representation of K f; of the form

(Kfi)(s) = fi(T }:wJ7 s)+pi(s), i=1,...,d, seX. (11)
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Compression of K

Given limited information, the projection is feasible only in the discrete
(algebraic) sense: we can define the matrix U = (u;;) € C¥? column-wise
by minimizing the residual pi( ) in

(Kfi)(s) = fi(T Zuﬂf] Y+ pils), i=1,...,d, s€X

over the states s = zg, using the values
(Kfi)(zr) = fi(T(zg)), i=1,...,d; k=0,..., M. (12)

To that end, write the least squares residual

1 M
W1 2 el = S iyt - AP (1)

k=0 gj=1

which is the L? residual with respect to the empirical measure defined as
the sum of the Dirac measures concentrated at the z;'s,

Onv1 = (1/(M +1)) nyzo 0z
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Compression of K

Hence, the columns of the matrix representation U are defined as the
solutions of the least squares problems

d 2 J1(2zo) ... fa(zo)\ /i Ji(T(zo0))
/Zujifj_fioT ddnr1="7m ( S )( : )-( : >1

j=1 fi(zar) - fa(zar)/ \Udi fi(T(za))
fori=1,...,d; yos = 1/(M 4 1). The solutions of the above algebraic
least squares problems for all i = 1,...,d are compactly written as the

matrix U € C%*? that minimizes | XU — Y7 r. Recall that we seek an A
such that AX =Y, ie. [AX —Y|r = |XTAT — YT|| — min. Hence,

U= XNyT=(yxH? =aT, (14)

2

— min ,
Uiiy---,Udi

2

and the action of K can be represented, using (11), as

K(fi(s) o fa(s)) = (fils) o fa(s) U+ (pa(s) .o pals))-
Assume U is diagonalizable: U = QAQ™1, with A = diag(\;)%_,,
Q= (ai,--.,qq4), Ug; = Niq;.
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Compression of K
For s € X,

K(fi(s) .. fa(s)Q=(fr(s) ... fa(s)) QA+(p1(s) ... pa(s))Q,

and the approximate eigenfunctions of IC, extracted from the span of

fi,. .., fa, are

d
(61(5) - a() = (fr(s) - fa(9)) Q. (Ki)(s)=Nicbi(s) + > _ pi(s)Qji-

Jj=1

In a numerical simulation, these eigenfunctions are accessible, as well as
the observables, only as the tabulated values for s € {zo,...,z}:

o\ (e
1 - 1 2- 1 d -21 _ 1 -Z1 2 -Zl d -Z1 Q:STQ-
61(zars1) b2(Zarg1) o ba(Zarin) Fi@ag1) Fo(zargn) o fa(zarsn)
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Koopman modes — decomposition

Let now g(s)” = (g1(s),...,g4(s)) be a vector valued observable and let
g(s)" = (fi(s),..., fa(s))T, T = (y;i) € C*4. (Take g; = fi, s0 T =1g)

g(s)T = (fl(s) fd(s)) QQ ' = (¢1(s) qﬁd(s)) Q! seax.

Set Z=Q T = (21 ... zd), where z; is the ¢th column. Then
91(s) ¢1(s) d
. =Q 7T . = Z;0;(S).
Q : > zidi(s)

9a(s) z \¢a(s)) =
Since (K¢;)(s) = Xipi(s), we have Koopman mode decomposition
(K*g1)(s) d
(Kig)(s) = : ~ Y zidi(s)AF (15)
(Krga)(s)) =
AT =TU = QAQ ! implies AQ™ 7T = QTA, i.e. the columns of Q7 are
the (right) eigenvectors of A. Hence, for computing the Koopman modes,

we can proceed with computing the eigenvectors of A.
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DMD: A data driven spectral analysis

Now we can formulate pure matrix computational problem: Suppose we
are given a sequence of snapshots f; € C" of an underlying dynamics, that
are driven by an unaccessible black box linear operator A;

fiia~Af;, i=1,...,m, m<n, (1)

with some initial f; and a time lag 6t. No other information is available.

The two basic tasks of the Dynamic Mode Decompozition (DMD) are

@ Identify approximate eigenpairs (\;, z;) such that

Azj = Njzj, Aj= \)\j|eiwj6t, ji=1,....k k<m, (2)

@ Derive a spectral spatio—temporal representation of the snapshots f;:

¢ ¢

~ -1 — i1 iwe, (i—1)6t

f; ~ g TR E Ze;05|Ag; [ e D =1, m. (3)
Jj=1 Jj=1
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Tool: Krylov subspaces

o For f;, 1 =Af;, i =1,2,...,m, define the Krylov matrices
Xz’ = (fl f2 fi,1 fl), YZ = (f2 f3 e fz fi+1) = AXZ,

and the corresponding Krylov subspaces X; = range(X;) C C".

@ Assume that at the index m, X, is of full column rank. This implies

e e A CXIGCCAG X=X,

i.e. dim(&;) = for i =1,...,m, and there must be the smallest
saturation index ¢ at which X, = X1 1.

o AX, C Ay, It is well known that then X} is the smallest A-invariant
subspace that contains f.

@ The action of A on X, is known, A(X,,v) = Y,v for any v € C™.
Hence, useful spectral information can be obtained using the
computable restriction PXmA’Xm' that is, the Ritz values and vectors
extracted using the Rayleigh quotient of A with respect to X,,.
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Tool: Krylov decomposition and Rayleigh-Ritz extraction

e To that end, let the vector ¢ = (¢;);"; be computed from the least
squares approximation

It — Xnella — mcin (4)

and let rp, 11 = f,41 — X;c be the corresponding residual. Recall
that, by virtue of the theorem of projection, X,,c = Py, f,,+1 and
that r,,+1 is orthogonal to the range of X,,, X7 7,41 = 0.

o let By = rmHeT em = (0, ..., 0, l)T. The Krylov

m?
decomposition reads:

0 0 0

1 0 0 Co
AX,, = X,Cn + Epg1, G = 0O 1 ... 0 c3 7

0 0 1 ¢
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Rayleigh—Ritz extraction — basic properties

O C, = (X5 X,) " HX:AX,) = XL AX,, = (X5 X,) " HXE Y, is
the Rayleigh quotient, i.e. the matrix representation of PXmA}Xm

@ If rp1 =0 (and thus Epyy1 = 0 and m = £) then AX,,, = X,,,C,
and each eigenpair C,,w = \w of C), yields an eigenpair of A,
AXpw) = AMXpw).

Q If rp1 #0, then (A, 2z = X,,,w) is an approximate eigenpair,
AXpw) = AM(Xpw) + rmpi(elw), ie. Az = Az + rpp1 (el w).
The Ritz pair (A, z) is acceptable if the residual

[Az = Azlla _ ||7“m+1H2‘ T )
1]]2 Izl ™

is sufficiently small. It holds that z*r,,.+1 = 0, and
y +

2*Az .
A= = argmingcc||Az — (z||2

2*z

(Az is the orthogonal projection of Az onto the span of z).
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Beautiful structure and bad news

The spectral decomposition of C,,, has beautiful structure. Assume for
simplicity that the eigenvalues \;, : = 1,...,m, are algebraically simple. It
is easily checked that the spectral decomposition of (), reads

D VRN Ul

M 1 X o A1
—1 2 s A9
Cm =V, AV, where A, = , Voo =1 _
Am Dol

1 A o AL

The Ritz vectors are the columns of W,,, = XmV;Ll; X =WV,

Bad news: The Vandermonde matrix V., is ill-conditioned!

The condition number x2(V,,) = [|[Vinll2][ Vb2 of any 100 x 100 real

Vandermonde matrix is Iarger than 3-10
(k2(Vy,) > 2m72/\/m, m = 100, [Gautschi]).
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Beautiful structure and bad news

The Ritz vectors corresponding to the \;'s are then the columns of
W, =X, Vo= (w1 ... wy). (5)

If we define oj = |\wjl|2, 2; = wj/oy, Zpm = (21 ... zm), then the
decomposition (6), with ¢ = m, follows from

X, = Wme:Zmdiag(aj);-”:le

-1
o 1AL AT

a2 1 . AP
I D] e
o oo

" 1 Am . AL
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lll-conditioning of Vandermonde matrices: examples

tests #1, #2 test #3
102% . 10300
250 | 4
107 WWWM e
10200 [ 4
1015 L
= =
1010 b
10100 [ 4
10° & e _
e ;\J.JL\MA%A.J ]
10° 10°
o 50 100 o 50 100
Voo, éd — 1,..., 200 Voo, 4 = 1,..., 100

Figure: The spectral condition number over three sets of the total of 300
Vandermonde matrices of dimension m = 20, Vog(\;); (A;) = eig(A). Left
panel: First, 100 matrices are generated in Matlab as A = rand (m,m),

A = A/max(abs(eig(A))). Then, 100 matrices are generated as

A =randn(m,m), A = A/max(abs(eig(A))). Right panel: 100 samples of
V()\;) are generated using the eigenvalues of A = expm(-inv(rand(m,m))),
A = A/max(abs(eig(A))). The horizontal line marks 1/(me) ~ 2.25e+14.
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Caveat ill-conditioning: Hilbert matrix example

[ll-conditioning is not always obvious in the sizes of its entries — the entries
of the innocuous-looking 100 x 100 Hilbert matrix H;; = 1/(i +j — 1)

range from 1/199 ~ 5.025 - 1073 to 1, and ko(H) > 10120,

One should keep in mind that the matrix condition number is a matrix
function f(A) = ||A]|||Af||2, with its own condition number. By a result of
Higham, condition number of the condition number is the condition
number itself.

condition number(condition number)=condition number [Higham]

>> cond(hilb(100))
ans = 4.6226e+19

If the computed /estimated condition number is above 1/eps (in Matlab,
1/eps=4.503599627370496e+15), it might be a severe underestimate.
This may lead to an underestimate of extra precision needed to handle the
ill-conditioning.
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Exercise

We used the fact that for the companion matrix
0O 0 ... 0 ¢
1 0 ... 0 c
C,=|0 1 ... 0 ¢
0O 0 ... 1 ¢cm
with algebraically simple eigenvalues A1, ..., \,,, the spectral
decomposition reads
1A .. A
M 1 /\; )\’1”’1
Cm = V;llAme, where A,, = , Vo= 2
Ao oo
1 N oo ML=
Prove that! Use the connection between the companion matrix and
polynomials.
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Rayleigh-Ritz extraction is better with ONB

To extract spectral information on A from the span of X,,, it is preferable
to work with an orthonormal basis for the range of X,,,.

Orthonormalization via Gram-Schmidt, or the QR factorization

Q@ X,, = QR. Since X,, is ill-conditioned Gram—-Schmidt must be
carefully implemented to make () numerically orthogonal. Direct QR
factorization (e.g. using Householder reflectors) is an alternative. In
any case, R is ill-conditioned.

@ From AX,, =Y,, = AQR, Q*AQ = Q*Y,,R~!. Since R is
ill-conditioned the data-driven formula for the Rayleigh quotient is
badly conditioned.

@ X,, can be numerically rank-deficient and noisy, so using R~ is
ill-advised.
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Why is X,,, expected to be ill-conditioned

The matrix X,,, can be nearly rank defficient. To illustrate, assume that A
is diagonalizable with eigenpairs Aa; = a;a;, and that its eigenvalues «;
are enumerated so that 0 # |ay| > |ag| > -+ > |ay|. Let f; be expressed
in the eigenvector basis as f; = ¢1a; +--- + ¢pa,. Then

A _ s\’ a2\ ? an )\’
fi1=A'f) = o <¢1a1 + <2> $oaz + (3> Gaag +- -+ <> asnan) |
a1 (&3] aq

Hence, if e.g. |a1| > |az| > |as], then for j > 3, lim;_y00(aj /1)’ =0,
and thus, with big enough ¢ the f;'s will stay close to the span of a; and
ag, provided that ¢1 # 0, ¢2 # 0. This means that relatively small
changes of X,,, can make it rank deficient; its range may change
considerably under tiny perturbations. In the context of spectral
approximations, this is desirable and we hope that the f;'s will become
numerically linearly dependent as soon as possible; on the other hand we
must stay vigilant in computing with X,,, and Y,,, as numerical detection
of rank deficiency in the presence of noise is a delicate issue.
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Nearly rank deficient and ill-conditioned — a connection

Suppose X, is subject to a perturbation 0X,,, X, ~ va =X, +6X,,
If X,, is rank deficient, what can be said about the size of §X,,,? This will
be answered in detail using the SVD decomposition, but it is instructive to
analyze this directly. Since X,,, is rectangular of full column rank, its

generalized inverse is X}, = (X X,,,)"1X* | so that X} X, = L. Write

Xon = (I + 6Xm X5 )X

Then [|6X,,X1,|| > 1 in any matrix norm || - ||. (Otherwise,
16X X1 || < 1, then spr(6X,,X,) < 1 and I, + 6X,, X}, would be
nonsingular, and X,, of full column rank.) Hence, 1 < ||6X,,||[|X |, i.e.

LR [ < I 1 1

10X || > ——, i.e. > = :
X Xl = X [1XE) 5 (Kim)

(6)

R(Xpm) = HXmHHX,TnH is the condition number of X,,, in the norm || - ||.
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Gram Schmidt: z =y — P,y, where P,

T
e Py .
tanp = e/l Zyll2 = |€t| ! |et] tang:@ (7)
lv—Peyllz ~ I=Peple ~ tam """ ]

Nonorthogonality caused by &; depends on 1/ tan .
Now it should be clear that Gram—Schmidt on the columns of X,,, is
numerically not reliable.
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SVD and best low rank approximation

Eckart-Young-Mirsky Let the SVD of M € C™"*™ be

M =USV*, £ =diag(o))2™™, 01> > opmin(mm) > 0.

For k € {1,...,min(m,n)}, define Uy, = U(:,1: k), Xp =3(1: k,1: k),
Vk = V(:, 1: k), and Mk = UkEka*. Then

i M—N|2 = |M—-Mls= 8

ran{(r(l]l\ggk\l 2 | kll2 = okt1 (8)

min ||M —N|r = ||M— M|r= (9)
rank(N)<k

Hence, if 0y, < 071, the condition number ra(Xp) = || Xon|2]|Xh |2 = o

is large, X,,, can be made singular with a perturbation 0X,, such that
H6X772H2/”X7nH2 = 0772,/01 = 1/"{2(Xm> < 1.
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Least squares problem: a review

The linear least squares problem is generically written as
||Az — b||2 — min, (10)
x

where A € R™*™ p e R™.

It is a computational expression of the Gauss-Markov linear model

Axy = by, where b = bg + e is assumed noisy measurement of an ideal by,
and the measurement error vector e is assumed a random vector with
expectation zero and variance oI, (the errors in each measurement
(equation) are uncorrelated and with same variance).

By the Gauss—Markov theorem, if A is or rank n, the solution z of (10) is
the best linear unbiased estimator of x.
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Finite dimensional comput

In the case of full column rank matrix A, the solution is uniquely
determined as the unique solution of a linear system of equation, derived
using the projection theorem. If x is optimal, then the residual Az — b
must be orthogonal to the range of A, i.e.

AT(Az —b) =0,

or, equivalently, the solution vector x is the unique solution of the so
called normal equations

(AT A)x = AT, z = (ATA)~1ATD.
The same set of equation is (of course) obtained by minimizing
F(x) = || Az — b3

using calculus. In the numerical linear algebra, we are very careful and
avoid using normal equations.
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Lauchli's example

Example (Lauchli: Consider the least squares problem ||Az — b||2 — min)

1 1 1 11 €
e 00 0O 0
0 e 00O -5 .
A= 00 c 00 , D= 5 , where € € R is such that |¢| < 1.
00 0 € O -5
00 0 0 € 0
The normal equations matrix
1+€? 1 1 1 1
T 1 1+€2 1 1 1
H=A"A= 11 1+ 1 1 (11)
1 1 1 1+4€ 1
1 1 1 1 14€2
has eigenvalues A\ =5 + €2, Ay = ... = A5 = €2; these are also the
singular values of H.
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Lauchli's example

Example (... continued)

The singular values of A are thus o1 = V5 + €2, 03 = ... = 05 = |¢].
According to the Eckart-Young-Mirsky's theorem, the minimal
perturbations 0 A, 0 H that make, respectively, A and H singular are of

sizes )
[0A]2 el [6H]l2 €

1Al VE+e2’ [[Hl2  5+€
This corresponds to a relation between the condition numbers,

V5 + €2 5+ €
T = e

KJQ(A) = = KJQ(A)2.

The extreme case is when |e| is so small that the floating point value of
14 €% is 1, so that the computed matrix H stored in the computer
memory is the rank—one matrix of all ones. To make the case even more
difficult, the vector b is selected so that (for small |¢|) is nearly orthogonal
to the range of A.
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Solving the LS problem using the SVD

Let A=U (%) V* be the SVD of A with

Y= (% 8)’ iz(m'UT), o1 > >0 >0.
The rank of A is r and in the partitions U = (U,.,U,.,), V = (V,,V;.1), Uy
spans the range of A, and the columns of V,.| are an orthonormal basis for
the null-space.

This decomposition allows for a convenient change of variable so that the

objective function of (10) becomes trivial to optimize:

[Az —blls = [[UX(V7z) = bl2 = [[Xy —clla (y =V"2,c=U"D)

-7 o) (- ()
Om—r,r Om—r,n—r Y2 €2

Clearly, y; = S-1e; and y2 can be arbitrary (n — r) x 1. Each y gives an
optimal solution x = Vy = V,y; + V.1 yo = x1 + T2, where 0 =V, o
belongs to the null space of A. Note that ||z|]3 = ||21]|3 + ||=2]|3.
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Solving the LS problem using the SVD

If » = n, then S = 3., the null-space basis V.| is void and x = x1 is
uniquerAdetermined. Otherwise, all possible solutions are a linear manifold
S =V, XU b+ N(A). The shortest (in Euclidean norm) vector in S is

z =V, U, (12)

that is obtained with the shortest y, i.e. with yo = 0 and x2 = 0. Note
that the expression (12) for x is linear in b. In the case of square full rank
A, the optimal solution x = A~'b is expressed using the SVD as

x = VX~tUTh, which is precisely (12). This motivates a generalization of
the matrix inverse to the case of general rectangular matrices, of arbitrary
ranks. The solution of (12), that is of minimal norm can be expressed as

()=o) = (o o 3) ==
Y2 On—r,l On—r,r On—r,m—r C2 ’

si = ( 5 Oy ) .
On—r,r On—r,m—r

NLA for KMD and DMD 53 /261



Finite dimensional comput A digression: SVD, low rank approximation and least squares Sc

Solving the LS problem. The Moore-Penrose pseudoinverse

The matrix X € R"™ ™ s in a sense the best that can be done in
mimicking the inverse of 3. It represents a linear operator R™ — R"

(hence of dimensions n x m) that satisfies
5710\ (E 0 I, 0
ETE — — T Rnxn
<0 o)(o 0) (0 0>€ ’

S 0\ /51 o I. 0
oyt = = R™X™,
(0 0><0 0) (0 0)6

Using X1, the solution z from (12) can be written as
z=Vy=V,S W =vstuTh = Alp, (13)

where AT = VXIUT = VTE_IUTT is the Moore—Penrose generalized

inverse of A. (In the case of complex matrix, AT = VEIU* = V,.X71U>*)

54 /261
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On using truncated SVD

The solution formula (13) assumes a clean cut in the SVD of A so that
the rank of A is indisputable. Further, it is derived purely in the framework
of linear algebra, ignoring the fact that in an application b = by + e is
contaminated by noise, and that the true vector by is not accessible.
Writing (13) in the form (U = (uq, ... um) V= (v1,...,0n))

x=VeiuTh = Z Z Tbo T“)
=1 =1 i

reveals the structure of the solution that can be leveraged to improve the
accuracy. Computational difficulties that are immediately observed are
© The numerically computed SVD is used. If 61 > --- > 7, are the

computed singular values, the smallest ones might be computed with

large errors. (They are exact for some A + 0A.)

@ The noise vector e might have large component u;fpe so that u;rbo is

entirely overshadowed by noise. If the corresponding singular value in
the denominator is small and computed with large error, then the

solution vector has an inaccurate component in the direction of v;.
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Phillips's example

Example (Phillips's example: Fredholm integral equation of the first kind)

b
y(€) = / K(€, Ox(C)dC.

Here y denotes a function that is available as a sequence of measurements
at & < -+ < &m, yi = y(&) + e;, where e; is a measurement error. The

integral with the known kernel K(&, () models measurement apparatus, and
the goal is to find an approximation of the unknown function x(¢{), so that

b

The integral is computed using quadrature rule with the nodes
¢ < -+ < (, and weights dy, ..., dy, and the task is to find z; =~ x((;)

j=1

where €; denotes the error in computing the integral.
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Phillips's example

Example (Phillips's example ... continued)

It is clear that more measurements of y (adding more equations, i.e. larger
m) provide more information on the unknown function, and that the
equations cannot be satisfied exactly because of errors in the right hand
side. Under a realistic assumption that |e;| > |¢;|, the errors e; + ¢€; are
dominated by e; for all i. To write (14) more compactly, set

y= W), K=(K(&,¢)) e R™™ x = (z;)f,, D= diag(d;)j_;.

Assuming sufficiently accurate quadrature formula, the errors ¢; are
neglected and (14) becomes a linear regression model

KDz =y+e.

The error vector e is dominated by statistically independent measurement
errors from N(0, 5?), where the positive definite S = diag(s;)"; carries
standard deviations of the e;'s. A good estimate of S' is usually available.

D NLA for KMD and DMD 57 /261



Finite dimensional comput A digression: SVD, low rank approximation and least squares Sc

Phillips's example

Example (Phillips's example ... continued)

To normalize the error variances, the model is scaled with S~! to get
b= Az +¢€,

where
b=S"1ly, A=S"'KD, ¢ =5"e.

Note that ¢’ ~ N(0,1,,).

Solving the linear system Axz = b for x is illusory. A reasonable alternative
is to make the residual 7 = Az — b in a suitable norm as small as possible.
In the case of the Euclidean norm, x is defined as the solution of the
problem

||Az — blj2 — min.
x
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Phillips's example

Example (Phillips's example ... continued)
D. L. Phillips, A Technique for the Numerical Solution of Certain Integral
Equations of the First Kind, J. ACM 9 (1) 1962, pp. 84-97.

e Singular values of A and abs(U"*b) 4500 Exact solution

4000 -
10" 3500 f
3000 -
10° 2500 -
2000 -
10° 1500
1000

500 -

1070 -500
0 50 100 150 200 250 0 50 100 150 200 250

Figure: The data for the Phillips’s example. = generated first, then b = Ax.
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Phillips's example

Example (Phillips's example ... continued)

Approximate solution Element-wise relative errors
4500 102

— e
———approximation

4000

3500

3000

2500

2000

1500

1000

500

107
0 50 100 150 20 250 0 50 100 150 20 250

Figure: The SVD solution of the “noise free" least squares problem of a Phillips’
example. The condition number of A is ka(A) > 1012,

Now, consider b contaminated by noise and solve as x = Afb.
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Phillips's example

Example (Phillips's example ... c

I Singular values of A and abs(U"*b) g 210° imate solution using 240 singular values
10 e
ol
10°
0
2
10°
4
10% M
o
10710 -10
0 50 100 150 200 250 0 50 100 150 200 250
Figure: The SVD solution of a noisy least squares problem of a Phillips’ example.
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Phillips's example

Example (Phillips's example ... continue

o0 Approximate solution using 150 singular values 000 Approximate solution using 30 singular values
v
——— approximation ~———approximation
4000 4000
3000 3000
2000 2000
1000 1000
0 0
-1000 -1000
0 50 100 150 200 250 0 50 100 150 200 250

Figure: The SVD solution of a noisy least squares problem of a Phillips’ example.
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Phillips's example

Example (Phillips’'s example ... continued)

solution using 50 singular values N Element-wise relative errors using 50 singular values
10

4500

4000

3500

3000

2500

2000

1500

1000

500

0

-500

10°
0 50 100 150 200 250 0 50 100 150 200 250

Figure: The SVD solution of a noisy least squares problem of a Phillips’ example
using 50 dominant singular values, and the element-wise relative errors in the
solution vector. Compare with the first plot in Figure 8.

Write a Matlab (or Python, R, Octave, ...) code for the Phillips's example.
Use D. L. Phillips, A Technique for the Numerical Solution of Certain
Integral Equations of the First Kind, J. ACM 9 (1) 1962, pp. 84-97.
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Least Squares Solutions: A review

EEEEEN I\
permutation 0O @ B B B N
R 0 0 H o« W ¢
P = =
4 <0>’R 00 0 « MW ¢
e 0000 M ¢
Q*Q = I 00 0 0 0 4
j
S Rigl2, forall 1<i<j<n. (15)
k=i
[Ri1] > |Roa| >+ > [Rpp| > |Rpt1,p41| >+ > |Run| (16)

The structure (15), (16) may not be rank revealing but it must be
guaranteed by the software (e.g. LAPACK, Matlab). Implemented in
LINPACK in 1971., adopted by (Sca)LAPACK and used in many packages.
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Least Squares Solutions: A review

Let rank(A) = r,

Az —blly = (@ T ) pro g,
0

Ryy R R!
[ < 0" [&2]) <y1) - <Cl) | = min, (yl> :< [11]01)
0 0 Y2 C2 Y2 0

-1 Hx
R[ll}QTb
0

r=Py=P . « has at least n — r zeros.

If = n then x = ATb by virtue of uniqueness. Otherwise, this x is
different from A'b.
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Least Squares Solutions: Example, 100 x 60 of rank 40

A\b (0) and pinv(A)*b (x)

-0.05

x1=A\Db, x2=pinv (A)*Db; norm(x1)=0.3539; norm(x2)=0.1599
norm(A*x1-b)=7.623047315933105e+00
norm(A*x2-b)=7.623047315933104e+00
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Schmid's DMD

To avoid the ill-conditioning, Schmid used the thin truncated SVD

Xy =UXV* = UpE, V), where U, = U(:,1: k) is n x k orthonormal

(UiU, = I;), Vi, =V (:,1: k) is m x k, also orthonormal (V;*V}, = I;;),
and X = diag(oi)f:1 contains the largest k singular values of X,,,. In

brief, U}, is the POD basis for the snapshots fi,...,f,,. Since

Y, = AX,, ~ AULSLVE, and AU, = Y, V2 (17)

the Rayleigh quotient S, = U;;AU}, with respect to the range of Uy, can be
computed as
Sk = Ui Ym Vi, (18)

which is suitable for data driven setting because it does not use A
explicitly. Clearly, (17, 18) only require that Y,, = AX,,; it is not
necessary that Y, is shifted X,, (single trajectory). Each eigenpair (A, w)
of Sy generates a Ritz pair (A, z) = (A, Uyw) for A. If A* = A then (in
theory) S} = Si, — important for Hermitian DMD.
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Schmid's DMD

Algorithm [Zy, Ax] = DMD(X,,, Y1)

Input: e X,, = (x1,...,Xm), Y = (¥1,--,¥m) € C"*™ that define a
sequence of snapshots pairs (x;,y; = Ax;). (Tacit assumption is that
n is large and that m < n.)
L [U, %, V] = svd(X,,) ; {The thin SVD: X, = UXV*, U € C"*™,
¥ = diag(oy)*,, V € C™*™}
2: Determine numerical rank k.
3: Set U, =U(5,1: k), Vie =V (,1:k), B =2(1:k,1: k)
4: S = ((Ug‘Ym)Vk)EI;I; {Schmid'’s formula for the Rayleigh quotient
UiAUL}
5. [Wi, Ax] = eig(Sk) {Ax = diag(\i)i_y; SeWi(:, 1) = MiWa(:,0);
Wik (:,8)ll2 = 1}
6: Zy = UpWy {Ritz vectors}
Output: Z;, A,
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Data driven (computable) residual

Not all computed Ritz pairs will provide good approximations of eigenpairs
of the underlying A, and it is desirable that each pair is accompanied with
an error estimate that will determine whether it can be accepted and used
in the next steps of a concrete application. The residual is computationally
feasible and usually reliable measure of fitness of a Ritz pair. With a
simple modification, the DMD Algorithm can be enhanced with residual
computation, without using A explicitly.

Proposition

For the Ritz pairs (\;, Zx(:,1) = UpWg(:,7)), i = 1,...,k, computed in
the DMD Algorithm, the residual norms can be computed as follows:

() = |AZk(:,8) = XNiZi ()2 = 1 (YmViZg Wi, 1) — AiZi(:, 0)] 2.
(19)
Further, if A = Sdiag(a;)?_;5!, then ming, [\ — o] < K2(S)ri(i) (by
the Bauer—Fike Theorem).
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Bauer—Fike's theorem

Theorem (Bauer-Fike)

Let A be diagonalizable, A = SAS™!. If p is an eigenvalue of A + §A, then
for || -1 € {1 ll2s I [l I - loo}
min [\ — p| < [S]S7[16A].

PROOF: Ifp is an eigenvalue of A a well, then we are done. Otherwise,
A — pI an A — pI are nonsingular. Since S=Y(A + §A — pI)S is singular,
A + S716AS — pl is singular as well. Then

A +S710AS — pI = (A — pI)(I + (A — pI)~1STLSAS)
implies ||(A — pI)"!S715AS|| > 1 in any matrix norm || - ||. Hence, for

-0 Do I T 1 - oo}
_ _ _ 1
1< [ISTHIISHISAINA = pD) = = ISTHIISTIAI —

ming—1., |A; — p|’
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Commutative diagram

computed (p,x), Az =~ px

A o p= X+ 0, 631 < IIS]2llS 2 lI6Al2
backward exact computation of eigevalues
error

A+0A % oAz < [Irll2/llll2. 04 = —ra*/(a*z)

Figure: Commutative diagram for (A — r/(z*x))x = px; r = Az — px.

Error analysis
e Error = distance from an approx. to (p—A).
@ Residual = a measure of failure to satisfy defining equation,
r = Az — px.

@ Backward error = a contrieved change of the input data to justify the
computed result. ((A+ dA)x = pz, 6A = —ra*/(z*x))

@ Sensitivity analysis (perturbation theory): A +— A + 0A causes
A= A+ 68X [0A| < cond - ||6A]|2. cond = k2(S) = ||S]]2]|S7|2.
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Data driven (computable) residual

Good Ritz pairs can be selected using a data driven (computable) residuals
lAz; — Aizill2, [Z.D., I. Mezi¢, R. Mohr, SISC 2018]

The well studied and understood model of laminar flow around a cylinder
is based on the two-dimensional incompressible Navier-Stokes equations

6—V:—(V-V)V—I—VAV—1V;D, V.-v=0, (20)
ot p

where v = (v, vy) is velocity field, p is pressure, p is fluid density and v is

kinematic viscosity. The flow is characterized by the Reynolds number

MRe = v*D /v where, for flow around circular cylinder, the characteristic

quantities are the inlet velocity v* and the cylinder diameter D. For a

detailed analytical treatment of the problem see [Bagheri|, [Glaz+et al.];

for a more in depth description of the Koopman analysis of fluid flow we

refer to [Mezi¢], [Rowley].
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Data driven (computable) residual

residuals selected Ritz values; residual below 0.0005

10° T T T

] O V-DMD
o °
—>— VP-DMD _J 08 X VP-DMD

06 1
10?2
04r X %% g
X @
02 ;’é
10 < ok

I(A)

02
04l §
04 i
10°
06 E
L i 1
0.8 o0
0 100 200 300 400 500 600 700 800 900 1000 4 08 06 04 02 0 02 04 06 08 1

Figure: Left: Comparison of the residuals of the Ritz pairs computed by the
DMD_RRR Algorithm with velocities as observables (V-DMD, circles o) and with
both velocities and pressures (VP-DMD, crosses, x). Right: Selected Ritz values
with velocities as observables (o) and with both velocities and pressures (x).

D NLA for KMD and 73 /261




Finite dimensional comput A digression: SVD, low rank approximation and least squares

Refined Ritz vectors

The Ritz vectors are not optimal eigenvectors approximations from a given
subspace Uj, = range(Uy). Hence, for a computed Ritz value A, instead of
the associated Ritz vector, we can choose a vector z € U, that minimizes
the residual. From the variational characterization of the singular values, it
follows that

. HAZ—)\ZHQ . HAUkw—)\UkaQ
mm ———— = 1min
SSAN(0) | F P w0 [Ukvll2
= Hrr‘l‘ian(AUk—)\Uk)ng :Umin(AUk—AUk),
wl|2=

where op,in(-) denotes the smallest singular value of a matrix, and the
minimum is attained at the right singular vector w) corresponding to

o\ = omin (AU, — AUy). As a result, the refined Ritz vector corresponding
to A is Ugw) and the optimal residual is o). Can be applied in data driven
setting.
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Data driven refinement of Ritz vectors

The minimization of the residual can be replaced with computing the
smallest singular value with the corresponding right singular vector of
By — AUy, where By, = AU, = Y, V45, 1. Compute the QRF

k k
B k[ Ry By r
(Uk Bk) =QR, R= % < 0 Ruy ) k' = min(n — k, k)

and write the pencil By — AUy as

T — Rug ) _y (Buy ) — _ (Bpg — ARy
By, )\Uk—Q<<R[22] A 0 =QR\, Ry\= Ry .

Let for the Ritz value X = \;, wy, denote the right singular vector of the
smallest singular value oy, of the matrix Ry,. Then z = z), = Upwy,
minimizes the residual, whose minimal value equals o, = || Rx,wy, |2
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Enhanced DMD Algorithm

[Zy Ak, Ty p]) = DMD_RRRR(X,,, Yo; €) {Refined Rayleigh-Ritz
DMD}

P =
Wy RO

O o O OTE £ CORIIOR e

D, = diag(||Xm(, ) ll2)7 1 X% = X, Df; Y& = Y,.D}

U, 2, V] = svd(Xﬁn)) ; numerical rank: k = max{i : o; > o1€}.
Set U, =U(;,1: k), Vi, =V (5,1: k), Zpy=%(1:k,1: k)

By = YW (ViS5 Y): {Schmid's formula for AUy}

[Q, R] = qr((Ux, Bx)); {The thin QR factorization}

S = dlag(R“)Z 1R(1 k.k+1: 2]€) {Sk = UkAUk}

A, = elg(Sk) {Ay = diag(\;)F_,; Ritz values, i.e. eigenvalues of S}

fori=1,...,k do

- ) R(1:k,k+1:2k)—X\; R(1:k,1:k) \\.
(oA w)\'} = Svdmln(< R(k+1:2k,k+1:2k) );

Wi(:,9) = wy,; ri(i) = o, {Optimal residual, oy, = ||Rx,wx, |2}
pr(i) = w3, Skwa, {Rayleigh quotient, py(i) = (Uywy,)*A(Uxwy,) }

: end for

Zy, = UpyWy, {Refined Ritz vectors}
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Residuals of refined selected pairs

0 5 10 15 20 25 30 35 40 0 10 20 30 40 50 60
Figure: Comparison of the refined residuals of the Ritz pairs computed by the
DMD_RRR Algorithm with velocities as observables (top 39 pairs in V-DMD,
circles o) and with both velocities and pressures (top 53 pairs in VP-DMD,
crosses, X ). The noticeable staircase structure on the graphs corresponds to
complex conjugate Ritz pairs.
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Enhanced DMD [Z.D., I. Mezi¢, R. Mohr, SISC 2018.]

[Zs, Ak, s pi] = DMD_RRR(Xym, Yom: €) { Refined Rayleigh-Ritz DMD}

e =

© @A G Wy 2

D, = diag(||Xm (s, 8)l2)1y; X% = X,,Dh; Y& = Y, D}

U, 2, V] =svd(X 7(71)) ; numerical rank: k = max{i : 0; > o1€}.
Set U, =U(;,1: k), Vie=V(;,1:k), 2y =%(1:k,1:k)

By = Y%)(VkE,;l); {Schmid’s formula for AUy}

[Q.R] = qr((Uk, Bx)); {The thin QR factorization}

Sp = diag(Rin)*_ R(1 : k, k + 1 : 2k) {S), = UrAUL}

Ay = e1g(Sk) {Ay = diag(X\;)¥_;; Ritz values, i.e. eigenvalues of Si.}

fori=1,...,k do
_ R(1:k,k+1:2k)—X\; R(1:k,1:k) .
[Ukww/\ﬂ = svdmin(< R(k+1:2k k+1:2k) ))'

Wi(:,1) = wy,; mx(2) = oy, {Optimal residual, oy, = ||Rx,wy, |2}
pi(i) = w3, Skwy, {Rayleigh quotient, py(i) = (Urwy,)* A(Ugwy,)}

: end for
. Zy, = UpW), {Refined Ritz vectors}
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A synthetic example

Goal: DMD black-box software

The main goal of the modifications of the DMD algorithm is to provide a
reliable black-box, data driven software device that can estimate part of
the spectral information of the underlying linear operator, and that also
can provide an error bound.

Example (A case study)

The test matrix is generated as A = e B where B is pseudo-random

with entries uniformly distributed in [0, 1], and then A = A/||A||2.
Although this example is purely synthetic, it may represent a situation with
the spectrum entirely in the unit disc, such as e.g. in the case of an
off-attractor analysis of a dynamical system, after removing the peripheral
eigenvalues, see e.g. Mohr & Mezi¢ 2014.
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Accuracy of the computed Ritz values

Eigenvalues and the computed Ritz values
T T

0.02 &+ T T = 7 T T
+
0.015 R
B
+7 ” -
0.01 F % = eig(A)
+ DMD
& = X DMD-RRR
0.005 |- x = |
0r = P =t B e -
-0.005 | % = .
e 2
-0.01 | * = i
+5 .
e
-0.015 " B
7002 &' 1 1 = 1 1 1 1 1
-0.02 -0.01 0 0.01 0.02 0.03 0.04 0.05 0.06
ZD NLA for KMD and 80 /261




Finite dimensional comput. A digression: SVD, low rank approximation and least squares Sc

Comparing residuals

10° Computed residuals
100 - B
10775 - >1i N
——+—— DMD residuals
——<— DMD-RRR residuals
10-20 L . . L
5 10 15 20 25 30

Ritz pairs

Figure: Comparison of the residuals of the Ritz pairs computed by the DMD
Algorithm (pluses +) and the DMD_RRR Algorithm (crosses, x), with the same
threshold in the truncation criterion for determining the numerical rank.
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Ritz values wit k£ = 27 (hard coded)

Eigenvalues and the computed Ritz values
T

002 ;K— T T 5 T T T
0.015 * .
3 o2
eig(A)
0.01 |- 4 B + DMD
= - X  DMD-RRR
0.005 x % B
or B OF X I + = + #
-0.005 | % = .
e >
-0.01 | = 2 i
X b2
=y
-0.015 N
-0.02 # 1 1 = 1 1 1
-0.02 -0.01 0 0.01 0.02 0.03 0.04 0.05
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Residuals wit k£ = 27 (hard coded)

A digression: SVD, low rank approximation and least squares Sc

Computed residuals R the ratios returneditrue residuals,
10° T T T T 1’ i b ¥
W )
10°
i o
/
/
¥
w0 | 108
|
20
| 10
|
108 %
0%
—+— DMD residuals ~—F— DMD ratios
—— DMD-RRR residuals —%— DMD_RRR ratios
1020 L 109 I I |
0 5 10 15 20 25 30 0 5 10 15 20 2% 30

Ritz pairs
— [V ViS OWiey8) = AUk Wi )l _
Z [AURWE(:,4)) = Ai(UeWi(:,9)) 2 ’ ’
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Singular values of X,,, computed three times

Computed singular values of X
T T T T T

10°5°

10-50 | Tt |
q1p-100 [ _"-~.__ i
o used in DMD Tl

- swd(X) Treee
swd(X(:.P)) e,

10150 L L L L L L L L L
10 20 30 40 50 (s1e] 7O 80 20 100

Figure: The blue circles (o) are the values used in the DMD Algorithm and are
computed as [U, X, V] = svd(X,,,,  econ’). The red dots () are computed as

Y = svd(X,,), and the pluses (+) are the results of ¥ = svd(X,,(:, P)), where
P is randomly generated permutation.
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Floating point SVD

If X,, ~ (:]f]?* is the computed SVD of X,,, then there exist unitary
mgtricgs U,V, ang\ a pgrturbation 0X,, (backward error) such that
||U — UH2 S €1, HV — V||2 § €9, and

Xy 46X = USV*, [[6Xml2 < €| Xom|2- (21)

Theorem (Weyl and Wieland-Hoffman)

Let the singular values of X,, and X,,, + 0X,, be 01 > --- > Finin (smiym)
and 01 > -+ > Oin(m,n), respectively. Then

mzax|c~ri —0i| < [|6Xn]]2;

min(m,n)

Y. 16— ol < (16Xl -
=1

Hence, if we combine this Theorem with the backward stability (21), we
have that for each computed singular value ¢; = o; + do;

|00i| < [0Xmll2 < €l Ximll2; |00i]/0i < €| Xomll2/0i. (22)

D
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H(SfIHQ < H(SXmHQ <e€ X???HQ < Gmlllax,'

Bad news for small o;'s: max; |do;|/0; < era(Xyy,).
Suppose we have backward error §X,,, such that

10X )2 < €l Xon i)y i =1, m. (23)

In terms of the snapshots, this reads ||6f;||2 < €||fi||2, for all snapshots.

Theorem (Eisenstat and Ipsen)
Leto; >--->0p,and oy > - >0, A+0A =E1A5, and let
€ = max{||E1E] — I||2, |2 E2 — I||2}. Then

|5'i_0'i|§§(72'7 izl,...,n.

Hence, if X,;, is of full column rank, X,,, + 6X,, = (I, + 5XmXIn)Xm
and n application of this theorem yields
0; — 05
mae T T < 95, Xl + 10X, X0 3
1

H(SXmXInHQ invariant under column scalings!
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Discussion on the SVD

Matlab uses different algorithms in the svd() function, depending on
whether the singular vectors are requested on output.

@ The faster but less accurate method is used in the call
(U, S, V] = svd(X,,, econ’). It is very likely that the full SVD,
including the singular vectors, is computed using the divide and
conquer algorithm, xGESDD() in LAPACK.

@ For computing only the singular values S = svd(X) calls the QR
SVD, xGESVD() in LAPACK.

Note that the same fast xGESDD () subroutine is under the hood of the
Python function numpy.linalg.svd.

Numerical robustness of both xGESVD(), xGESDD () depends on r2(X,,),
and if one does not take advantage of the fact that scaling is allowed, the
problems illustrated in this example are likely to happen.

Better: Jacobi SVD (xGEJSV(), xGESVJ() in LAPACK, Drmat 2009.)
and preconditioned QR (xGESVDQ (), LAPACK, Drmat 2018.).
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Example: Flow around a cylinder

@ J. N. Kutz and S. L. Brunton and B. W. Brunton and J. L. Proctor:
Dynamic Mode Decomposition, Society for Industrial and Applied
Mathematics 2016.

Available online at
https://epubs.siam.org/doi/abs/10.1137/1.9781611974508.

@ The Matlab codes and the data used in the examples in the book are
available at
http://dmdbook. com/

Data snapshots are vorticity data of a flow around cylinder, discretized
with dimension 89351. The simulation data with 6t = 0.02 are
down—sampled, and the test case contains 151 snapshot. The matrices
X, and Y, are 89351 x 150, i.e. m = 50. For more details on the data
set see Chapter 2 of the DMD book.
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Example: Flow around a cylinder. Goals:

The goals of this example are:

o First contact with the DMD. Intuitive feeling — interpretation of the
data snapshots and the modes (eigenvectors) by visualisation.

@ Understand and see by example that not all computed eigenpairs (the
modes and the eigenvalues) deserve to be accepted.

@ Understand and see by example how the residuals make a difference.

@ Intuitive feeling — interpretation of the phrase “to reveal latent
structure”. (We will show later how this gives prediction skills.)

The DMD algorithm is oblivious to the nature of the data — the concept is
entirely data driven. It is about finding a structure and being able to
predict without knowing what it is about. Of course, expertise in a
concrete application field is essential to interpret and to apply the results.
The CFD examples are interesting because the key ideas can be nicely
visualized. We will not go into the CFD interpretation details.

ZD NLA for KMD and DMD 89 /261



Finite dimensional compu

D 90 /261




Finite dimensional comput

ZD 01 /261




Finite dimensional comput

D




Finite dimensional comput A di

D 93 /261




Finite dimensional comput

ZD 94 /261




Finite dimensional comput. A digressi nk approximation and

D 95 /261




Finite dimensional comput A digr nk approximation and

D 96 /261




Finite dimensional comput A digr nk approximation and

D




Finite dimensional comput A digr nk approximation and

D 98 /261




Finite dimensional comput A di

D 99 /261




nensional compu

D




nensional compu

D




Finite dimensional comput. A digression: SVD, low rank approximation and least squares Sc

Step 1: The SVD of X,

Flow around cylinder: DMD singular values

—_— 01y ...0n

N€Tmax |4

10° | 3

108
0 50 100 150

Condition number: ko(X,,) =~ 9.5¢ + 06.
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Step 2: The Ritz values (DMD eigenvalues)

Flow around cylinder: DMD eigenvalues

o i.. ."
0.8 ...-f. "q\b‘ i

L. 4

I
.

-0:4 3 x‘.

Are all good?
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Step 3: The residuals

Flow around cylinder: DMD residuals

_,I‘\r./wf

107 | E

\

10® ; -
50 100 150
Are all good? Clearly not. Some Ritz pairs are not acceptable as
approximate eigenpairs. J

D NLA for KMD and DMD 104 /261



Finite dimensional comput. A digression: SVD rank approximation and

Step 2: The Ritz values with residuals

Flow around cylinder: DMD eigenvalues with residuals

1 T e il T T
Al ) e,
0.8 o _ -1
2 -
06} ‘q. . 2
r'y
0.4 | § ! 1
» 3
0.2t ? .
e
| * L
s
_02 - N
g $ -
-04r .‘_ -,. N
06| - r 1 -6
L ".‘/
-0.8 .Q‘.. -‘.v’ N 7
- "
- i | Sepn,l smen i i
-1 0.5 0 0.5 1

Note complex conjugate pairs. (The snapshots are real.)
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2: The modes with residuals

i=1 Ras-dual = 2. QGOQQ o7, alg = 0. 81 182-‘-0 5839i

53]}

-1 o Rl =3 3 4

i=1 Residual = 2 9609e-07, eig = 0.81182+0.5839i
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2: The modes with residuals

i=32 Residual = 2.2519e-07, eig = 0.91484+0.40382i

=00
e ey

-1 o Rl =3 3 4 s 1S3

i=32 Residual = 2. 2519e-07, eig = 0.91484+0_40382i
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Step 2: The modes with residuals

i=5 Residual = 2.6534e-08, eig=1

2 T T

-2 . . . . . . . .
-1 o] 1 2 3 4 5 6 7 8

A5 is real and the mode is real.
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Step 2: The modes with residuals

=6 Residual = 8.1721e-08, eig = 0.97848+0. 20535-

«3D)

-1 o 1 d 8

i=6 Residual = 8. 1721e-08, eig = 0.97848+0_20635i
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Step 2: The modes with residuals (large residual, bad)

i=8 Residual = 0.1174, eig = 0.98717+0.150326i

2 - . -
14 b A
o L i
-1k 2
-2

-1 o 1 2 3 a s =] v =3

i=8 Residual = 0.1174, eig = 0.98717+0.15036i

2
1
o kb
-1 F
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Step 2: The modes with residuals

i=61 Residual = 3.9422e-05, eig = -0.65598+0.75478i

| MM
7 {4{{@ i ddl”))
@ ﬂﬂgﬂ,g)@

/}}

i=63 Residual = 0.015343, eig = -0.69128+0.72253i

o Rl =3 3 4 s
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Exercise

@ Implement the companion matrix based DMD.
o Implement the Schmid’'s DMD, with the residuals.
Test both implementations on the following examples:
© Synthetic examples: first generate A and use it to generate snapshots.

@ Selected examples from http://dmdbook.com/, in particular this
cylinder flow example (The file DATA.zip).

Select a data set from

https://cgl.ethz.ch/research/visualization/data.php

This requires some file format manipulations.

If you have some data from your own research, try it.
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http://dmdbook.com/
https://cgl.ethz.ch/research/visualization/data.php

Streaming QR compressed DMD

QR compressed DMD

Let n > m, i.e. the snapshots are high dimensional but span a low
dimensional subspace. The QR factorization can be used to generate an
orthonormal basis in the subspace that contains all data snapshots (both
X and Y). Then, the DMD is applied to a new lower dimensional
representation of the original data. More precisely, the QR factorization

_o(Pw Bu2\ 5_(5. 6. 6 =01
x = ). 0= (@ @) =Qerim.

is interpreted as a (unitary) change of coordinates, so that

~ (R ~ ~ /R ~ ~
X=Q ( g”) = Q1Ruy, Y =Q ( R{ZD = Q1Rpiz + Q2Rpa.

Now, if R, = U,%,V, is the SVD of the m x m matrix R, = R[jy), then
X =QU, S,V =USV*, U=Q1U,, S=3%,, V=V, (2)
is the SVD of X.
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Streaming QR compressed DMD

QR compressed DMD

We select the numerical rank k as before, but using Rj;y) instead of X,
and then U, = Q1Uyy, where Uy, = Uy (:,1: k) and

Se = URYViE' = UnQi(Q1Rpg + QaRpy) Ve Zu(1: k11 k)~
= Ul RuyVarSo,- (3)

Note that here X = @1R[11] is the QR factorization of X and that the
same S}, is obtained by computing S}, = (U,jY)VkElzl. How do we justify
the extra effort to compute the QR factorization (1) of (X,Y)?

@ It starts paying off already when computing the SVD of X.
@ The matrix Sy can be computed with less effort, as we can use R

@ The refinement of the Ritz vectors can also be done in the
2m-dimensional subspace.

Further advantages are ... ~~ ...
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Streaming QR compressed DMD

QR compressed DMD

@ The residuals are an important information and the cost of computing
the residuals is reduced because

ri = YViS wi — \iUgw; = @(R[:z} VerSy wi — AiUgrw;)

so that ||ri||2 = HR[Q]mGzglwi — A\iUzrw;||2 is computed more
efficiently and the Ritz pairs can be selected using the computation in
the 2m-dimensional subspace. This avoids computation of the n x k
matrix YV}, ((2m — 1)nk flops) and for each w; the norm ||r;||2 is
computed at a cost that does not involve n.

@ Another argument is the spatio-temporal representation of the
snapshots (6) that is accomplished by solving the structured least
squares problem. Due to the unitary invariance of the norm || - ||2, the
optimization can be done (by keeping the modes in factored form) in
the 2m-dimensional (instead of n-dimensional) space.
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Streaming QR compressed DMD

QR compressed DMD

@ The forward-backward DMD [Dawson et al. 2016] applies DMD twice
— first with the data (X,Y) and then, backward in time, with (Y, X)
so that both the SVD of X and of Y are computed. With the
factorization (1), this means computing the SVD of
Ry = Rpyyyp € C™ and of Ry = Ry9 € C*™*™, which is much
more efficient if m < n. Similar improvement of the Optimal DMD.

@ In the case of extremely large dimension n, when the memory capacity
and the cost of memory traffic become major issues, after computing
the out-of-core QR factorization, we can compute the DMD in
2m-dimensional subspace. On modern multi-core hardware, highly
optimized implementations of the QR factorization of tall and skinny
matrices is available [Demmel et al. 2012], [Ngyen, Demmel 2015].

Simplifies for one long trajectory F = (x1,...,Xm, Xm+1),
X=(X1,--,Xm), Y =(X2,...,Xmt1)-
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Streaming QR compressed DMD

[Zkta Al\n Tk Pk] a Dl\[DQR(Xm—I—la 6) {QR Compressed

DMD}

Input:
o X1 = (f1,...,fn, fnt1) that defines a sequence of snapshots
pairs f; 11 = Af;. (Tacit assumption is that n is large and that
m <K n.)

@ Tolerance level € for numerical rank determination.

L: [@f,Rf] = qr(Xm+1,0) ; {thin QR factorization}

2 Ry =Rf(1:m+1,1:m), Ry=Rp(1:m+1,2:m+1); {New
representaitons of X,,, Y.}

3: [Zi, Ak, 7k, pr] = DMD(R,, Ry;€); {DMD in (m + 1)-dimensional
ambient space}

4 Zp = Qka

Output: 7, Ag, 7k, pi
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Streaming QR compressed DMD
Streaming QR compressed DMD

Suppose a block f of £ > 1 snapshots has been received and the QR
compressed representation F = QR needs to be updated.

Frew = (F7f) = (Q (Hn - QQ*)f) <§ %Zf> : (4)

Note that f — QQ*f is the Gram-Schmidt orthogonalization and that in
floating point computation this step should be done with
reorthogonalization. If f — Q(Q*f) = Q1 Ry is the QR factorization, then
R Q*f

Frew = (Q Ql) (O QR1> = QnewRnew,
which allows for continuous use of the QR compressed DMD. In general, k
is small, e.g. kK =1, so that this step is computationally inexpensive. If
k=1, then Ry ey = R = (R, R(:,m + 1)) so that the new SVD is
computed for the matrix

R _(R: R(1:m,m+1)
Tnew — 0 Rm+1,m+1 .
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Streaming QR compressed DMD
Streaming QR compressed DMD

Now suppose we want to discard £ > 1 oldest snapshots, i.e.

) (here £ = 2).

Restoring the triangular factor amounts to systematical annihilation of the
positions e, using elementary unitary/orthogonal matrices. We illustrate
the process using the above small dimensional example. Start with a
unitary H; (Householder reflector) such that

m(3) = (31) mewomn (3]) o (1),

and proceed in a similar fashion with unitary Hs, Hj3 such that

r T T T T T T T T T
H-| 0 =100 Ha| 00 =100z |.F,..,.=Q(HfHXHX| 00z
[ ] [ ] [ ]

Fnew - Qneanewy Qnew = Q[(HTHEHQ:)] (:7 end — 6) Clearly, the
product Hy H5H3 - - - is first accumulated and then applied using BLAS 3.
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Streaming QR compressed DMD
Exercise

@ Implement the QR compressed DMD and test it on the examples used
to test the DMD. (See previous Exercise.)

e Implement updating/downdating. Use a sliding data window (keep
adding new and discarding old data) and update/downdate the QR
compressed representation of the snapshots.

@ A research project: combine this with updating the SVD of the
compressed representations. Explore the literature on the
online/streaming DMD.
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Streaming QR compressed DMD

DMD: Data driven spectral analysis of f, fs, . ..

The two basic tasks of the Dynamic Mode Decompozition (DMD) are

@ |dentify approximate eigenpairs (\;, z;) such that

Azj = Njzj, Aj=|\lew% j=1,...k k<m.

(5)

@ Derive a spectral spatio—temporal representation of the snapshots f;:

L L

~ i—1 i—1 iwe, (i—1)6t .
fiNZZgjajAzj :Zzgjaj\)\gj]’ s =D i1 m. (6)

J=1 Jj=1

The decomposition of the snapshots (6) reveals dynamically relevant

spatial structures, the z;'s, that evolve with amplitudes and frequencies
encoded in the corresponding A;'s. It can also be used for forecasting. It

is desirable to have small number ¢ of the most important modes
Zeps- -2, Sj € {1,...,k}. (To ease the notation, ¢; = j.)
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2d LS. Normal equations via Khatri-Rao product

Snapshot reconstruction — some theory

Wanted are the coefficients s, ..., ay that minimize
m ¢
D I =D zja N[5 — min. (1)
i=1 j=1
If we set Zg (21, ..., 20), @ = (a1,...,a0)", Ay = diag(a),
A= N 1) and Ap; = diag(A;) then the objective (1) reads
Q2(a) = HXm — ZgAa (Al AQ e Am) ”% — min. (2)

Compute the tall QR factorization Z, = QR and define projected
snapshots g; = Q*f;, then the LS problem can be compactly written as
g1 Ap, RAy,
gm Anp,, RAp

m

Discussion: The structure of Z, and of the QR factorization Z, = QR.
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Weighted LS. Normal equations via Khatri-Rao product

Hadamard, Kronecker and Khatri-Rao products

Hadamard matrix product C' = A B (C'= Ao B)

For A, B € R™*" the Hadamard product C' = A * B is defined by
Cij = aijbij.

Kronecker matrix product C = A® B
For A € R™*" B e RP*Y Kronecker product A ® B is defined as

a11B ai2B -+ ainB

a21B a22B - agnB
C=A®B=

am‘lB am‘2B a7n.nB

It is well defined for A and B of any dimensions, and A ® B is
m-pXxXn-q.

N—
I
o000 0000
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Weighted LS. Normal equations via Khatri-Rao product

Kronecker product: basic properties

If A= (a1,...,am), B=(b1,...,b,) denote column partitions, then

A®B = (a1 ®B,aa®B,...,a, ® B)
= ((1,1®b1,a1®bg,...,al®bq,a2®b1,...,an®b1,...,an®bq)
Basic properties:
e A® (aB) =a(A® B)
0 (A+B)®C=ARC+BC,A®(B+(C)=A®B+AC

e (A®B)®(C=A® (BxC)

o (A® BT =AT@BT; (A® B)* = A* ® B*

o (A® B)(C ® D) = (AC) ® (BD) (for well defined AC', BD)

o (A B)"! = A1 ®@ B~ (for regular A, B); (A® B)l = AT @ BT

e vec(CXD) = (DT ® C)vec(X)
o vec(zy!) =y ®x (x,y column vectors)
o vec((z,7) (;ﬁ)) — YR+
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Weighted LS. Normal equations via Khatri-Rao product

Khatri-Rao product

Khatri-Rao product C = A® B

Let A = (a1,...,a,) € R™*", B = (by,...,b,) € RP*™ be column
partitions. The Khatri-Rao product of A and B is defined as

AQB:(al®b17a2®b2,~--7an—1®bn—17an®bn)

Basic properties:

e (A®B)C=A6(B6C)

o (A®B)T(A® B) = (AT A) x (BT B) (here * denotes the Hadamard
product)
)

o (A®B) = ((ATA) x (BTB))!(4© B)"
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Weighted LS. Normal equations via Khatri-Rao product

C®Band C® B

Small dimension example:

C= <CH Cl?) = (01762)7 B = (bll b12> = (blyb2)

Co1 €22 ba1 b2

c11bir cnbiz  ciabin ciobio

| ciibar ciibaa ciabar ciaboo
C®B=

c21b11 c21b12 ca2b11  ca2bio

co1bo1 ca1baa  ca2bar  c22ba2

C ® B is a submatrix of C ® B:

ciibir  ci2bi2

c11ba1  c12b22
CoB=

co1b11 ca2b12

c21b21  co2bo2

= (@b ca®@b)
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LS. Normal equations via Khatri-Rao product

Solution(s) by generalized inverse(s)

The optimal solution is obtained as & = STg using the explicit normal
equations formula, DMDSP [Jovanovié¢+Schmid+Nichols]. Here ST is the
Moore-Penrose generalized inverse.

On the other hand, deploying the reflexive g—inverse of S,

An\ T
S™ = : (I®R™1,
Ap

m

we obtain interesting explicit formulas for a, = S~ that reveal a relation
to the Generalized Laplace Analysis, GLA, [Mezi¢+Mohr].

Recall that, by definition, S~ satisfies
SS=S=5, S8 =S5"and S7S=(5"95)*. In fact, since
SS~ # (SS7)*, we have in general that S~ # S, so a, # Sig.
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Weighted LS. Normal equations via Khatri-Rao product

a, = S™ g solves a weighted LS problem

AAl i g1 m
do= | i | TR ZA An) Y AL (R g
AAm gm i=1
ot m 3i-! .
W(R ‘g1 2oim1 W(R gi)1

A _
i o liwk 7 (R 'gi) i s e (R i)

~i—1 ~i—1

A — A _
WW &) \Xi s (B e

Let M = I ® (RR*)™Y, (z,y)apr = y*Mzx, and let |z = Va*Mxz. Then
Q. is the minimum || - ||2—norm solution of the weighted least squares
problem

g — Sé||py — min. (3)
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Weighted LS. Normal equations via Khatri-Rao product

Comparison with GLA reconstruction [Mezi¢+Mohr]

N -
Y g pprn (B e

<t

a, = 2t W(R’lgﬁz
—ic1

it W(R_lgi)z
L F TEOL L
Qaray = ~ A[HlR_lgi: m 2ai=1 2: i)2

i=1 :
i )‘e_iH(R*lgz‘)e
Proposition

When the spectrum of A lies on the unit circle, &, = dgra).-

For more see recent paper [Drmal+Mezi¢+Mohr].

ZD NLA for KMD and DMD 129 /261



Weighted LS. Normal equations via Khatri-Rao product

On the numerical aspects of snapshot reconstruction

For given ()}, z;)'s and nonnegative weights tv;, find the a;'s to achieve
m l
D i = zja N[5 — min. (4)
i=1 j=1

Set W = diag(w;)",. The weights t; > 0 are used to emphasize

snapshots whose reconstruction is more important. Let A = diag(};)

i—1 i—1
a1 0 - 0 )\'1 . Al ‘01 -0
0 B i— o=l
AOL = ( . 05.2 -0 >7 AZ = )\2, ’ AAi = 0 )\2

l
i=1

= A1
0o -0 Qg )\z—l 0 0)\20,1
and write the objective (4) as the function of & = (ay, ..., ap)7,

QZ(Q) = || [Xm — ZgAa (A1 A2 . Am)] WH% — min, (5)
1A .. At
1Az .. At

(AL Az Am) = P =V, € C>™. (6)
La g
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Weighted LS. Normal equations via Khatri-Rao product

Explicit normal equations solution: weighted case
QRF Z, = QR; g; = Q*f;, & = (g1,...,8m). Solve equivalently

Ay, RAA,
I((W®I,)[g— Sal|2 — min, where S=(L,, ® R)[ >:< ; ) .
Ap RAW,,

m

Observation: S = VeT,m ® R (Khatri-Rao product)

With the notation as above, the unique solution o of the LSP (4) is

a=[(R'R) o (Vi W2V} I (VW o (R*GW))e],  (7)

where G = (g1 gm), e = (1 1)T. In terms of X,,,, Z,,

a=((Z;Z) o (Ve W2V; I (Ve W 0 (Z; X W))el.  (8)

This includes the DMDSP of [Jovanovi¢+-et al] and solution for scattering
coefficients in multistatic antenna array processing [Lev-Ari] as unweighted
cases. Are normal equations safe to use? Let us experiment with a small

dimension example.
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Weighted LS. Normal equations via Khatri-Rao product

Squaring the condition number — loosing definiteness

Let W=1 Letl=3 m=4, =€, A\ =& Aa=26 A3=0.2, so
that the Vandermonde section V., equals

1 1.490116119384766e—08 2.220446049250313e—16 3.308722450212111e—24
Vg m = ( 1 2.980232238769531e—08 8.881784197001252e—16 2.646977960169689¢e— 23)
’ 1 2.000000000000000e—01 4.000000000000001e—02 8.000000000000002e—03

L1 1 1.000000000000000e+00 1.000000000000000e+00
R=10 ¢/2 & = (0 7.450580596923828e—09 1.4901161193847666708) .
0 0 1.490116119384766e—08
0 0 ¢
Here ro(Vy,) &~ 109, ka(R) ~ 109 < 1/roundoffey ~ 4.5 - 10°.
>> chol (V1m*V1im’) >> chol((R’*R) .*(V1im*V1im’))
Error using chol Error using chol
Matrix must be .... Matrix must be positive definite.
>> chol (R’*R) Normal equations matrix is
not definite!

Error using chol
Matrix must be positive definite.
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Weighted LS. Normal equations via Khatri-Rao product

Indefinite o Indefinite = Positive Definite ?!

Use the same V,,, but change the definition of R to

11 1
1 1.000000000000000e+-00 1.000000000000000e+00
R=10 5 f = (0 1.490116119384766e—08 1.4901161193847666—08) .
0 7.450580596923828e—09
00 &2

If we repeat the experiment with the Cholesky factorizations, we obtain
>> chol (V1m*V1m’)
Error using chol

Matrix must be positive definite.
>> chol(R’*R)

Error using chol
Matrix must be positive definite.

>> TC = chol((R’*R) .*(Vim*V1im’))

TC =

1 1.000000000000000e+00 1.000000002980232e+00
0 1.490116119384765e-08 1.999999880790710e-01
0 0 4.079214149695062e-02
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Weighted LS. Normal equations via Khatri-Rao product

How accurately we can solve with

C = (R>*R) .*(V1im*V1m’)?

Based on [Demmel], we know that floating point Cholesky factorization

C = LL* (L lower triangular with positive diagonal) of C is feasible if the
matrix Cs = (¢;5/, /Cncjj)f,j:l is well conditioned. Further, if we solve the
linear system Cx = b # 0 using the Cholesky factor in the forward and
backward substitutions, then the computed solution Z satisfies

IDc(@ - C~1b)12
1Dc|2

< g(0)erz(Cs), (9)

where g(¢) is modest function of the dimension, D¢ = diag(+/cii)_;.
Note that this implies component-wise error bound for each z; # 0:

& — (C-'8)] _ [|Dcl
FANE {rrd 9(E)er(C). (10)
>1
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Weighted LS. Normal equations via Khatri-Rao product

Let A ad B be Hermitian positive semidefinite matrices with positive
diagonal entries, and let C = Ao B. If Ay = (a;j/\/@iia;;),
B = (bw/ biibjj), Cs = (Cij/q /C“‘ij), then

max()\min(As)y )\min(Bs)) < Az(cs) < min(Amax(As), )\max(Bs))- (11)

In particular, |C; 1|2 < min(|| A7 |2, | B |2) and
k2(Cs) < min(ka(As), k2(Bs)). If A or B is diagonal, all inequalities in
this theorem become equalities.

Let C = (R*R) o (V;,n W2V} ), Cs = (cij/\/CiiCj5). Further, let

R = R:A, and V4, W = A, (V;,, W), with diagonal scaling matrices A,
and A, such that R. has unit columns and (Vg,, W), has unit rows (in
Euclidean norm). Then

ko (Cs) < min(kg(Re)?, k2 (Ve W),)?).
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Weighted LS. Normal equations via Khatri-Rao product

Example: Flow around a cylinder.

We continue with the CFD example

The goals are:

@ Test the LS solution procedure and confirm that the data snapshots
are reconstructed with small error. Use all computed Ritz pairs
()\j,Zj), j = 1,...,m.

@ Examine the structure of the LS solution (the coefficients «;).

@ Use the residuals (of the Ritz pairs) and select a subset of the Ritz
pairs for snapshots representations. Check the accuracy of such
representations.

@ The Ritz pairs are in general complex, and the snapshots are real.
Examine how to ensure that the reconstruction remains real?
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Weighted LS. Normal equations via Khatri-Rao product

The residuals

Flow around cylinder: DMD residuals

_,I‘\r./wf

107 |

\

Some Ritz pairs are not acceptable as approximate eigenpairs. How will
those affect the spectral representation of the data? J

107®
50 100 150
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Weighted LS. Normal equations via Khatri-Rao product

The Ritz values with residuals

Flow around cylinder: DMD eigenvalues with residuals

1 T e il T T
r <%y h .-3..‘
0.8 | o i -1
2 -
0.6 | ‘q. 1 2
r'y
0.4 { ! 1
» " -3
0.2t ? 1
e
! *
.
02t .
. $ 1
-04 | » _,. 1
06| - o 1 -
L ".‘/
-0.8 .Q‘.. -‘.v’ N 7
- "
1 I I LT W ey I I
-1 0.5 0 0.5 1

(The snapshots are real.)
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Weighted LS. Normal equations via Khatri-Rao product

Example: Spectral snapshot reconstruction.

In the first experiment, we take all pairs (\;,2;), j =1,...,m = 150. The
reconstruction errors are:

Reconstruction errors
T T

10712
.10—13 L 4
7 —
—|Ifi — 2251z A |2
10714 ;
0 50 100 150
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Weighted LS. Normal equations via Khatri-Rao product

Example: Spectral snapshot reconstruction.

Now, look at the |a;l's :

M The coefficients (alphas)
10 T T

o A |

1072 | 3

107 ¢ . . ]
0 50 100 150

Discussion. Closed under complex conjugation (prove it!).
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Weighted LS. Normal equations via Khatri-Rao product

Example: Spectral snapshot reconstruction.

Real parts of modes with largest |a;|'s :

2 2 2

1 1 1

e | Ul D

-1 -1 -1
'2-70-—Nc0-:ru3u:r-oo '2-TCJ-—Nc0-<ant.Dr-oo _2'TCJ'—NC'J'<tLDLDI"~—OD
2 2 2

1 1 1

o] o] o]

-1 -1 -1
’zflofmm-trmu:r-co ’2flc=fcum-=ru3u:r-eo ’2flc=fmm-=ru3u:r-eo
2 2 2

| o 200N 1| g 25BN
o o G o Q&

k O gy Sy
’2ﬁloﬁmm-=rmmr-m ’2ﬁloﬁmm-=rmmr-m ’2ﬁloﬁmmwmmhm

Discussion. Complex conjugate pairs etc.
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Weighted LS. Normal equations via Khatri-Rao product

Example: Spectral snapshot reconstruction.

Now, look at the |a;|'s and the residuals [[Az; — \;z;]|2:

8 The coefficients (alphas)
10 T

X1, .-, Oy

108 *ﬁ —1/1[Azj — Ajzjll2

104 L 4

1072 | E

10 F E

o] 50 100 150

10

The residuals seem to indicate what modes are relevant.
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Weighted LS. Normal equations via Khatri-Rao product

Example: Spectral snapshot reconstruction.

Now, look at the modes with the residuals ||[Az; — ;2] < 1076:

residuals

Fl?w around cylinder: selected DMD eigenvalues with

0.8 |
0.6 |
04
02t

ol
02t
04
-06 |

-0.8

1-6.8

1-7.2

7.4

-1

Can these 9 modes represent all snapshots using only 9 coefficients

a1y, 97

D
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Weighted LS. Normal equations via Khatri-Rao product

Example: Spectral snapshot reconstruction.

Reconstruction error when using the modes with residuals
HAZ]‘ — )\ijHQ < 10_62

Reconstruction errors

e EEEE B

0.0314

0.0312 E

0.031 b

0.0308 b

£ i
—I1fi — 2251z A 2/ fill2

0.0306 b

0.0304

0.0302 ¢ . ]
o] 50 100 150
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Weighted LS. Normal equations via Khatri-Rao product

Example: Spectral snapshot reconstruction.

The real parts of the used modes (complex conjugate pairs):

2 2 2

1 1 h 1 -

o] o Ghm D.:d D

_1 1Oy 0
'2~TD~—N='J-=rmmr-m '2vTD~—Nm-=rmmr-m '2vTD~—Nm-=rmmr-m
2 2

1 1

o o

-1 -1 1
'2~TC:~—Nc'J-=rmunr-oo '2vTc:~—c\|c'J-=r|nu:r-oo '2vTc:~—Nm-=t|nu:r-oo
2 2 2

1 1 1

-1 -1 -1
'2-70-—Nc0-:ru3u:r-oo '2-TCJ-—Nc0-<ant.Dr-oo _2'TCJ'—NC'J'<tLDLDI"~—OD
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Weighted LS. Normal equations via Khatri-Rao product

Example: Spectral snapshot reconstruction.

The imaginary parts of the used modes (complex conjugate pairs):

#

oLy

=

NS o =N
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— O — 04 07 ST WD D M o0
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Weighted LS. Normal equations via Khatri-Rao product

Example: Spectral snapshot reconstruction.

original reconstructed
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Example: Spectral snapshot reconstruction.

original reconstructed
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Example: Spectral snapshot reconstruction.

original reconstructed

D NLA for KMD and DMD 149 / 261



Weighted LS. Normal equations via Khatri-Rao product

Example: Spectral snapshot reconstruction.

original reconstructed
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Weighted LS. Normal equations via Khatri-Rao product

Example: Spectral snapshot reconstruction.

original reconstructed
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Example: Spectral snapshot reconstruction.

original reconstructed
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Example: Spectral snapshot reconstruction.

original reconstructed
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Example: Spectral snapshot reconstruction.

original reconstructed
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Example: Spectral snapshot reconstruction.

original reconstructed
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Example: Spectral snapshot reconstruction.

original reconstructed
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Example: Spectral snapshot reconstruction.

original reconstructed
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Example: Spectral snapshot reconstruction.
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Example: Spectral snapshot reconstruction.
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Example: Spectral snapshot reconstruction.
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Example: Spectral snapshot reconstruction.
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Example: Spectral snapshot reconstruction.

original reconstructed
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Example: Spectral snapshot reconstruction.
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Example: Spectral snapshot reconstruction.
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Example: Spectral snapshot reconstruction.
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Example: Spectral snapshot reconstruction.

original reconstructed
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Weighted LS. Normal equations via Khatri-Rao product

Example: Spectral snapshot reconstruction.

For the sake of an experiment, use the modes with residuals
|Az;j — Ajzjll2 > 1072, There are 113 of them.
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Weighted LS. Normal equations via Khatri-Rao product

Example: Spectral snapshot reconstruction.

Reconstruction errors when using the modes with residuals
HAZ]‘ — )\ijHQ > 10_2.

Reconstruction errors
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Weighted LS. Normal equations via Khatri-Rao product
Exercise

@ Add snapshot reconstruction to your DMD code and repeat this
numerical experiment. Also experiment with other data sets.

@ Implement a QR compressed version of this reconstruction, integrated
with the QR compressed DMD.
@ Read on LS solution and normal equations. A good reference is
o Bjorck, Ake : Numerical Methods in Matrix Computations, Springer
2015. (See Chapter 2.)

@ Experiment with examples of failure of the normal equations.
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Weighted LS. Normal equations via Khatri-Rao product

& Explicit normal equations solution: weighted case

QRF Z, = QR; g; = Q*f;, g = (g1,...,8m). Solve equivalently
Ap

1 RAp,
(W ®1I,)[g — Sa] |2 — min, where S:(Hm®R)< : >E< : ) .
A/.\m RA.AVVL

Observation: S = Vzm ©® R (Khatri-Rao product)

With the notation as above, the unique solution o of the LSP (4) is

o = [(R*R) o (VemW2V; )7 [(VemW o (R"GW))e],  (12)

where G = (g1 gm), e—= (1 I)T. In terms of X,,, Z,,

a=1[(2;Z) o (VemW2V; N (VemW o (Z;X,,W))e].  (13)

To ease technical details, W = I, i.e. no weights are used and (12) is
o= (S*S)_ls’*g’.
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Weighted LS. Normal equations via Khatri-Rao product

g — Sa||s — min; S = QsRs, @ = R;l( g)

Projection theorem: The residual » = g — Sa must be orthogonal to the
range of S, S*r =0, i.e.

S*Sa = S*g.
Let S*S = Ry Rs be the Cholesky factorization; Rg is upper triangular.
Then
& = computed(Rg' (Rg*(S*§))),
The residual is 7 = g — Sa. (Note: Sa =g —7.) A corrected solution is

obtained as follows:
S = R (RG*(S*7)), o =a+da. (14)

See A. Bjorck, Stability analysis of the method of seminormal equations
for linear least squares problems, Linear Algebra and its Applications
Volumes 88-89, April 1987, Pages 31-48.

Rg is the Cholesky factor of S*S, or the triangular factor in the QR

factorization of S.
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Weighted LS. Normal equations via Khatri-Rao product

|€ — Salls — min; S = QsRs, @ = Rg' (Q%E)

Algorithm: Corrected semi-normal solution

Input: R, A, G, S

Output: Corrected solution a,

Compute the triangular factor Rg in the QR factorization of S.

9s = [(Vom o (R*G))e] {Note, g5 = S*g. Use xTRMM from BLAS 3.}
a = Rg'(Rg*gs){Use xTRSM or xTRTRS or xTRSV from LAPACK.}
rm=G—-R(a Aa A’a ... A" 'a)=G - Rdiag(a)V,,

rs = [(Vem o (R*ro))e] {Note, rs = S*r. Use xTRMM from BLAS 3.}
da = Rg'(Rg*rs) {Use xTRSM or xTRTRS or xTRSV from LAPACK.}
o, =0+ 0o

SOOI ORI

Considerably improves over normal equations, but needs QR factorization
of S=VI © R. How to compute it efficiently, using the structure of S?
Sometimeé, getting only Rg is acceptable cost, not as bad as the entire
QR factorization.
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Weighted LS. Normal equations via Khatri-Rao product

® R for m = 2P

Algorithm: Recursive QR factorization of S = V7

£,m
Input: Upper triangular R € C***; diagonal A € C***; number
of snapshots m = 2P
Output: Upper triangular QR factor Rg = T}, of S € C2"¢x¢

— «—— RA°
0 0 0 0| «+— RA'
0 0 0« ThA? RA?
0 0 0 0 RA?
0 0]+ A" TiA* RA®
0 0 0 0 RA® 1: Th=R
0 0 0 T, A° RA‘; 2: for i=1:p do
0 0 0 0 RA
0 5 ] g 5| | 3 ()zqr(( —1))

— T3A ToA TiA RA 0 Ti 1A

0 0 0 0 RA° 4: end for
0 0 0 A" RA™
0 0 0 0 RAM
0 0 T,A"” TiA” RA™”
0 0 0 0 RA™
0 0 0 TA™ RA™
0 0 0 0 RA'
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Matlab code for S = VI

m

Weighted LS. Normal equations via Khatri-Rao product

function T = QR_Khatri_Rao_.VIR_2p( R, Lambda, p )

o0 o0 o0 O o0 O O o0 A o° o° oP

QR_Khatri_Rao_VTR_2p computes the upper triangular factor
in the QR factorization of the Khatri-Rao product
S=Khatri_-Rao (Vlm.',R), where R is an <ell x ell> upper
triangular matrix, and Vlm is an <ell x m> Vandermonde

matrix V, whose columns are V(:,1) = Lambda.” (i-1),
i=1,...,m and m=2"p.

Input:

R upper triangular matrix

Lambda vector, defines Vlm = Vandermonde matrix

o) integer >=0 defines m = 27p

Output:

T triangular QR fator of Khatri_Rao (Vlim.',6R)

= R ; D = Lambda ;

[", T] = qr( [ T ; Txdiag(D)], 0 ) ;
D =D."2 ;
end
end
ZD NLA for KMD and DMD
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Weighted LS. Normal equations via Khatri-Rao product

Input: Upper triangular R € C**¢; diagonal A € C**¢; m
Output: Upper triangular QR factor Rg = T;_; of S.
1: Compute the binary representation of m:

bf(btlongjv" bl,bo)g,m_ ; 12”
2: Let |_log27nj :ij* >Z'j*,1 > >0 >0 >0
3: 1o =R
4: if i1 = 0 then
5: Ty =16;,=2;,p=1
6: else
7: To=[;j=1 =0
8: end if
9:

for k =1:i;- do

Ty
1o: (7(;1@) _ qr(< kAék 1)) {Local triangular factor.}
11:  if k =i; then

12: if Tj—l 7é [] then

13: (%]) =qr (( AKJ)) {Global triang. factor.}
14: else

15: T =Ty

16: end if

17: ji=j41 p:=p+2F

18: end if
19: end for
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Weighted LS. Normal equations via Khatri-Rao product

Comments: condition number and implementation details

QR factorization approach to the LS reconstruction:

@ Provably small backward error

165G )2 < nllSC 2, 7=1....6 n< f(l,m)e,

@ The relevant condition number is of the column scaled S

X
)
—
n
~—
Il
X
[\
—
&
~—
N

min(ra(Re), k2((Vem)r))
\/Emln(DIilégg k2(RD), DIiléZI(llg ko (DVy ).

IA

Square root of the condition number is great advantage.

@ Other technical details: If the data is real, can work in real arithmetic
even if the eigenvalues are complex (conjugate pairs)

NLA for KMD and DMD 176 / 261



Weighted LS. Normal equations via Khatri-Rao product

Numerical example: limits of normal equations formula

Besides contrived examples where QRF approach outperforms the
commonly used method, it is interesting to point out that in many
interesting cases the normal equations approach fails dramatically, while
the QR based approach provably succeeds.

An example: lkeda map

For instance, we used the Hankel matrix rearrangement of the snapshots
generated by the lkeda map (evolution of laser light across a nonlinear
optical resonator)

Tpt1 = ¢+ P(Tn cos(p — m) — Ynsin(p — m))

. ,n=0,1,...
Ynt1 = P(@nsin(p — 778757) — Yncos(p — mzyz))

with ¢ =1, ¢ = 0.6, p = 0.4, w = 6, and initial condition (zg,yo). We
generated 3500 snapshots and arranged them in the 5802 x 600 Hankel
matrix. The widely used normal equations approach failed in double
precision (16 digits arithmetic), while the QR factorization based algorithm
can deliver accuracy to eight decimal places.
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Weighted LS. Normal equations via Khatri-Rao product

Numerical example: effect of weighted reconstruction

relative reconstruction errors for all snapshots, 15 modes

1.1 Krylow+DFT E

K ———— Schmid DMD E

oo b ——— Krylov+DFT+NE E
— — Krylow+DFT+NE+W

0.8 [ E

0.7 ¥ |

relative error
o 0
4] 4]
j ‘
Lol

0.4 LS

0.3 b

(o] 50 100 150 200 250 300 350 400
data snapshots

Figure: In all cases, the errors of the Schmid DMD and the Krylov+DFT
algorithm (with the coefficients from the full reconstruction) are nearly the same,
so the graphs overlap. Recomputing the coefficient using normal equation
significantly reduces the error (-., Krylov+DFT+NE). The blue curve shows the
effects of weighting. Note how by choosing the weights we can enforce higher
reconstruction accuracy for snapshot in a specified (discrete time) subinterval.
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Weighted LS. Normal equations via Khatri-Rao product

Numerical example: effect of weighted reconstruction

relative reconstruction errors for all snapshots, 15 modes

o.7 E|
0.65 Krylov+DFT E
0.6 Schmid DMD E
) Krylov+DFT+NE
0.55 | Krylov+DFT+NE+W |
0.5 | E
0.45 E
2 oaf E
D
2 o35} E
=
=
0.3 [ 1
o.zs | b
0.z -
o 100 200 300 400 500 600

data snapshots

Figure: Example with 600 snapshots. Blue curve shows the effects of weighting.

Data: 2D model obtained by depth averaging the Navier-Stokes equations for a
shear flow in a thin layer of electrolyte suspended on a thin lubricating layer of a
dielectric fluid.!

Thanks M.Schatz, B. Suri, R. Grigoriev and L. Kageorge from the Georgia Institute
of Technology for providing the data.
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Schmid's DMD

Algorithm [Zy, Ax] = DMD(X,,, Y1)

Input: e X,, = (x1,...,Xm), Y = (¥1,--,¥m) € C"*™ that define a
sequence of snapshots pairs (x;,y; = Ax;). (Tacit assumption is that
n is large and that m < n.)

L [U, %, V] = svd(X,,) ; {The thin SVD: X, = UXV*, U € C"*™,
¥ = diag(oy)*,, V € C™*™}

2: Determine numerical rank k.

3: Set U, =U(5,1: k), Vie =V (,1:k), B =2(1:k,1: k)

4: S = ((Ug‘Ym)Vk)EI;I; {Schmid'’s formula for the Rayleigh quotient

U AU}
b: [Wk,Ak] = elg(S’k) {Ak = dlag()\ )Z 10 Ska( ) )\iWk(:,i);
Wik (:,8)ll2 = 1}

6: Zi = UpWy, {Ritz vectors}
Output: Z;, A,
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On the DMD matrix

In the DMD literature, the DMD matrix A is defined as the solution of the
least squares problem

Y = AKXl — min. (<= IXLAT - YT |r — min)

Clearly, if XT has a nontrivial null-space, A is not unique; in that case we
can choose B so that BX,,, = 0 and thus (A + B)X,, = AX. That is,
adding to any row of A an arbitrary vector from the left null-space of X,,
does not change the optimality. In fact, since X,,, is assumed tall and
skinny, it has high-dimensional left null-space (since

Ker(XT) = Range(X,,)") and the least squares solution is not unique.

Independent of the choice of
A € argminy ||'Y,, — AX,, ||,

it holds that AX, = Y,;,Pxr, where Pxr is the orthogonal projector

onto the range of X1 .
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On the DMD matrix

In the DMD theory, the specifications for A is strenghtened with a
constraint of minimality of ||A|| 7, which yields

A=Y, Xl
expressed using the Moore-Penrose pseudoinverse Xin of X,,.

The interpretability of such a constraint, besides ensuring unique least
squares solution, is rather vague. Keep in mind that the only information
contained in the data is that AX = YPxr so that A = YXT is just a
particular element in the linear manifold

[A]={YX'+ B : BX =0}. (1)

Using the particular choice A = YXT can be useful in some estimates if
one can exploit the fact that in that case ||A||r is minimal.
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Exact DMD

Note that the above computation of the Ritz pairs we never used
A= YmX;rn; instead we used that

which is equivalent to say that A is a solution to ||[Y — AX||z — min.

The RQ Si is obtained using the SVD for the best rank k approximation
X = UpSRVi, Xh = Vi3 MUS, and then Ay = Y, Vi3 tU;

Further, nothing is gained if we try to use the non-uniqueness and replace
A with some A = A + B such that BXm =0 (i.e. A €[A]). Then
BUk =0, AUk = AUk = YkaEk and

Sy = UfAU, = Uf AU, = S,

D NLA for KMD and DMD 183 /261



Exact DMD

A variant of the DMD, proposed in [Tu, Rowley, 2014, §2.2, §2.3] and
designated as the Exact Dynamic Mode Decomposition (Exact DMD) is
entirely built on the computation of exact eigenvalues and eigenvectors of
A =YX, Since Y is A-invariant this is possible.

The Excact DMD algorithm follows the lines 1.-5. of the DMD Algorithm,
and in the last step, instead of Z(:,7) = UpWx(:,1), for a computed
nonzero eigenvalue )\;, the corresponding eigenvector is returned as

7 (1) = (1 A) Y VS " Wi, 4).
Note that Z\“”)(:,1) = (1/X\) AU Wi (:, 1) = (1/\)AZy(:, 6).

This modification can be understood/interpreted as follows: If v is a unit

eigenvector belonging to a nonzero eigenvalue p of a matrix M, then

v =(1/u)Mv =wv. If vis only an approximate eigenvector, then Muv is

one step of the power method that may contribute (without guarantee) to

improving v in the direction of the dominant eigenvector.
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Exact DMD

Proposition

The output of the Exact DMD is independent of the particular choice
A =YX, and it is the same for any A € [A] = argmin 4 ||Y — AX||r.
The exactness of the computed spectral information (barring finite
precision limitations) holds only for A.

To see this, note that for any A € [A]

2 ) = (N YVET Wid) = (1/X)AUWE(, )
= (1/X)AUW(:, ).

An observation:

The vectors )\iZ,gex)(:,z’), i =1,...,k are computed if the residuals
IAZk(:, 1) — AiZk(:,7)]|2 for the pairs (A;, Uy Wi(:,7)) are requested.
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Exact DMD

The choice of scaling by 1/; in the definition of Z,gex)(:,i) does not make

Z,iex)(:,z') unit vector. Indeed,

UUp Y Vi S "W (2,4) = UpSeWi (5, 8) = NUkWi(:,4), |Wi(:,9)]2 = 1,

so that |\;] is the norm of the orthogonal projection of Y V;,X; 'Wy(:, )
onto the range of Uj. Hence, HZ,gex)(:,i)Hg > 1, and this should be taken

into account in the latter use of Z,gem)(:,i), e.g. when computing the
residuals or in the modal analysis of the data snapshots.

Test the “exactness” of the Exact DMD by first generating A, and then
using A to generate X,, and Y,,. Compare the eigenvalues and
eigenvectors computed by the Exact DMD with the corresponding values
of the true matrix A (not accessible to the algorithm).
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Loss of symmetry - an analysis Symmetric Procrustes’ approach

Symmetric DMD

Physics informed DMD (piDMD)

In a framework of physics informed DMD (piDMD), a prior knowledge of
the underlying dynamics determines that A € M, where a matrix manifold
M is defined by the additional (physics informed) constraints such that
e.g. A must be Hermitian, or skew-Hermitian, unitary, Toeplitz etc.

e [piDMD] Baddoo P. J., Herrmann B., McKeon B. J., Kutz J. N,
and Brunton S. L.. 2021. Physics-informed dynamic mode
decomposition (piDMD). arXiv:2112.04307

Let us consider the case when M stands for Hermitian matrices. It is
nicely motivated by numerical examples e.g. with learning the energy
states of a quantum Hamiltonian [piDMD,§4.3.1] where it is shown that
the loss of hermiticity/symmetry may result in a non-physical and thus
inaccurate/useless results.
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Loss of symmetry - an analysis Symmetric Procrustes’ approach

Symmetric DMD

Suppose we know a priori that there is a Hermitian matrix H = H* such
that HX = Y Px-, i.e. H € argminy|[AX — Y||p. Then A = YXT is in
general not Hermitian but, as we discussed earlier, since H € [A], the
Rayleigh quotient satisfies S}, = U; AU, = U;HU, = S},. Note that in
terms of the linear least squares solution manifold, [A] = [H].

This means that in an error-free setting the DMD algorithm will
automatically exploit symmetry, and the computed Ritz pairs will have the
proper structure — real Ritz values and orthonormal Ritz vectors. There is
no need to determine a Hermitian H € argmin 4||AX — Y||r. Note also
that the Rayleigh quotient inherits the positive definiteness of H.

In real world applications (noisy data, finite precision), the symmetry will
be lost. This is easy to illustrate by numerical example.
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Loss of symmetry - an analysis Symmetric Procrustes’ approach

Symmetric DMD: loss of symmetry

The matrix S, = Cmfin—/,'.ifl
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Figure: The structure of the computed Sp = (7*Y1~/k§?,;1, visualized using
imagesc(logl0(abs(Sk))). The loss of symmetry is apparent.

To fix the problem, we first have to analyze it.
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Loss of symmetry - an analysis Symmetric Procrustes’ approach

Loss of symmetry: structure of the error

The numerically computed SVD X ~ USV* can be interpreted as

(X +0X)V =TS, [|6X[s < ex|X[l2, (1)
where U and V are numerically unitary matrices, 1U*U — |2 < €,
[V*V —Ill2 < €y, and ¥ = diag(d;)7_;. Here €y, €y, €, depend on the
details of a particular algorithm and its software implementation, and can
be estimated by f(m,n)e, where f(m,n) is a modestly growing function

and € is the round-off unit of the working precision.
Assume that X and X + 6X are of full column rank. Then Px+« =1, and

HUSV* =Y + H6X = HU, = YV, 3! + HoXV, 2,
— U}HU, = S), + UfHSXV, 2 L.

Hence, even if we could compute §k = (7,;‘Y17k§),:1 without roundoff, it
would differ from the Hermitian U HU}, with an error 65, = U} Ey,
where Fj, = H5XV;€E,:1 is the error in the approximation of HUj,.
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Loss of symmetry - an analysis Symmetric Procrustes’ approach

Loss of symmetry: structure of the error

We can estimate Ej, = H6X17k§3;1 as follows:

1 Ex ()12 S ~
T < NoX2lIVi(:, 9)ll2/05 < exor||[Vi( d)ll2/7;  (2)
TFe, 01
< ¢ Eg (3)
1—e€ 0j
BRI izi® Vite, o

=~ ~ €x =, (4)
HHUk(,j)”Q 1/H(H\range (Ug) ) HQ \/1 _eu(l _EI) 0j
and then the column-wise errors in Sk as

19SkC Iz o NUgH]2 - 1+ e o1
Iz~ H[2 " 1-e o

These bounds indicate that the accuracy in §k may be deteriorating with
the increased column index, which means that the upper triangle of §k
may be more exposed to the effects of 6X (i.e. the errors in the
computation of the SVD of X) and the column scaling by Z L
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Loss of symmetry - an analysis Symmetric Procrustes’ approach

Loss of symmetry: structure of the error

Clearly, the accuracy of the computed residual will be also affected, and
the above analysis gives an estimate. This simple model can also be used
to assess the effects of the noise AX, AY in the initial data.

Note that the above analy5|s does not include rounding errors in the
computation UkYVka , because they are not the main source of the loss
of symmetry.

Motivated by the above analysis, we define a symmetrizer:

Symmetrizer of S,

Hy, = diag((Sp)i)*y + Ly + L7, (5)

where Ek is the strict lower triangle of §k and we consider it as a
candidate to replace Sy.

Let us compare the estimated and the actual error in a controlled synthetic
experiment, using Sy (from the last Figure).

D NLA for KMD and DMD 192 /261



Loss of symmetry - an analysis Symmetric Procrustes’ approach

Loss of symmetry: structure of the error

The matrix § = (Y V5! E, ; Column-wise errors in Sy

—cxp

10%
10 20 30 4 0

Figure: First panel: the structure of the computed §k = ﬁ*Yffki;l visualized
using imagesc(1og10(abs(Sy))). The loss of symmetry is apparent. Middle
panel: the column norms of Ej and their predicted trend. Third panel: the
columns of 4.5y and their predicted trend.

10 20 30 40

Except for the error at the noise level me, the analysis (although
simplified) correctly reveals/predicts the behavior of the error. Hence,
using the symmetrizer ﬁk might work. What else could one try? For
instance, matrix theory provides provably optimal symmetric
approximation of §k
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Loss of symmetry - an analysis Symmetric Procrustes’ approach

Symmetric DMD

A natural way to correct §k and restore hermiticity is to replace it with a
close Hermitian matrix.

Theorem (K. Fan, A. J. Hoffman. Some metric inequalities in the space of

matrices. Proc. Amer. Math. Soc. 6, 1 (1955), 111-116.)

The matrix

7

satisfies, for any unitarily invariant norm || -

1Sk — Sill = min_ |15 — H]. (7)

This optimality of §k in a large class of norms, as well as its simple
computation (6), makes it a good candidate to replace Si. Is this the best
we can do? Is it superfluous to ask whether is it best to chose the optimal
approximation §k or, what could go wrong if we replaced Sy with its
closest Hermitian matrix?
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Loss of symmetry: structure of the error

U7HO, -~ 5]/ U7HO, UiHU, ~05(S, + 50)| / U{HD,

U2 B0, — By ./ [U;HO;

=T
e
350 e

Figure: The entry-wise relative errors logo(|(Sk)i; — (Sk)ij|/|(Sk)i;]) (first
panel) and 10g10(|(5k)” (gk)”|/|(5k)”|) (second pane/) Note that the upper
triangle of S, has large error that is symmetrized in Sj, = 0.5(S), + S} +) and
transplanted into the lower triangle. The third panel shows the entry-wise errors
in Hy, which indicates that using Hy may be better than Sk (Note that the
scale in the color bar of this panel is different from the first two.)

We note here that requiring entry-wise small relative errors is indeed too
much to ask, but nevertheless we check them to test whether the above
analysis correctly identifies the problem. The result shown in the Figure
are precisely as predicted.

NLA for KMD and DMD 195 /261



Loss of symmetry - an analysis Symmetric Procrustes’ approach

Loss of symmetry: structure of the error

Using smaller number k of the leading singular values and vectors

~ -1 : :
produces more accurate YV, , but such an aggressive truncation
causes loss of spectral information as H is compressed onto a much lower
dimensional subspace.

If H is positive (semi)definite, then Sy inherits the definiteness, but in
ill-conditioned cases a symmetrizer of S is not guaranteed to be positive
(semi)definite. Under this implicit assumption on (semi)definiteness, if we
compute the spectral decomposition of Hy, (or any other symmetrizer) and
if some of the eigenvalues are negative, we can replace them with zeros,
thus implicitly replacing Hj, with the closest positive semidefinite matrix.?
Depending on the user's preferences, all or only positive Ritz values can be
returned.

?Recall that we cannot talk about the closest positive definite matrix because the set
of positive definite matrices is open.
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Symmetric DMD — a Procrustes’ approach

Procrustes’ approach
To mitigate the problem, [piDMD] proposes selecting a DMD matrix as

A € argminy_ 4. ||[AX = Y||F. (8)

This is a well studied structured (symmetric/Hermitian) Procrustes
problem with an explicitly known solution by Nick Higham
@ Higham Nicholas J.. 1988. The symmetric Procrustes problem. BIT
28 (1988).

Orthogonal/unitary Procrustes’ problem

The orthogonal Procrustes’ problem is

Y- X — 1min
¥ - XQllr — min,

The symmetric problem (8) can be solved using the SVD of X.
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Symmetric DMD — a Procrustes’ approach

Let X = U, (%) V* =UXV™ be a full SVD of X with n x n unitary U,.
Let r be the rank of X, ¥, = diag(c;);_;, 01 > --- >0, > 0. Then

E * * Z *
JAX - Y =HMQQ>V—Y%=n@¢m»@)—%Yv%
— ——
M C

b G L* by C
- wG)-en(§ 50
(o) -cir=n(g ) (5) - (E)
G:G*Ecmxm7 C[l]ECmXTn,
— 16 - Cylih + LT — . ©)

Clearly, , and

the optimal choice of L in the second term in (9) is

L= (C[Q](:, L:r)yt ) ,
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Symmetric DMD — a Procrustes’ approach

Further, taking the hermiticity into account, the first term in (9) reads

m i—1
[GX — Cl]HF—Z|9JJUJ CJJ‘ +ZZ’9UUJ CZJ’ + |gij0i — Cﬂ|)
Jj=1 =2 j=1
which is minimized for
R(cis
Rles) i1
Gii = oj ) (10)

arbitrary real, j=r+1,....m
0Cij + 0;Cj;
DYLOTE k03 %0
9ij = Gji= 0; +0j
arbitrary whenever 0; +0; =0 (0; = 0; =0)
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Symmetric DMD — a Procrustes’ approach

The structure of M can be illustrated as follows:

Note the two levels of the non-

uniqueness in M. First, the matrix

x x|+ + + \ K (elements denoted by W) is ar-

+ 4+ 4 | bitrary Hermitian and this freedom

comes from m < n. If r < m, the

elements @&, can be selected freely

under the constraint that the matrix

remains Hermitian (or real symmet-

ric). Setting all free entries to zero

yields the solution of minimal Frobe-
nius norm.

+ 4+ [ x x| * *
+ 4+ [ x x| * *

Any matrix A = A* that solves the Hermitian Procrustes problem is then
of the form A = U, MU}.
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Symmetric DMD — a Procrustes’ approach

Note that A = U, MU is n x n and forming it explicitly is not needed. A
low rank approximation of A, proposed in [piDMD] is A, = U, GUY,
where G, = G(1 : k,1: k) and Uy = Uz(:,1: k). (Note that there is no
guarantee that A; = A% is in the solution set of (8).) Then, using the
spectral decomposition G, = WAW™, W*W = I, the Ritz vectors are
computed as the columns of U,W and the Ritz values are \; = A;; € R.

A closer look at these formulas reveals that the elements ¢;; used in (10)

to compute G, are the entries of the matrix Cj, = U;Y Vi, which is

actually Cj, = S X, where Sj, = U HUj, is Hermitian. This implies in

(10) that, for 1 <i,5 <k <,

ojcij + 0iCj; O’ZSU + 0755 UJQ-SZ-]- + al-zsij
= = = Sij = Sji-

2—
7
2 2 2 2 2 2
o; +Uj o; +a7 o; +aj

Gij = Gji =
. o : (12)
In other words, using a low rank approximation of a solution of the

structured Procrustes problem (8) did not produce anything new if the

data is indeed generated by a Hermitian matrix.
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Symmetric DMD — a Procrustes’ approach
Check how this works on the previous synthetic example:
Figure: First panel: The entry-wise relative errors
logo(|(Ck)ij — (Cr)ijl/|(Cr)ij|) where C, = UFHULY), is computed explicitly
using H. Second panel: log,,(|(Sk)ij — (Gk)i;|/|(Sk)ij]), where Sy = UHUj.
Note that the large errors in the upper triangle of C}, did not pollute the

symmetrizing matrix G. The third panel shows the entry-wise difference between
Hj. and Gy. Recall that in exact computation Hy = Gy.

|THES - G/ (TS| Ty HT - Gy ./ [T7HET|

Gy~ |/ ||
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Symmetric DMD — a Procrustes’ approach

Consider now computation of the elements g;; in the upper triangle

(i <j<k)of GJ,. We continue using the simplified model of error
analysis where the only error is the one from the computed SVD of X.
The rounding errors in computmg e.g. Ck = Uk,YVk are neglected. We

have, using S; = Sk + 5Sk and Ck = SkEk,

- %@y G 035y Gisy (13)
WTHIE T8 2+o o240
_ O3(si —08y) | 55z — 0551)
N g} + 07 g7 +0;
_ Osi | Opmi o 05055 576w (14)
G} +ao; o;+0o; or+a G740
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Symmetric DMD — a Procrustes’ approach

Hence
I A C —

Sij = Jij + 09ij, 09i; = (W&’zj + m%ﬁ)- (16)
Note that the entries of CNJk are computed from the entries of §k as convex
combinations that put more weight of the more accurate lower triangle.
Indeed, for 5; < &;, dsij is scaled with 57/(67 +73) < 1. This is
illustrated in Figure 21.
Note the difference from the computation of Sy, in (6) where the upper
and the lower triangle are averaged, in a convex combination with the
coefficient 1/2, i.e. Sk =St — (0. 555y + 0. 5(55*) Further, H, computed

as in (5), is contaminated only by the lower triangle of the error in Sk.
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Symmetric DMD — a Procrustes’ approach

rr rr }17

0
5

-5
10

-10
15
20 -15
25 20
30

-25
35
40 .

Figure: The distribution of the values 57 /(57 + &7) illustrate why the large errors
in the northeastern corner of ék did not perturb the entries of ék too much. The
two triangles of Gy, are differently weighted in the convex combination in relation
(12), and the expressions for the entry-wise errors (15), (16) explain the observed
accuracy and distribution of the errors in the matrix entries.
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Symmetric DMD - QR compression |

In the case of data from a single trajectory S = (z1,...,2Zm, Zm+1), We
have X = (z1,...,2m), Y = (22,...,%m+1), and the auxiliary subspace is
of dimension m + 1. If we compute the QR factorization

(zl,...,zm,szrl):Q(]g) :@R, QQ=1,, @zQ(:,l:m—Fl),

(17)
then
X=Q <R;)m> =QR;, Y=Q (FSy> - @Ryv
where
X ¥ X% X% X % X X
R—( »:eii),Rx—R(:,l:m)—( *i),Ry—Rc,z:mH)
¥+ :
(18)
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Symmetric DMD - QR compression |l

R, R "
JAX - Y3 = HAQ<O)—Q<Oy) 2= Q" AQX — Y'|3.
M

R R
X/ — T Y/ — Y .
(5)v=(%)

In the new coordinates, the matrix representation of the linear operator
changes by similarity, and in the new representation we have M = Q*AQ
and the data snapshots are (%) and (%) = M (%) Clearly, if
H =H"* € argmin, ||AX — Y||r, then

= Q*HQ = M* € argmin,;||MX' — Y'||r. Hence, we have arrived at
an equivalent formulation of the original Hermitian DMD problem.
According to the previous discussions, if we set Ml = Y'(X')T, then

M=Y'(X)=Q'YX'Q = Q*AQ,
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Symmetric DMD - QR compression Il

v - (5) o)~ (% 2)

Further, we have [A; X, Y] = Q[M; X', Y'|Q*. This is the situation in the
n-dimensional state space.

On the practical side, everything we need takes place in the

(m 4+ 1)-dimensional range of Q and can be described as follows. Let

R, = U,XV™ be the economy-size SVD of R;; X isr xr, and V is

m X r, where r = rank(X) = rank(R,). Note that then X = (QU,)XV*
is the SVD of X, and that HQR, = QR,VV*. Hence

HQU,XV* = QR,VV* and HQU,Y = QR,V. (19)
We can truncate (19) at an index k (chopping of small singular values)

HQU,(:,1: k)% = QR, Vi,
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Symmetric DMD - QR compression IV

Up(;,1: k)*Q*HQU,(:,1 : k) = Up(:,1: k) R, Vi1 L

Since H = H*, the matrix S, = U,(:,1 : k)*Q*HQU,(:,1: k) is also
HAermitian.2 Sy is the Rayleigh quotient of H with respect to the range of
QUL(:,1: k). If Spw; = Awj, ||wj|l2 =1, then

()\j,Zj), where Z; = @Ux(:, 1: k:)wj = Q <Ux(’ 10 k)w]) (20)
is the corresponding Ritz pair of H. Note that (\;, U, (:,1: k)w;) is a Ritz
pair for @*H@ from the range of U,(:,1: k).

Hence, the QR compressed DMD first compresses the underlying H onto
an (m + 1)-dimensional subspace, computes the (m + 1)-dimensional
DMD using the projected data and then lifts the Ritz pairs back to the
original n-dimensional state space (20). This lifting preserves the
orthogonality of the Ritz vectors.

2Here one can formulate the Hermitian Procrustes problem and proceed as before.
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The problem of non-normality

Problem of ill-conditioned modes

The DMD assumes that the Rayleigh quotient matrix is diagonalizable. In
some cases the matrix is not diagonalizable or highly non-normal so that
the Ritz vectors are badly conditioned.

Recently proposed Koopman-Schur Decomposition (KSD) solves the
problem and uses orthonormal modes with the same funcitonality (e.g.
forecasting) as the DMD. For more details see

o Z. Drmag, I. Mezi¢: A data driven Koopman-Schur decomposition for

computational analysis of nonlinear dynamics. arXiv:2312.15837v1
[math.NA]
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Revisiting matrix representation of the compression Adding the

Measure preserving transformation = unitary operator

Consider a DDS (1) = F(2()) where F is measure preserving on a
probability space (2, B,w) (w(F~Y(S)) = w(S), S € B).

The corresponding Koopman operator K f = f o F' is an isometry on
L?(Q,w); the inner product and the norm are (-, "), || - || = /(Y. (K
has unitary extension, but those details are out of scope of this course.)

Goal: discretization that corresponds to isometry

When we compress K onto N-dimensional subspace Viy C L?(2,w), the
corresponding N x N matrix K should represents a linear operator that
preserves the inner product (-, ), in V.

This is more difficult than preserving hermiticity. (E.g. a Rayleigh quotient
of a Hermitian matrix is Hermitian, but in the unitary case this is not true.)
We go back to square one and first review the process of building the
matrix K, keeping in mind the above condition.
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Matrix representation of an operator compression - a

review

Consider a DDS (1) = F(z2(")). Suppose we are given:
e Data z(, ) = F(z®) i=1,..., M. (Direct numerical
simulations and/or measurements.)

@ Basis functions (or, a dictionary) of 1, ...,1y that span an
N-dimensional subspace Vy in the ambient Hilbert space L?(,w).

Goal: matrix K of the compression of the Koopman operator IC to Vy.

Take g € V. With fixed basis, g is identified with a vector g as follows:
N g1

g(x) =Y gjthj(x) = V(x)g, U(z) = (¢1(x) ... ¢n(2)), 8= :
j=1

gN

Vy =CV; g =g. Kg will be represented by Kg.

D NLA for KMD and DMD 212 /261



Revisiting matrix representation of the compression Adding the

Matrix representation of a compression - a review

desired form

residual R(g;x)

The matrix K should be determined so that the residual is minimized.
Given severe restriction of data driven scenario, the minimization will only
mimic the proper construction of an operator compression in Hilbert
spaces.

Set U(F(z)) = (1(F(2)), ..., ¥n(F(x))).
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Matrix representation of a compression - a review

N
=Y ¥i(F(2))g; — ¥(2)Kg = (¥(F(z)) — ¥(2)K)g
=1

When defining K, it suffices to define over the sphere ||g||2 = 1. Note that
||H|1\3X1| (&) = ax [(U(F(2)) = ¥(z)K)g| = [V (F(z)) = ¥(z)K]]2.

It is desirable that

/|</Cg><m>— () K g du(a /|Rg, ) Pofr),
Q

is minimal. Note that

/ IR(g: o) Pdu(x / 19 (F(2)) - U)K 3w (z).
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Matrix representation of a compression - a review

In a data driven scenario, the integral is only approximated by a
quadrature formula that can only use the available data snapshots,
possibly with weights that improve the accuracy.

Hence, instead of the integral, we consider a weighted sum
M . .
> wi| () - v K3,
i=1

With the notation W = diag(wy, ..., wys) and
T(zM) T(y™M)

vx=| | W=[ |, Y=Fc")
U (™) T(y™)

the problem can be compactly written as
IWH2(0y — Ux K) | p — min
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Matrix representation of a compression - a review

The solution matrix K is

K = (W20 ) w1/ 2wy,

This can also be written in a normal equations form

K=G'A, G=U\WUyx, A=U\Wly.

Gk = (U, Vi)w, Ajk = (K, ¥5)w. J

Approaches to establish convergence:

@ random sampling
e ergodic sampling (long trajectory, ergodic systems)

@ good quadrature formulas
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mpEDMD (M. Colbrook)

Now suppose that the compression K is constrained to correspond to a
unitary operator - i.e. it has to preserve the inner product and the
(induced) norm.

Consider two functions g, h € VN, g= \I'g, h = ¥h.

<97h>w = <\Ijgv¢h>w Zgﬂbz,zhg j w—zzgz 1/]271/]]

i=1 j=1
N n

~ Y > gihjGji =h*Gg

i=1 j=1
In particular, [|g|2 = [|Vg]2 ~ g*Gg = |G'g|3.
Since Kg ~ WKg and |[VKgl||? ~ g*K*GKg, we can mimic
llgllw = IKg||w by imposing the condition
K*GK = G.
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mpEDMD (Colbrook)

Consider the residual over the unit sphere ||G/%g|ls = 1:

max [R(g;z)] = max [(¥(F(r)) - ¥(z)K)g|
|G/ 2g]l2=1 |G/ 2g]l2=1

= |U(F@)G? = U(2)KG s,
As before, consider minimizing the discretized integral of the residual
M . .
> wil| OG- v kG,
i=1
under the constraint that K*GK = (G. Note that this means that
Q = GY2KG~1/2 is unitary and the objective is to minimize
M . .
Zwin\y(y(z))g—m _ \I,(x(z))G—l/ZQH% N QI%HI.
i=1 -
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mpEDMD (Colbrook)

Putting all together in a compact form yields a unitary Procrustes problem

||W1/2\IJYG71/2 _ W/l/Q\IlXGfl/QQHF N leégl ]
This is of the form ||A — BQ||r — ming-g=7. The optimal Q is
Q = UV*, where B*A = UXV* is the SVD. (See Appendix 2.)
Once we compute @, the matrix of the compressed unitary Koopman

operator is
K =G 12QGV2.

For more details, theoretical analysis, examples and software see
@ M. Colbrook: The mpEDMD Algorithm for Data-Driven
Computations of Measure-Preserving Dynamical Systems. SIAM
Journal on Numerical Analysis Vol. 61, Iss. 3 (2023).
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Appendix: Review of the symmetric eigenvalue problem

Let H be Hermitian with the eigenvalues \1 > --- > X\, and the

corresponding orthonormal eigenvectors u, ..., Uy, i.e. Hu; = \u;,
i=1,...,n and wju; = 6;; (u; L u; fori#j). Then
*
T Hx
Al = max = max z"Hz =ujHuy
z£0 T*T [|z|l2=1
A = max a*Hx =wu;Hu;, i=2,...,n.

llzll2=1
rluy,...,ui—1
Analogously, the eigenvalues are the minima of the constrained quadratic
form x*Hux:
x*Hzx

An, = min = min z*Hz = u, Hu,
z£0 T*X lz]|2=1
A = min  *Hr=w;Hu; i=1,...,n— 1.
llzll2=1

Tluitq,...,un
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Appendix: Review of the symmetric eigenvalue problem

Theorem (Poincaré’s inequality)

Let H = H* € C™*"™ have the eigenvalues \y > --- > \,. If S CC" is an
arbitrary i—dimensional subspace, then for some unit vectors x,y € S

" Hr < XN, y"Hy > Ap_iy1. (1)

The eigenvalues A1 > --- > X\, of H are the optimal values of a sequence
of constrained optimization problems:

Ai = max min z*Hxr = min max x*Hx, i=1,...,n,
sccn z€S sccr z€S
dim(8S)=i [|z|l2=1 dim(S)=n—i+1 ||z]2=1

(2)
where the optima are attained at the corresponding eigenvectors,
)\i = u;‘HuZ (Hul = )\iui, u;kuj = 5@])
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Appendix: Review of the symmetric eigenvalue problem

Theorem (Ky Fan's theorem)
The eigenvaluesa A1 > --- > )\, of H solve the following constrained trace
optimization problem:

A4 -+ A\ = max{Trace(X*HX) : X e C* X*X =1;}, (3)

where the maximum is attained at the matrices of the form
X = (w1,...,u;) Q, where uy, ..., uy are orthonormal eigenvectors of
Al, ..., \x. and @ is arbitrary k X k unitary matrix. Analogously, for the k

smallest eigenvalues

> A\ =min{Trace(X*HX) : X € C™* X*X =T;}.  (4)
i=n—k+1
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Appendix: Review of the symmetric eigenvalue problem

Theorem (Weyl's theorem)

Let H be n x n Hermitian and let H be a Hermitian perturbation. Then
the eigenvalues of H and H + 6 H can be compared as follows:

Ni(H) +M(0H) < N(H+6H) < Nj(H)+ M(0H), j=1,...,n, (5)
or, equivalently,
N(HA+0H) =M MOH) < Nj(H) < N(H+6H) - \(0H), j=1,...,n.
In particular,

max |A;(H + 0H) — Aj(H)| < max{[A(6H)|, [M(6H)[} = [|6H [|2. (7)

Jj=1ln

Further, if H is positive semidefinite, then \;(H + 0H) > \;j(H) for all
j=1...,n.
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Appendix: Review of the symmetric eigenvalue problem

Theorem (Hoffman-Wielandt's theorem)

Let A and B be normal n x n matrices with the eigenvalues, respectively,
A(A), ..., \(A), and A\ (B), ..., \n(B). There is permutation p such
that

Z\A (B)? <[|A— B|F. (8)

Let in the Hoffman-Wielandt' theorem the matrix A be Hermitian and let
B be normal. If the eigenvalues are indexed so that A (A) > --- > A\, (A),
and R(A1(B)) > --- > R(A\,(B)) then

> i(A) = X(B)2 < | A~ B]p.
=1
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Appendix: Residual bounds for the symmetric eigenvalue

problem

Theorem (Kahan's theorem)

Let H be n x n Hermitian matrix with eigenvalues \1 < --- < A\, and let
X be an n x £ orthonormal matrix. If uy < --- < uy are the eigenvalues of
M = X*HX, then there are { eigenvalues )\; , ..., \;, of H such that

jrrielt?él)\ij = wil < [IR]l2, (9)

> 1Ay — w2 < IRl (10)
j=1:£

where R=HX — XM.
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Appendix: Residual bounds for the SEVP

Let X | be an orthonormal matrix that spans X'+ and let

K W (11)

H=(X X|)'H(X X,)= (M K ) :
where M = X*HX, W =X1HX |, K=XTHX.
The trick is to us the backward error framework. With

0H = RX* + X R*, X becomes an invariant subspace of H=H—6H.

H = (X X,)"(H-0H)(X XL):<J\O4 V([’/) (12)

The eigenvalues of M are some ¢ eigenvalues of H’, and this reduces the
problem to spectral perturbation theory, i.e. to comparing the eigenvalues

A1 > -+ > A, of H' (unitarily similar to H) and the eigenvalues
AL > >\, of H'.

v
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Appendix: Residual bounds for the SEVP

... proof ... continued ...
A direct application of the Weyl's and Wieland-Hoffman theorems yields

max [N = Al < [H' = Hll2, | 3= 2)2 < |H' = H|lp.

=1

It only remains to compute the norm of the perturbation H' — H'.

0 K*
K 0

Due to unitary invariance, the spectral norm of K equals

1Kz = X XTHX [l = [|(In = XX*)HX[ls = |[HX — X M|z = |[R]]2,

w- = (g ) W= Bl = Kl |~ Hle = VEIK]

and, in the same way, ||K||r = || R||r. Since u; = A;; for some indices
i1, .. .,ip the proof of (9) is completed, and for (10) the extra factor v/2
must be removed using another approach. Note that analogous error

estimates hold for the eigenvalues of W.
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Appendix: Orthogonal Procrustes’s problem

For A, B € C™*™ find a unitary matrix ) that minimizes
i A—B .
poam Qllr

If A and B are real, the optimal @ should be real orthogonal.

Orthogonal Procrustes problem

(1)

This problem arises in applications e.g. in computer vision, robotics,
photogrammetry, psychometrics, radiostereometric and morphometric
analysis in biomedical engineering.

Pioneering work on the solution of this problem was done by Green 1952

and Schéneman 1966.

In the applications of DMD/Koopman operator for numerical analysis of
nonlinear dynamics, (1) is the key for measure preserving/unitary cases.
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Appendix: Orthogonal Procrustes’s problem

A solution of the problem (1) is

UV* €arg min ||A—B , 2
s mn 14~ BQllr @)

where B*A = UXV* is the SVD of B*A. This solution is unique if and
only if B*A is nonsingular. If A and B are real, then the optimal () is real
orthogonal.

Since

1A = BQIE = IAlZ + |Bll7 — 2RTrace(Q*B*A),

any optimal @ that minimizes (1) maximizes RTrace(Q*B*A).
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Appendix: Orthogonal Procrustes’s problem

. proof ... continued ...
If B*A = UXV* is the SVD of B*A, ¥ = diag(o;);"_;, then

Trace(Q*B*A) =Trace(Q*UXV™)=Trace(V*Q*UX) :Z(V*Q* U)iioi,
i=1

and thus (since [R(V*Q*U )| < [(V*Q*U)4i| < 1 for all 7)

RTrace(Q*B*A) Z?R V*Q*U)0i < ZUZ (3)

The above inequality becomes an equality if R(V*Q*U);; = 1 for all

i=1,...,n. If all o;'s are positive (i.e. B*A is nonsingular) then this
condition is also necessary (>_;; 0i(1 = R(V*Q*U)i;) = 0 <
ROV*Q*U)11 = =R(V*Q*U)pyn, = 1). Since V*Q*U is unitary, this is

possible only if V*Q*U =1,, i.e. Q =UV™.
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Mauroy and Goncalves: learn the semigroup generator Precondi

Problem: Learning equations from data

Now assume that the system @(t) = F(z(t)) is accessible only through
snapshots from a sequence of trajectories with different (possibly
unknown) initial conditions. More precisely, we are given

(xp,yr) ER" xR™, k=1,...,K,
where
Yi = ¢ (xk) (1)

In a real application, ¢ is a fixed time step, and it is possible that the time
resolution precludes any approach based on estimating the derivatives by
finite differences; the dataset could also be scarce, sparsely collected from
several trajectories/short bursts of the dynamics under study.

The task is to identify F and express it analytically, using a suitably
chosen class of functions. Our focus is on the computing engine — robust
numerical method that translates into reliable numerical software.
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Example: Learn &(t) = F(z(t)) from data snapshots

F' xp)—F; (X
logqq €k, where €, = max;—123 W

D
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Mauroy and Goncalves: learn the semigroup generator

Mauroy and Goncalves method for learning F from the data. Step 1:

o Let X C R” be compact, forward invariant — big enough to contain
all data snapshots. (What happens in X stays in X.)

o Consider the semigroup K!f = f o ¢! of Koopman operators acting
on a space of scalar observables f € F, where e.g. F = L?(X).

o Select a suitable (finite) N-dimensional but rich enough subspace
Fn C F, and its basis B = {gy,...,0xn}. The observables are
(Ox)ij = pj(xi) € CF*N, (Oy)i; = pj(y:) € TN,

e Compute (a data driven) compression (I)N’Cffzv : Fny — Fn and its
matrix representation Uy (in the basis B)

@ Show that Uy = eVt ie. Ly =~ (1/t)log Uy, where Ly is the
compression of the infinitesimal generator K defined by

Kf = lim m, f € DK).
t—0+ t
(Kt strongly continuous in L?(X): lim,_,o+ ||K!f — fll2 = 0).
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Mauroy and Goncalves: learn the semigroup generator

Mauroy and Goncalves method for learning F' from the data.
Step 2:
@ Recall the fact that

o repm). ()

n
Kf=F -Vf= E;
f f=2_Fj
=1
o If we assume F; = ), drigy, then the action of K to the basis's
vectors g, can be computed, using (3), by straightforward calculus,
and its matrix representation will, by comparison with (1/t)log Uy,
reveal the coefficients ¢y;.
@ An analysis of convergence (with probability one as ¢ — 0, N — oo,

K — o0) and numerical experiments provided by Mauroy and
Gonsalves show that this approach works well.
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Example

(k> (k) RQ)

Zk 1¢klaj Ty~ Ty F1(x) Np .
F(x) = : =< : ) Fj(x) =) x>,

(k) (k) (k)
N s S s
ijl ¢kn3311 xgz Ty

(k) (k)
k) s s (k) . . . ..
where x*" = z|" x,° ---x;* are monomials written in multi-index

notation and have total degree of at most mp.

Fny=span(B), B={z1' ---a7" : s; € No, s1+...4+s, <m}, N= <”+m>

n
(3)
Let ¢ be the index of x; in the grlex ordering, i.e. p,(x) = z;;
¢ =n+2—j. Then the application of K to g, reads
(Kgy)(x) = (F - Vo ) (x ZF ©e(x) = Fj(x) = Fryoo(x).
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Example

Hence K, = Fyi12-¢. If Ly = ®NK £, then also Lyg, = F}
(Fj(x) = Z]kvjl gbijs(k) € Fn). Hence, in the basis B we have

15
P2;
[LN]B(:,E):[(I)NKQE]BZ[FJ‘]B: , j:n+2—€, 522,...,?14-1.
PNpj
ON-—Np

In other words, the coordinates of F; are encoded in [Ly|g(:,n + 2 — j).

Convergence theory (Mauroy & Goncalves)

.1 ¢ 1 ¢
vl = i, ooVl o= 1, ool

and it follows that, for ¢ small enough,

1 1
[Ly)s ~ - log U = 7 log 0l 0y. (6)
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Koopman semigroup generator - data driven identification

The method (Mauroy and Gonsalves, 2018)

@ Compress Kt onto a suitable finite dimensional but rich enough
subspace Fy of F is computed. In a convenient basis B of Fy, this
compression is executed in the discrete least squares setting, yielding
the matrix representation Uy = [@NKffN]B € R "™ For example,

Uy = OT Oy, where Ox, Oy are the observables.
Q [Lylp~ [10g ‘I)Nlcpr Is llog[éNlefN]B = %log Un
Q Recall K=F-V=37", lax
@ Assume polynomial field, Fj(z) = Z | DX %5

Q@ [Lnls(:,0) = [Lnpds = [Fils = (¢1; d25 --- ONpj ON—NF)T,
where j=n+2—-¥¢, £=2,....,n+ 1.

The problem: Numerical stability issue in log Uy = log(O;—Oy)
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Matrix logarithm

For this scheme to work, Uyx must be nonsingular, otherwise log Uy does
not exist. Further, to have the primary value of the logarithm (as primary
matrix function, i.e. the same branch of the logarithm used in all Jordan
blocks), the matrix must not have any real negative eigenvalues. Only
under those conditions we can obtain real logarithm as primary function. )
(Theorem |
Let A be real nonsingular matrix. Then A has real logarithm if and only if

A has an even number of Jordan blocks of each size for every negative
eigenvalue.

Suppose that n x n complex A has no eigenvalue on (—00,0]. Then a
unique logarithm of A can be defined with eigenvalues in the strip

{z € C: —7m <(z) <7}. Itis called the principal logarithm and denoted
by log A. If A is real, then its principal logarithm is real as well.
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An Example

A good way to test robustness of a numerical algorithm is to push it to its
limits. In this case, we choose a difficult test case and let the dimensions of
the data matrices grow by increasing the total degree m of the polynomial
basis (and thus the dimension N) and matching that with increased K so
that K > N. The main goal is to provide a case study example.

Consider the Lorenz system

T —10 10 0 T 0
To | = 28 -1 0 2 | + | —x123 | . (7)
i‘g 0 0 —8/3 I3 12

The exact coefficients, ordered to match the grlex ordering of the
monomial basis are

1 T3 ) T x% Tox3 IE% r1T3 r1T2 x%
Fi: 0 0 1.0000e+1 —1.0000e+1 0 O O 0 0 0
F>: 0 0 —1.0000e+0 2.8000e+1 0 O O —1.0000e+0 0 0°
F3: 0 —2.6667e+0 0 0 0 0 O 0 1.0000e+0 0O
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An Example

To collect data, we ran simulations with 55 random initial conditions and
from each trajectory we randomly (independently) selected 55 points,
giving the total of K = 3025 pairs (xj,y%). The simulations were
performed in Matlab, using the ode45() solver in the time interval [0, 0.2]
with the time step ¢t = 1073. We computed the logarithm in Matlab in
two ways, as logm(pinv(Ox) * Oy) and as logm(Ox\Oy), 3 and
obtained nearly the same matrix. The computed approximations of the
coefficients of (7), with m =3, N =20 and mp = 2, are

1 T3 X9 1 x% Tox3 x% T1x3 T1T2 x%
Fli e—5 e—6 1.0000el —1.0000el e—7 e—6 e—7 e—6 e—6 e—T7
Fy: e—5 e—6 —1.0000e0 2.8000el e¢-6 e—5 e—9 —1.0001e0 e—6 e—6"
F3: e—4 —2.6667e0 —5.5¢—6 e—6 e—6 e—6 e—8 e—5 1.0000€0 e—6

30f course, using the pseudoinverse explicitly is not recommended. We use it here for
illustrative purposes only.
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)I/|IF (x

o 05 1 15 2 25 3 35 4

o 05 1 15 2 25 3 35 4
time domain

time domain

Errors in the approximations of F Errors in the approximations of F

logq €x using 150 x 27 samples.

for KM nd

D
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An Example

Now we use the data snapshots from the previous example, and increase
the total degree to m = 9, thus increasing N from N = 20 to N = 220.
Recall that K = 3025. Surprisingly, the computed coefficients are all
complex, and are completely off; the euclidean norms of the real and the
imaginary parts of the vector of the computed coefficients are O(10°).

Errors in the approximations of F Errors in the approximations of F

Figure: log,, €. Left panel: m = 3. Right panel: m = 9.
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logUy = lOg(OijOy) is difficult

@ Computing the matrix logarithm becomes difficult, in particular when
the dimensions increase (for better approximation).

@ Hence, the better the method theoretically, the more numerically
unstable it becomes for practical computation.

e Numerical implementation (available in the literature) fails even when
using state of the art tools (Matlab). Often it works only for small
time intervals with high resolution sampling.

@ However, the approach is appealing as it does not use the derivatives
and it is better suited for real applications where the sampling may
not be fine enough for sufficiently accurate approximations of the
derivatives.

Warning: Principal matrix logarithm is not defined for A

with nonpositive real eigenvalues. A non-principal matrix
logarithm is returned.
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logUy = log(OijOy) is difficult to compute

A closer inspection of the eigenvalues of Uy confirms that Uy has

problematic (real negative) eigenvalues.

s The eigenvalues of UN o5 %1072 .. around the origin
0.8 2
0.6 1.5
0.4 1
x
0.2 0.5 %
o x ol x x % %
0.2 05 3
X
-0.4 -1
0.6 1.5
08 2
4 25
-1 05 0 05 1 -1 05 0 05 1

(m =9, N =220.) Left panel. The (computed) eigenvalues of the matrix
representation of the computed compression Uy = pinv(Ox) * Oy of K.
The red cross at the origin indicates a cluster of eigenvalues. Right panel:
Zoomed neighborhood of the origin, showing many absolutely small
eigenvalues, quite a few of whom are negative real. Ox\Oy even worse.
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Even OKOY may be difficult to compute

Using pinv () is not advisable. What if we use direct LS solver (Matlab’s
backslash). One conspicuous difference is that instead of the cluster of
absolutely small eigenvalues of pinv(Ox) * Oy, Ox\Oy has zero
eigenvalue of multiplicity 56. This multiple zero eigenvalue is a
consequence of the sparsity structure of Ox\Oy-.

pinv(0, )"0, O_X\0_Y

o

0

50

o 50 100 150 200 0 50 100 150 200

Figure: The sparsity structure of pinv(Ox) * Oy and Ox\Oy. The backslash
operator uses the rank revealing (column pivoted) QR factorization and, by
truncation, returns sparse rank deficient solution. As a result, computation of the

matrix logarithm fails.
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Even O‘TX,OY may be difficult to compute

In this example we use monomials and the first basis vector is the constant.
Since K'py =1 1, [PnK{x, ]8l01]8 = Uner = e1 = 1 [py]p, which
clearly follows from the solution of the least squares problem. On the
other hand, the first column of Uy is computed as shown in the Figure.

The first column of U The first column of U

=10° ~<10°

4 5
3 4
3
2
2
1
ol |
ol L LI 4 ‘
Lo I/ o P W1 Y 1
T w1 1L
-1
-1
-2 -2
o] 50 100 150 200 o 50 100 150 200

Figure: (m =9.) Left: the first column of Uy, computed in Matlab as
pinv(Ox) * Oy. Its norm is ||[Un(:, 1)]|2 &= 5.7007e — 05. Right: the first column
of Ux = Ox\Oy, with norm ||[Ux(:,1)]|2 = 6.6258¢ — 05. The true value of
Un(:,1) should be e; = (1,0,...,0)T.
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logUy = log(OjfyOy) is difficult

o eigenvalues of the computed L ...z00med around the origin elgenvales of the computed L, oamed around the orign
a T T T T T T
%0 2
w0 Y
& 0 m
X x
M 150 xx 1) Xy
x x
X 100 oK " % xX
1000 X ox Kl o b xX
y ¢ N 4 T e
of » oo ' 0 w0l ol R SR SR TR IREs m:)g,g‘{;}
k 5 T 5 RS T
A00f g % o0y X
X x 100 % o e
x
-2000 : 160 o 1 oy
<X x X X x
Sk 200 X m
o0f A4 X
a0 I I I I I
35 3 25 2 45 4 05 0 05 WA 0 0 10 i 1 0 5 0 0

0t

(Lorenz, m =9.) The (computed) eigenvalues of the matrix Ly. Note
that some of them are at the boundary of the strip
{z€C : =7/t <J(2) < w/dt}, i.e. the eigenvalues of log Uy are at
the boundary of {z € C : —7 < J(z) < w}. The right panel shows te
distribution of the eigenvalues closer to the origin.
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Computing log Uy with preconditioning

If S is any nonsingular matrix, then

log(0%,0y) = Slog(S~1 (0% 0y)S)5™ ! = Slog((OxS) 0y S)S~1. (8)

Note that replacing O&Oy with the similar matrix S‘l(O}(Oy)S
corresponds to changing the basis for matrix representation of the
compressed Koopman operator. Clearly, the key is to compute the
preconditioned matrix Sfl(O;Oy)S without first computing O}Oy.
(Once we compute and store O&Oy explicitly in floating point arithmetic,
it may be then too late even for exact computation.)

The conditions on S are:

(i) it should facilitate more accurate computation of the argument
S~1(0%L0y)S = (0xS)10y S for the matrix logarithm;
(i) it should have preconditioning effect for computing the logarithm of
S=1(0% 0y)S;
(iii) the application of S and S~! should be numerically efficient.
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Simple diagonal preconditioning

Algorithm: [Ly| = Inf_Generator QRSC(Ox, Oy, T, N)

Input: Ox, Oy, T

1 § = diag(1/|0x (1)1

2: [@Qx, Rx] = qr(OxS){ QR factorization}

3 Uy = Q§(Oy5)§)}1 {Uy is similar to O;-Oy.}
4: EN :log(ﬁN)A R

5. Ly = (I/T)S(R;(ILNRx)S_l

Output: L = (1/T) log(Oi(Oy)

@ Simple to deploy.
@ It is a simple preconditioner for LS solvers used to compute O;Oy.
@ Useful in many cases but of limited use in more difficult cases.

@ Must be careful when scaling noisy data.
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Preconditioning using RR QR factorization

[Ln] = Inf_Generator QRCP(Ox, Oy, T, N)
Input: Ox, Oy, T
1: Reorder the snapshots by simultaneous row permutation of Ox and
Oy ; see the remark below.
2: [QX, Rx,IIx] = qr(OX){Rank revealing QR factorization}
3: UN = QX(OyHX)R {UN is similar to O Oy .}
. Ly = log(Uy) _
. Ly = (1/T)Ix(Ry Ly Rx)II
Output: L = (1/T) log(O&Oy)

(S

Remark on row pivoting in the QR factorization

For the numerical accuracy of the QR factorization, an additional row pivoting
may be needed to obtain the rows ordered so that their {., norms are decreasing,
see e.g. Cox and Higham (1998). If U s a permutation matrix that encodes the
row pivoting, then (WOx )" = OL W7, so that (WOx )T (¥Oy) = OL Oy . This
means that the row pivoting in the QR factorization is equivalent to a reordering
of the data. The column pivoting corresponds to reordering the basis’ functions.
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Test Example; m = 9 revisited

The eigenvalues of Uy and of exp(dt‘L) Errors in the approximations of F

0.3
0.2
0.1
0 ® g9 ?@
-0.1
0.2

03

0.8 0.85

Figure: Left panel: The (computed) eigenvalues of Uy € R?20%220 (), and the
eigenvalues of exp(6tLy) (o). The maximal relative difference between the
matching eigenvalues is computed as 8.1 - 1077, Here Uy is computed as

Un = IIR~'QT Oy without any truncation of R. The diagonal entries of R span,
in absolute value, the range between 1.9 - 10'% and 1.0 - 10'. This reveals the
condition number of Uy which is computed as 7.4 - 1016 by the Matlab function
cond(). Right panel: The values of log, € for 12000 randomly selected points
in the box [—20,20] x [—20,20] x [0, 50].
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Dual formulation (Mauroy and Gonsalves)

Large dimension N of Fp, number of snapshots K < .

% 1113
OX:(====)70Y:(::::),O&OY:(ii)(::::):(****)
* % % %k

log Uy does not exist

0or ol 3 't )00
OxO Oy Ok =(RRER)| se|ss)| 8 |=2ee)| 88 |=0vOk
(X (X X4

Dual formulation is based on the logarithm of Ux = OyO;(.

The matrix Uk is the matrix Rayleigh quotient of Uy with respect to the
range of OL, i.e. Ug = OXUNO& and UNOE( = OE(UK.
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Learning better subspaces

@ The dual formulation is based on a particular K-dimensional subspace
of Fn (the span of g,...,0y)-

@ The problem of numerical ill-conditioning of the compression of the
infinitesimal generator remains the key issue in both formulations.

We can setup a more general framework:

@ Seek other subspaces, and not necessarily of dimension K.

@ Both the subspace and its dimension N should be determined with
respect to the numerical conditioning of the matrix representations at
the finite sequence xy,...,Xxk.

o A basis of such a N-dimensional subspace F of Fy is written as
(1, 5) = (P1,---, 0n)S, where S is N x N selection

~

operator, i.e. matrix, of rank IN.
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Pruning the dictionary

[S, Z, 7,111, IIo] = Subspace_Selection(Ox, Sp, ]v, tol)

1: Reorder the snapshots: simultaneous row permutation of Ox, Oy;

2: Bring the selected functions forward to the leading ¢ positions: Qx = QxSy.
Implement Sj as a sequence of swaps to avoid excess data movement (in the
case of large dimensions).

3: [@Q1, R1,I0;] = qr(Ox(:,1: £)) {Rank revealing QR factorization with column
pivoting. Overwrite Ry = (RH, 0)T over the leading ¢ columns of Ox.}

4: DeterAmine theAnumericaI rank ¢ of R;11 and in the case Z< { set
R11(£+1:€,£+12£):0.

5 Ox(5,+1:N)=Qi0x(:,{+1:N).

6: [Q2, Ra,II5] = qr(OX(Z—&— 1: K,?—l— 1: N)). {Rank revealing QR
factorization with column pivoting. Ry = (Rag, Rao3) overwrites
Ox((+1:K,0+1:N)}

7: Determine the numerical rank 7 of Rgy. Se At ~: EA+ 7.

8: S = (So(Il; ®In—r)(I;® 2))(:, 1 : min(N, N));

Output: S
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Example (dual method)

The errors e,(;) for the intervals [0,0.1] and [0,0.18]; in the case of the time
interval [0, 0.19], the method broke down and the reconstructed values
were computed as NaN's.

Relative errors of the ion of F Relative errors of the reconstruction of F

g g
E E
4 3
10° 1
F1
‘GS . + F2
FJ
o’ 10
0 0.01 0.02 003 004 005 0.06 0.07 008 009 0.1 0 0.02 0.04 006 0.08 0.1 0.12 0.14 0.16 0.18
timestamps of the snapshots timestamps of the snapshots
. i F, (xp)— F o .
Figure: The errors e]i) = W Left panel: time interval [0,0.1]. Right
oo

panel: time interval [0, 0.18]. ¢ = 0.001.
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relative error

Figure: First row: The time stamps of xq, ..
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new, pruning+preconditioning

Precondi

sample trajectory with timestamps of the snapshots

timestamps of the snapshots

., X360, illustrated on the first out of

12 generated trajectories. Three consecutive snapshots, with time lag 0.01, are
taken at ten randomly selected and fixed time instances. Second row: The first

with 6t = 0.01, and the second plot for ¢ = 0.1.
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Other approaches: SINDY

Sparse ldentification of Nonlinear Dynamics (SINDy) is a popular method
for data driven identification. For details see
@ Steven L. Brunton, Joshua L. Proctor, and J. Nathan Kutz:
Discovering governing equations from data by sparse identification of
nonlinear dynamical systems, PNAS, vol. 113, no. 1, April 12, 2016,
pp. 3932-3937.

@ https://faculty.washington.edu/kutz/page26/

Read he above paper on SINDY and use the software toolbox to test it on
your favorite data set.
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