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This paper is a survey paper on stochastic epidemic models. A simple stochastic epidemic model is
defined and exact and asymptotic (relying on a large community) properties are presented. The purpose
of modelling is illustrated by studying effects of vaccination and also in terms of inference procedures for
important parameters, such as the basic reproduction number and the critical vaccination coverage. Sev-
eral generalizations towards realism, e.g. multitype and household epidemic models, are also presented,
as is a model for endemic diseases.
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1. Introduction

Early modelling contributions for infectious disease spread
were often for specific diseases. For example Bernoulli [14] aimed
at evaluating the effectiveness a certain technique of variolation
against smallpox, and Ross [37] modelled the transmission of ma-
laria. One of the first more general and rigorous studies was made
by Kermack and McKendrick [31]. Later important contributions
were for example by Bartlett [11] and Kendall [30], both also con-
sidering stochastic models.

Early models were often deterministic and the type of questions
that were addressed were for example: is it possible that there is a
big outbreak infecting a positive fraction of the community? How
many will get infected if the epidemic takes off? What are the ef-
fects of vaccinating a given community fraction prior to the arrival
of the disease? What is the endemic level? As problems were re-
solved, the simple models were generalised in several ways to-
wards making them more realistic. Some such extensions were
for example to allow for a community where there are different
types of individual, allowing for non-uniform mixing between indi-
viduals (i.e. infectious individuals are not equally likely to infect all
individuals), for example due to social or spatial aspects, and to al-
low seasonal variations.

Another generalisation of the initial simple deterministic epi-
demic model was to study stochastic epidemic models. A stochastic
model is of course preferable when studying a small community.
But, even when considering a large community, which determinis-
tic models primarily are aimed for, some additional questions can
ll rights reserved.
be raised when considering stochastic epidemic models. For exam-
ple: what is the probability of a major outbreak? and for models
describing an endemic situation: How long is the disease likely
to persist (with or without intervention)? Later stochastic models
have also shown to be advantageous when the contact structure
in the community contains small complete graphs; households
and other local social networks being common examples. Needless
to say, both deterministic and stochastic epidemic models have
their important roles to play. However, the focus in the present pa-
per is on stochastic epidemic models.

In the present paper we will study a fairly simple class of sto-
chastic epidemic models in a closed community of size n, and pres-
ent properties for such models. These are both small population
properties, and approximations assuming n to be large: early stage
behaviour of the epidemic, final epidemic size distribution and the
duration of the epidemic. The main large population approxima-
tion results can be summarized as follows. Assuming a large pop-
ulation, the early stages of the epidemic can be approximated by
a branching process, where ‘‘giving birth” corresponds to ‘‘infecting
someone” and ‘‘dying” corresponds to ‘‘recovering from the dis-
ease”. If the branching process/epidemic is supercritical it is possi-
ble that a large epidemic outbreak occurs (corresponding to the
branching process growing beyond all limits). If this happens, a
balance equation determines the final number of infected added
with some Gaussian fluctuation of smaller order. As regards to
the duration of a major outbreak the whole outbreak is divided
into three sections: the beginning (up to when a small fraction
have been infected), the main part (in which nearly all infections
take place), and the end (when the last small fraction of people
get infected), and these parts last for durations of order log n, 1
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and log n, respectively, thus making the total duration of order log
n.

We will also describe how the models can be applied to answer
epidemiological questions, for example how to estimate important
epidemiological parameters from outbreak data and how to study
effects of interventions such as vaccination. We then describe
many important extensions of stochastic epidemic models, aimed
at making them more realistic, and give some key references. The
paper is however not claiming to be a complete reference guide
to all important contributions in stochastic epidemic models.

In Section 2 we first define the deterministic general epidemic
model and derive some properties of it, then describe some cases
where a deterministic model is insufficient, and end by defining
what we call the standard stochastic SIR epidemic model. In Sec-
tion 3 we present properties of this stochastic model, both exact
for a small population, and approximations relying on a large com-
munity. In Section 4 we describe how the models can be used to
answers epidemiological questions, and in Section 5 we describe
a number of model generalizations and also a model for an ende-
mic infectious disease.

2. Stochastic epidemic models – why?

2.1. Deterministic epidemic models

One simple model, the deterministic general epidemic model
(e.g. [4, Ch. 6.2]), can be defined by two differential equations. It
is assumed that at any time point an individual is either suscepti-
ble (S), infected and infectious (I) or recovered and immune (R).
Such individuals are from now one called susceptibles, infectives
and recovered, respectively.

The model makes the following assumptions: only susceptible
individuals can get infected and, after having been infectious for
some time, an individual recovers and becomes completely im-
mune for the remainder of the study period. Finally, we assume
there are no births, deaths, immigration or emigration during the
study period; the community is said to be closed. A consequence
of the assumptions is that individuals can only make two moves:
from S to I and from I to R. For this reason the model is said to
be an SIR epidemic model. Models having no immunity (individu-
als that recover become susceptible immediately) are called SIS-
models, models having a latent state when infected, before becom-
ing infectious, are often called SEIR (‘‘E” for exposed but not infec-
tious), models where immunity wanes after some time are called
SIRS-models, and so forth. Models that allow for births/deaths/
immigration/emigration are referred to as having demography or
having a dynamic community. The focus in this paper is on SIR
models in a closed community; see however Section 5.3 for a mod-
el allowing births and deaths, and Section 5.4 for a discussion
about latency periods.

Let s(t), i(t) and r(t), respectively denote the community fractions
of susceptibles, infectives and recovered. Since these are fractions
and the community is closed we assume that sðtÞ þ iðtÞ þ rðtÞ ¼ 1
for all t P 0. From the assumptions mentioned above, together with
the assumption of the community being homogeneous and people
mixing homogeneously, the deterministic general epidemic model
is defined by the following set of differential equations:

s0ðtÞ ¼ �ksðtÞiðtÞ;
i0ðtÞ ¼ ksðtÞiðtÞ � ciðtÞ; ð1Þ
r0ðtÞ ¼ ciðtÞ:

These differential equations, together with the starting configura-
tion sð0Þ ¼ 1� e; ið0Þ ¼ e and rð0Þ ¼ 0 defines the model.

The initial fraction infectives e > 0 is often assumed to be small
as indicated by the notation e, it must however be positive – other-
wise all derivatives are constant and equal to 0. The reason for
assuming that rð0Þ ¼ 0 is that initially immune individuals play
no part in the dynamics so, up to a normalizing constant, initially
immune individuals may simply be ignored. Some authors choose
to let sð0Þ ¼ 1; ið0Þ ¼ e and rð0Þ ¼ 0. The use of ‘‘fraction” is then
somewhat misleading, but s(t) has the interpretation of being the
fraction still susceptible among the initially susceptibles at t. When
e is small (as we will nearly always assume) there is hardly any dif-
ference between the two parametrisations.

The term ksðtÞiðtÞ in Eq. (1) comes from the fact that suscepti-
bles must have contact with infectives in order to get infected, so
the assumption about uniform mixing (mass-action) implies that
infections occur at a rate proportional to s(t)i(t). This term is
non-linear which makes the solution of the system of differential
equations non-trivial. Finally, it is worth pointing out that since
sðtÞ þ iðtÞ þ rðtÞ ¼ 1 it is actually enough to keep track of two of
the quantities.

By studying the differential equations it is straightforward to
show that s(t) is monotonically decreasing down to sð1Þ say, and
r(t) is monotonically increasing up to rð1Þ. The differential equa-
tion for i(t) can be written as i0ðtÞ ¼ iðtÞðksðtÞ � cÞ. So, if ksð0Þ > c,
then i(t) initially increases, but eventually, when s(t) has decreased
enough, i(t) starts decreasing. If on the other hand ksð0Þ < c, then
i(t) decreases already from the start with the effect that little will
happen as t tends to infinity (in both cases it can be shown that
ið1Þ ¼ 0). This dichotomy is illustrated in Fig. 1 where we have
plotted ðsðtÞ; iðtÞ; rðtÞÞ. To the left this is done for the case k ¼ 1:5,
and c ¼ 1, and to the right for k ¼ 0:5 and c ¼ 1, both having initial
configuration ðsð0Þ; ið0Þ; rð0ÞÞ ¼ ð0:99;0:01;0Þ. In the left a substan-
tial fraction (58.3%) eventually get infected, whereas in the right
figure this fraction is negligible (only an additional 0.9% get in-
fected), we say that a major outbreak has occurred in the first case
and a minor outbreak occurred in the latter case. Since i(0) is as-
sumed small (and s(0) being close to 1), the critical value separat-
ing the two very different scenarios is R0 :¼ k=c ¼ 1.

The ratio k=c is hence of fundamental importance and can be
interpreted as the average number of new infections caused by
an infectious individual before recovering in an otherwise suscep-
tible population. The ratio is often referred to as the basic reproduc-
tion number (a term with its origin in demography – the average
number of individuals that one individual reproduces) and denoted
by R0 (e.g. [27]):

R0 ¼
k
c
: ð2Þ

When R0 > 1 the epidemic takes off and when R0 < 1 there is no
(big) epidemic. The differential Eq. (1) can also be used to obtain
a balance equation for the final state ðsð1Þ;0; rð1ÞÞ. By dividing
the first equation by the last we get ds=dr ¼ �R0s, which implies
that sðtÞ ¼ sð0Þe�R0rðtÞ. The fact that ið1Þ ¼ 0 implies that sð1Þ ¼
1� rð1Þ; at the end of the epidemic there are no infectives, only
susceptibles and recovered (immune). From this we get a balance
equation determining the fraction z ¼ rð1Þ that at the end of the
epidemic were infected:

1� z ¼ ð1� eÞe�R0z: ð3Þ

The balance equation can be interpreted as follows: in order not to
have been infected (which a fraction 1� z satisfy) you must belong
to those not initially infected (the first factor on the right) and you
must escape the infection pressure R0 caused by those z who were
infected. In Fig. 2 we have plotted the solution z as a function of R0,
when starting with a negligible fraction initially infectives. The
threshold value of 1 is clearly seen to be the value above which a
positive fraction gets infected.

The above results will also be useful when considering a related
stochastic epidemic model for a large community.
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Fig. 2. The final size of the epidemic as a function of R0 for the deterministic
epidemic model. The initial fraction of infectives is approximated to equal i0 ¼ 0.
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Fig. 1. Solution of the differential system defined in (1), s(t): �–, i(t): —, r(t): – –. Both figures have initial configuration sð0Þ ¼ 0:99; ið0Þ ¼ 0:01. To the left is the case with
k ¼ 1:5 and c ¼ 1 (so R0 ¼ 1:5), and to the right is the case k ¼ 0:5 and c ¼ 1 (so R0 ¼ 0:5).
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2.2. When are deterministic models insufficient?

In the previous subsection we analysed the deterministic gen-
eral epidemic model and showed that: if R0 < 1 there will only
be a small outbreak, and if R0 > 1 there will be a major outbreak
infecting a substantial fraction of the community, and how big
fraction is determined by Eq. (3). The results rely on that the com-
munity is homogeneous and that individuals mix uniformly with
each other.

Even if the assumption of a homogeneous uniformly mixing
community is accepted this model may not be suitable in some
cases. For example, if considering a small community like an epi-
demic outbreak in day-care center or a school it seems reasonable
to assume some uncertainty/randomness in the final number in-
fected. Also, even if R0 > 1 and the community is large but the out-
break is initiated by only one (or a few) initial infectives it should
be possible that, by chance, the epidemic never takes off. These two
arguments motivate the definition of a related stochastic epidemic
model. Later we will also show two other reasons motivating the
use of stochastic epidemic models: it enables parameter estimates
from disease outbreak data to be equipped with standard errors
and, when studying epidemic diseases, the question of disease
extinction is better suited to stochastic models.
2.3. A simple stochastic SIR epidemic model

We now define the standard stochastic SIR epidemic model. Just
like for the deterministic general epidemic model we assume a
closed homogeneous uniformly mixing community, and let n de-
note the size of the community.

Let S(t), I(t) and R(t), respectively denote the number of suscep-
tibles, infectives and recovered at time t, and suppose that at time
t ¼ 0 these numbers are given by Sð0Þ ¼ n�m; IðtÞ ¼ m and
Rð0Þ ¼ 0. The dynamics of the model are defined as follows. Infec-
tious individuals have ‘‘close contact” with other individuals ran-
domly in time at constant rate k (i.e. according to a Poisson
process with intensity k), and each such contact is with an individ-
ual selected uniformly at random from the population, all contacts
of different infectives being defined to be mutually independent.
By ‘‘close contact” is meant a contact close enough to result in
infection if the other individual is susceptible, if the other individ-
ual is not susceptible the contact has no effect. Any susceptible that
receives such a contact immediately becomes infected and infec-
tious and starts spreading the disease according to the same rules.
Infected individuals remain infectious for a random time I (the
infectious period) after which they stop being infectious, recover
and become immune to the disease. The infectious periods are de-
fined to be independent and identically distributed (also indepen-
dent of the contact processes) having distribution FI and mean
EðIÞ ¼ 1=c (to agree with the determinist model).

The epidemic starts at time t ¼ 0. As the epidemic evolves,
according to the rules above, new individuals (may) get infected
and eventually recover, up until the first time T when there are
no infectives in the community. Then no further individuals can
get infected implying that the epidemic stops. The final state of
the epidemic is described by the ultimate number R(T) infected (re-
call that IðTÞ ¼ 0, so SðTÞ ¼ n� RðTÞ make up the rest of the com-
munity). The final number of infected R(T) will consist of those m
who were initially infected plus those Z, say, who were infected
during the outbreak. Later we will study the exact and approxi-
mate distribution of Z ¼ RðTÞ �m.

Two choices of distributions for the infectious periods have (for
mathematical reasons) received special attention in the literature.
The first is where FI is exponentially distributed with intensity
parameter c, when the model is called the ‘‘stochastic general epi-
demic model” (e.g. [4, Ch. 6.3]). This model is Markovian and the
Markov process ðSðtÞ; IðtÞ;RðtÞÞ has jump-intensities closely related
to Eq. (1) of the deterministic general epidemic. The second choice
of infectious period is where I is non-random (and equal to 1=c).
This choice yields the continuous-time version of the Reed–Frost
model. An equivalent (for the final outcome) version is where it
is assumed that all infections take place exactly at the end of the
infectious period, and this model was initially defined by Reed
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and Frost 1928 in a series of lectures (unpublished). The Reed–
Frost model has the mathematical tractability that whether or
not an individual makes contact with two separate individuals
are independent events. This in turn implies that the Reed–Frost
model can be analysed by an Erd}os-Rényi graph (e.g. [15]) where
each pair of individuals has an edge between them independently,
with probability p ¼ 1� e�k=nc.

3. Model properties

We now explain some important properties of the standard sto-
chastic SIR epidemic model. In Section 3.1 we derive some exact re-
sults; the remaining subsections are devoted to approximations
assuming a large community.

3.1. Exact distribution

No matter what infectious period distribution FI is considered it
is not possible to derive an exact and simple closed form expres-
sions for the time dynamics of the epidemic. However, it is possible
to derive a recursive formula for the final size of the epidemic, Eq.
(8) below, and this formula, which we now explain, is based on the
fact that in order not get infected an individual must ‘‘escape”
infection from all those who did get infected during the outbreak.
This has been done in several ways (e.g. [36]), but our outline fol-
lows that of Ball [6] where more details can be found.

The derivation of the recursive formula for the final size uses
two main ideas: a Wald’s identity for the final size and the total
infection pressure, and the interchangeability of individuals mak-
ing it possible to express the probability of getting i additional
infections among the initially m � n in terms of getting i infected
in a smaller subset.

We start with the latter result. To this end, fix n and write
�k ¼ k=n. Let Z denote the final number infected excluding the initial
infectives, so the possible values for Z are 0; . . . ;n�m. Since indi-
viduals are interchangeable we can label the individuals according
to the order in which they get infected. The initial infectives are la-
belled �ðm� 1Þ; . . . ;0, then according to time of infection: 1; . . . ; Z,
and those who avoid infection according to any order
Z þ 1; . . . ;n�m. With this labelling we define the total infection
pressure A by

A ¼ �k
XZ

i¼�ðm�1Þ
Ii ð4Þ

i.e. the infection pressure, exerted on any individual, during the out-
break (sometimes also called the ‘‘total cost” of the epidemic).

Now, let pðn�mÞ
i ¼ PðZðn�mÞ ¼ iÞ denote the probability that ex-

actly i susceptibles get infected during the outbreak, explicitly
showing the number of initial susceptibles but suppressing the
dependence on the initial number of infectives m. Then, using
the interchangeability of individuals and reasoning in terms of sub-
sets among the initially susceptibles, it can be shown [6] that for
any i 6 k 6 n�m, it holds that

pðn�mÞ
i

n�m

i

� � ¼ pðkÞi

k

i

� �Eðe�ðn�m�kÞAðkÞ jZðkÞ ¼ iÞ; ð5Þ

the probability that i get infected among the initially m� n initially
susceptibles equals the product of the probability of having i in-
fected in a smaller subset of size k (k 6 m� n) multiplied by the
probability that no one in the remaining set gets infected condition-
ing on the first event. The notation AðkÞ and ZðkÞ are hence the total
pressure and final size starting with k susceptibles (and m
infectives).
We now show a Wald’s identity for ZðkÞ and AðkÞ. Let
/ðhÞ ¼ Eðe�hIÞ denote the Laplace transform of the infectious period
I. We then have the following Wald’s identity [6]:

E
e�hAðkÞ

ð/ðh�kÞÞmþZðkÞ

 !
¼ 1; h P 0: ð6Þ

The following steps proves the result

ð/ðh�kÞÞmþk ¼ E exp �h�k
Xk

i¼�ðm�1Þ
Ii

 !" #

¼ E exp �h AðkÞ þ �k
Xk

i¼ZðkÞþ1

Ii
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¼ E e�hAðkÞ ð/ðh�kÞk�ZðkÞ

h i
;

where the last identity follows because the k� ZðkÞ infectious peri-
ods IZðkÞþ1; . . . Ik, are mutually independent and also independent of
AðkÞ (which only depends on the first ZðkÞ infectious periods and
the contact processes of these individuals). Dividing both sides by
ð/ðh�kÞÞmþk gives the desired result.

If we use Wald’s identity with h ¼ n�m� k and condition on
the value of ZðkÞ we get

Xk

i¼0

E e�ðn�m�kÞAðkÞ jZðkÞ ¼ i
� �
ð/ððn�m� kÞ�kÞÞmþi

pðkÞi ¼ 1: ð7Þ

Using Eq. (5) in the equation above we get

Xk

i¼0

k

i

� �
pðn�mÞ

i

n�m

i

� �
ð/ððn�m� kÞ�kÞÞmþi

¼ 1:

Simplifying the equation, returning to k ¼ �kn and putting pðm�nÞ
k on

one side, we obtain the recursive formula for the final size distribu-
tion pðn�mÞ

k ; k ¼ 0; . . . ; n�m:

Exact final size distribution:

Pðn�mÞ
k ¼

n�m

k

� �
½/ððn�m� kÞk=nÞ�mþk

�
Xk�1

i¼0

n�m� i

k� i

� �
½/ððn�m� kÞk=nÞ�k�ipðn�mÞ

i : ð8Þ

Note that this is a recursive formula. For example, solving Eq. (8) for
k ¼ 0 and then for k ¼ 1 gives, after some algebra,

pðn�mÞ
0 ¼ ð/ðkÞÞm;

pðn�mÞ
1 ¼ n/ððn� 1Þk=nÞð½/ððn� 1Þk=nÞ�m � ½/ðkÞ�mÞ:

In order to compute pðn�mÞ
k using (8) it is hence necessary to sequen-

tially compute pðn�mÞ
0 up to pðn�mÞ

k�1 . As a consequence the formula is
not very enlightening and it may be numerically very unstable
when k (and hence n�m P k) is large. Even when it is possible
to compute pðn�mÞ

k using (8) with n �m being large, an approxima-
tive formula can be more informative. For this reason we devote
the rest of this section to the case where n �m is large.

3.2. Early stage approximation

We start by deriving an approximation for the early stages of an
outbreak, the approximation relies on the initial number of suscep-
tibles (n �m) being large. The key reason for having an approxima-
tion during the early stages of an outbreak when there are many
initial susceptibles is that it is then very unlikely that any of the
first number of infectious contacts happen to be with the same sus-
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ceptible individual. Conversely, it is very likely that all of the first
set of infectious contacts happen with distinct individuals. As a
consequence, the number of individuals that distinct infectives in-
fect (during the early stages) are independent and identically dis-
tributed random variables. This hence suggests that the epidemic
process may be approximated by a suitable branching process
(e.g. [24]). In this subsection we make the approximation more
precise and derive results for when a major outbreak (infecting a
non-negligible fraction) is possible, and if so, also what the proba-
bility of a major outbreak is; see [8], for more results on branching
processes of epidemics.

Assume that the initial number of infectives m P 1 is fixed and
that n �m is large (later we will take limits as n!1). One way of
constructing the epidemic is as follows. Label the n individuals
�ðm� 1Þ; . . . ;n�m, where the first m individuals refer to the initial
infectives and the remaining n�m refer to the initial susceptibles,
but otherwise arbitrary – note that here the labelling is not according
to order of infection. Let I�ðm�1Þ; . . . ; In�m be independent and identi-
cally distributed (i.i.d.) with distribution FI (the infectious periods),
v�ðm�1Þð�Þ; . . . ;vn�mð�Þ be i.i.d. Poisson processes all having constant
intensity k (the contact processes), and let U1; . . . ;Un�m be i.i.d. uni-
form random variables on the (1,1) interval (to be used for determin-
ing who is contacted when a close contact occurs). The epidemic
process is defined using these random variables as follows. Start at
t ¼ 0. The contact processes of the initial infectives
v�ðm�1Þð�Þ; . . . ;v0ð�Þ are ‘‘activated” and the infectious periods of
these individuals start. Time increases without anything happening
until the first time point t1 when either one of the activated contact
processes has an ‘‘event”, or one of the infectious periods
I�ðm�1Þ; . . . ; I0 stops. If the latter happens the corresponding contact
process is deactivated, that person’s infectious period stops and
the individual recovers and becomes immune. If the former happens
the corresponding individual has an infectious contact. Which per-
son that is contacted is determined by U1: the person being con-
tacted has index bnU1c � ðm� 1Þ, where b�c denotes the integer
part, implying that each individual i ði ¼ �ðm� 1Þ; . . . ;n�mÞ is se-
lected with equal probability 1=n. If the contacted person is still sus-
ceptible he/she gets infected and the corresponding infectious
period is started and the contact process activated, and if the con-
tacted person has already been infected nothing happens. Time then
moves on until either an infectious period is terminated or a contact
among the activated contact processes occur. Depending on what
happens an infectious period is terminated or a randomly selected
individual is contacted (and infected unless it has already been in-
fected). This goes on until the first (random) time point T when there
are no activated contact processes and all initiated infectious periods
have stopped. Since there are finite number of individuals, all having
finite infectious periods with probability 1, T will be finite with prob-
ability 1.

It is straightforward to check that this construction gives the
desired epidemic model: individuals have infectious periods dis-
tributed according to FI and while infectious each individual has
contacts with randomly selected individuals at rate k. Another nice
feature with this construction is that it is in fact possible to con-
struct a sequences of epidemics, indexed by the initial number of
infectives, as well as a homogeneous branching process with life-
lengths distributed according to FI and constant birth rate k, using
the same set of random variables. This can be used to couple the
whole sequence of epidemics and the limiting branching process
and to show that they agree up to some random point. We refer
to Ball [5] for a more detailed study about this – here we just give
the heuristics.

The branching process is simply constructed without the uni-
form numbers, so in the branching process a new individual is
‘‘born” whenever a contact occurs. The same applies to the epi-
demic (having n �m initially susceptible) with ‘‘born” replaced
by ‘‘infected” except when a contact in the epidemic is with an al-
ready infected individual. As a consequence, the epidemic and the
branching process agrees up until the first time point when a con-
tact is with an individual who has already been infected in the epi-
demic, denoted a ghost contact in Mollison [32]. Initially there are
n �m susceptible and m infected, so the probability that the first
contact is not a ghost contact equals (n �m)/n which is close to 1
when n is large. Given this, the second contact is also a non-ghost
contact with probability (n �m) � 1)/n, and so on; note the resem-
blance with the well-known birthday problem. From this it follows
that the branching process and epidemic agrees at least up until
the k’th contact (i.e. no ghost contact has occurred) with
probability

Pðno ghost among first k contactsÞ ¼ ðn�mÞk
nk

; ð9Þ

where rj :¼ rðr � 1Þ; . . . ; ðr � jþ 1Þ. Recalling that m and k are much
smaller than n and using the well-known approximation 1� e �
e�e, we get the following approximation for the probability in (9):

Pðno ghost among first k contactsÞ � e�
m
nþ���þ

mþk�1
nð Þ ¼ e�kðk�1þmÞ=2n:

For large n this probability is close to 1 whenever k ¼ oð
ffiffiffi
n
p
Þ. From

this it follows that, with large probability, the epidemic and the
branching process agrees at least up until there has been k contacts,
where k is small in relation to

ffiffiffi
n
p

.
The above heuristics (made precise in [5]) motivate that we

can approximate the epidemic with the branching process up un-
til k births have occurred. The advantage with this approximation
is that branching processes are well-studied (e.g. [24]). For in-
stance, our branching process (with life-length distribution I �
FI and constant birth rate k) has offspring distribution with mean
kEðIÞ ¼ k=c, a quantity previously denoted by R0ð¼ k=c). The
branching process is subcritical if R0 < 1, critical if R0 ¼ 1 and
supercritical if R0 > 1. The total progeny Z1, the number of indi-
viduals ever born in the branching process, is known to be finite
(the branching process goes extinct) with probability 1 if R0 6 1.
And, if R0 > 1 then Z1 has a finite part, and is infinite (grows be-
yond all limits) with a strictly positive probability q that can be
determined. In either case, the distribution of the finite part of
Z1 has a well-defined distribution depending on m, k and FI , cf.
Jagers [28, Ch. 2.11].

Due to the approximation outlined above, the branching process
and the epidemic coincide on the part of the sample space where
the branching process goes extinct (whether subcritical or not),
with arbitrary large probability if n is large enough. As a conse-
quence, we may approximate PðZn ¼ jÞ with PðZ1 ¼ jÞ for small
and moderate j, a distribution which is quite complicated except
for some special cases. To compute an expression for q ¼ PðZ1 ¼
1Þ is however easier. We compute the opposite, i.e. the probability
1� q that the branching process, starting with m individuals, goes
extinct. For this to happen all m initial lineages must go extinct. So if
q denotes the probability that one lineage goes extinct it follows
that 1� q ¼ qm. In order to obtain an expression for q we condition
on the number of births X the initial individual gives birth to before
dying. Given that X = j all these j offspring must have lineages that
go extinct, an event that happens with probability qj. It follows that
q must satisfy q ¼ EðqXÞ. The number X that an individual gives birth
to during the life-length I � FI of course depends on I. Given this
duration: I = y, the number of births is Poisson distributed with
mean parameter ky since contacts occur according to a Poisson
process having rate k. So, recalling that /ðsÞ ¼ Eðe�sIÞ denotes the
Laplace transform of the infectious period I, the following relation
must hence hold for q:

q ¼ EðqXÞ ¼ EðEðqX jIÞÞ ¼ Eðe�kIð1�qÞÞ ¼ /ðkð1� qÞÞ; ð10Þ
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where the third equality uses the Laplace transform of a Poisson
variable. It is in fact known (e.g. [28, p 9]) that q is the smallest solu-
tion to this equation.

Early stage approximation. To summarize, when n is large, the
initial phase of the epidemic can be approximated by a homoge-
neous branching process with birth rate k and life-distribution
I � FI having Laplace transform /ðsÞ. If R0 :¼ kEðIÞ ¼ k=c 6 1 the fi-
nal size of the epidemic is bounded in probability, whereas if
R0 > 1 it is not. The approximation further tells us that when
R0 > 1 the epidemic will be ‘‘minor” (bounded) with a probability
qm and ‘‘major” (unbounded) with probability q ¼ 1� qm, where
q is the smallest solution to (10). The distribution of outbreak sizes
in the ‘‘minor” case can also be determined from branching process
theory.

We end this section with an example illustrating our results. In
the section to follow we return to the situation where the branch-
ing process grows beyond all limits, corresponding to a major out-
break in the epidemic.

Example. Suppose the epidemic is initiated with m ¼ 1 individual
and that there are n� 1 ¼ 999 initial susceptibles. Further we treat
the case where the infectious period is FI ¼ ExpðcÞ, the exponential
distribution with rate parameter c (i.e. the general stochastic
epidemic). When I � ExpðcÞ then /ðsÞ ¼ Eðe�sIÞ ¼ c=ðcþ sÞ. This
implies that q is the smallest solution to q ¼ c=ðcþ kð1� qÞÞ.
Solving this quadratic equation shows that q ¼ c=k ¼ 1=R0 if R0 > 1
and otherwise q ¼ 1. This means that there will be a minor
epidemic outbreak with probability 1=R0, and a major outbreak
with the remaining probability 1� 1=R0. Further, it can be shown
that for this particular infectious period/life-length distribution
(computations omitted) the outbreak probabilities are well-
approximated by the corresponding total progeny distribution

PðZn ¼ jÞ �
2j

j

� �
1

jþ 1
1

1þ R0

� �jþ1 R0

1þ R0

� �j

; j ¼ 0;1; . . . :

Note that for fixed k and c (and hence R0 ¼ k=c) both q and PðZn ¼ jÞ
can be computed numerically. However, the approximation for
PðZn ¼ jÞ relies on that not too many individuals have been infected
– then the branching process approximation breaks down – so it
should only be used for j up to around 20

ffiffiffi
n
p
� 31:6

� �
.

3.3. Final size approximation

In the previous subsection it was shown that when n is large the
epidemic is well-approximated by a branching process up until
approximately

ffiffiffi
n
p

individuals have been born. If the branching
process goes extinct this will never happen when n is large enough,
but when the branching process grows beyond all limits (hence
implicitly assuming that R0 > 1) the approximation breaks down.
The question is of course what happens with the epidemic in this
case; something which we now briefly outline. The outline is based
on results in Scalia-Tomba [38,39] which uses the elegant Sellke
construction [40].

When we are only interested in the final number infected we
may introduce a different time scale as follows. Each initially sus-
ceptible individual is given a so-called resistance having Expð1Þ dis-
tribution. In the first time step we let each initially infective i
‘‘throw out” its infection pressure kIi (defined as the contact rate
multiplied by the length of the infectious period) uniformly in
the community (so kIi=n on each individual). Those individuals
with resistances smaller than this infection pressure then become
infected and in turn throw out their infection pressure uniformly,
thus increasing the accumulated infection pressure. This procedure
goes on until the first time step when there are no new infections;
then the epidemic stops. It can be shown that this gives the correct
final size distribution – the only difference with this representation
lies in the order and time at which individuals get infected. The
advantage with this construction (the Sellke construction) is that,
at each time step we add a random number of i.i.d. random vari-
ables (the infection pressures), and this is done until the first time
point the accumulated sum no longer exceeds another sum of ran-
dom variables (the resistances). Scalia-Tomba [38,39] uses this, to-
gether with an embedding argument, to show that the final size
distribution coincides with that of the crossing time of a stochastic
process with a straight line. Because the random process is made
up of i.i.d. contributions it obeys a law of large number and central
limit theorem.

The above description is perhaps not very enlightening, but to
show the complete result is quite technical. Something which is
easier to explain is an argument for the expression of the limiting
final fraction infected z in the case when there is a major outbreak.
We do this by deriving a balance equation for z. Neglecting the dif-
ference between n and n �m) (remember that n is large and m
fixed), we have that nz approximates the final number infected.
Further, the probability of escaping infection from one infected
individual i (with infectious period Ii) equals Eðe�kIi=nÞ. We then
have the following set of approximations

1� z¼ fraction not getting infected

� probability of not getting infected

� probability of escaping infection from all nz getting infected

� Eðe�kI1=nÞ � � �Eðe�kInz=nÞ ¼ E e
�k

n

Pzn

i¼1

Ii

0@ 1A� e�kzEðIÞ ¼ e�R0z;

where the last approximation is simply the law of large numbers.
The limiting fraction infected in case there is a major outbreak
should hence be a solution to the equation

1� z ¼ e�R0z: ð11Þ

Note that this is the same equation as for the deterministic model
(3), except that we now assume a negligible fraction initially in-
fected (i.e. e ¼ 0). It is not hard to show that this equation always
has the solution z ¼ 0 (corresponding to a minor outbreak) and,
when R0 > 1, there is another unique solution z� between 0 and 1
(corresponding to a major outbreak). In Fig. 2 of Section 2.3, the
largest solution z� is plotted as a function of R0.

The above heuristics indicate that the final fraction infected Z=n
will lie close to either 0 or else, if R0 > 1, close to z�. This can in fact
be shown rigorously. Moreover, a central limit theorem can be
shown for the case where there is a major outbreak. The following
theorem summarizes the result for both a minor and a major out-
break (see [2], Ch. 4, and references therein, e.g. von Bahr and Mar-
tin-Löf, 1980).

Threshold theorem for the final size of the epidemic: Con-
sider the standard epidemic model with m (fixed) initial infectives
and n �m initial susceptibles. If R0 6 1, then Zn :¼ Zn=n! 0 in
probability as n!1. On the other hand, if R0 > 1, then Zn ! f in
distribution, where f is a two point distribution defined by
Pðf ¼ 0Þ ¼ qm and Pðf ¼ z�Þ ¼ 1� qm, where q was defined in the
previous subsection and z� is the unique strictly positive solution
to (11). Finally, on the part of the sample space where Zn ! z�

we have that

ffiffiffi
n
p

Zn � z�
� �

! N 0;
z�ð1� z�Þð1þ r2ð1� z�ÞR2

0Þ
ð1� ð1� z�ÞR0Þ2

 !
; ð12Þ

where the second parameter in the normal distribution denotes the
variance, in which r2 ¼ VðIÞ=ðEðIÞÞ2 is the squared coefficient of var-
iation of the infectious period.
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To illustrate our results we have simulated an epidemic in a
community of n ¼ 1000 individuals, starting with m ¼ 1 initially
infective, and having k ¼ 1:5 and I � Expð1Þ. Before looking at the
simulations we compute the theoretical values. For our model
and parameter choices we have R0 ¼ kEðIÞ ¼ 1:5 and r2 ¼ VðIÞ=
ðEðIÞÞ2 ¼ 1=1 ¼ 1. Using results from the previous subsection we
conclude that the probability of a minor outbreak equals
q1 ¼ 1=R0 � 0:667, and using (11) we find that z� � 0:583, so the
mean of Zn is nz� � 583. The standard deviation of Zn equalsffiffiffi

n
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z�ð1� z�Þð1þ r2ð1� z�ÞR2
0Þ

q
=ð1� ð1� z�ÞR0Þ � 58:0.

To see how our limiting results apply to this particular finite
case we have simulated 10,000 such epidemics. In Fig. 3 we show
the results. In the left figure we show a histogram for all outbreak
sizes and to the right we zoom in on the simulations resulting in a
major outbreak (somewhat arbitrarily defined as having more than
300 infected). The conclusion is that the limiting results apply
quite well with the simulations. First, the proportion of simulations
resulting in minor outbreaks equals 0.678, which is to be compared
with the theoretical value of 2=3 � 0:667 (as seen from the figure
there is a clear distinction between minor and major outbreaks –
there are hardly no simulations resulting in sizes between 100
and 320 infected). Further, by simple examination it looks as if
the remaining part (the major outbreaks in the right figure) have
a distribution close to the normal distribution. The empirical mean
and standard deviation of the 322 simulated major outbreaks were
580.5 and 59.5, respectively, numbers which agree quite well with
the theoretically obtained numbers 583 and 58.0. Of course the fit
is not perfect, the empirical distribution seems slightly skew – the
fit is worse if a smaller community is considered and better in a
large population.

3.4. Duration of epidemic

In the previous sections we have studied the questions of main
interest: can an outbreak occur, and if so, with what probability
and how large will these major outbreaks be. Another question
of interest could be to understand how long it will take for the epi-
demic to peak and eventually to die out. Below we sketch some re-
sults in this direction. For details we refer to Barbour [10].

If there is only a minor outbreak (which happens with certainty
if R0 6 1, but also with positive probability qm if R0 > 1), then the
disease will disappear after a short time. We hence focus on the
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Fig. 3. Empirical distribution of the final size from 10,000 simulations of the general stoc
infective. In the left figure all simulations are shown and to the right only the major ou
case where we have a major outbreak (hence assuming R0 > 1)
and study how the time to extinction T ¼ Tn depends on the pop-
ulation size n.

It was seen that the initial stages of the epidemic could be
approximated by a supercritical branching process up until
approximately

ffiffiffi
n
p

individuals have been infected. Since a branch-
ing process has exponential growth, this will take a time of order
log n. Once a large number of individuals have been infected, the
epidemic process may be approximated by the deterministic coun-
ter-part defined in (1). The time for this process, starting in an arbi-
trary small fraction initially infectives i0 to first grow and the
decrease down to some small value iðtÞ ¼ e has a duration which
does not grow with n. The last part of the epidemic is where close
to a fraction z� have already been infected. The epidemic then be-
haves like another branching process, this time having mean off-
spring R0ð1� z�Þ. It can be shown that this number is smaller
than 1; otherwise the epidemic would not have ‘‘died out” at this
stage. It follows that the end of the epidemic can be approximated
by a subcritical branching process starting with ne infectives. The
duration for such a process to go extinct is also of order log n.

To summarize, we have made it plausible that the duration of
the epidemic Tn, assuming a major outbreak, has a distribution of
the form

Tn ¼ c1 log nþ c2 þ c3 log nþ Z; ð13Þ

where c1; c2; c3 are constants and Z is a random variable, all
depending on the model parameters. To show this result is quite
technical, see Barbour [10].
4. Applications

There are many applications to modelling of infectious disease
spread. Some diseases that have received much modelling atten-
tion over the last decades are for example HIV, Small-pox (the
threat for terrorist attacks), foot and mouth disease, SARS and most
recently the new (H1N1) influenza. Below we describe some spe-
cific methodological questions that are often addressed.

4.1. Vaccination and other interventions

One reason for modelling infectious disease spread is to under-
stand how an outbreak can be prevented. This can be achieved in
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several different ways. When it comes to new emerging severe
infections like SARS, drastic measures like isolation, closing of
schools and travel restrictions are often put into place. All these
measures aim at reducing contact rates, i.e. to reduce R0. The effect
of a specific preventive measure depends on the particular disease
and also on the community under consideration.

A somewhat different preventive measure is vaccination. This
does not change R0, but instead it reduces the pool of susceptibles
by making individuals immune. We now describe how to model
this and study its effect on the outbreak.

Suppose a vaccine is available prior to the arrival of the disease,
and assume a fraction v are vaccinated. Suppose further that the
vaccine is perfect in the sense that all vaccinated individuals get
completely immune (see Section 5.4 for extensions).

This will have one effect on the model: the number of initially
susceptibles is reduced from n �m to nð1� vÞ �m ¼: n0 �m.
Other than that the model is the same. However, the contact rate
with a given individual still equals k=n, so if we want to use n0 in-
stead we get k=n ¼ kð1� vÞ=n0 ¼: k0=n0. We can hence compute the
exact final size distribution using results in Section 3.1, for exam-
ple Eq. (8) with n0 ¼ nð1� vÞ instead of n and k0 ¼ kð1� vÞ instead
of k. Similarly, the early stages of the epidemic can be approxi-
mated by a branching process with birth rate k0 and mean
life-length 1=c. It follows that the reproduction number after a
fraction v has been vaccinated, denoted Rv , satisfies

Rv ¼ k0=c ¼ kð1� vÞ=c ¼ ð1� vÞR0: ð14Þ

From the results of Section 3.2 we hence conclude that if Rv 6 1
there will be no major outbreak, whereas if Rv > 1 there will be a
major outbreak with probability 1� ðq0Þm, where q0 is the smallest
solution to Eq. (10), but with k0 ¼ kð1� vÞ instead of k.

From Section 3.3 we also conclude that if Rv > 1, the size of a
major outbreak will be approximately n0z0�, where z0� is the unique
positive solution to Eq. (11) with Rv replacing R0. The central limit
theorem also applies, so in the case where there is a major out-
break the total number of infected is normally distributed as stated
in (12), but with n0; k0 and Rv instead of n, k and R0.

The most important of these results from an applied point of
view is (14), i.e. that the reproduction number after having vacci-
nated a fraction v in the community satisfies Rv ¼ R0ð1� vÞ, and
the fact that a major outbreak is impossible if Rv 6 1. In terms of
v this is equivalent to v P 1� 1=R0 if R0 > 1 (otherwise v ¼ 0).
The critical vaccination coverage, denoted vC and defined as the
fraction necessary to vaccinate in order to surely prevent a major
outbreak, hence satisfies

vC ¼ 1� 1
R0
; if R0 > 1; otherwise vC ¼ 0: ð15Þ

For the numerical example given above, with R0 ¼ 1:5 it hence fol-
lows that vC ¼ 1� 1=1:5 � 0:33. This means that it is enough to
vaccinate 33% of the community to prevent a major outbreak. By
vaccinating only 33% the whole community is hence protected, a
phenomenon called herd immunity.

4.2. Estimation

So far we have been interested in (stochastic) modelling, i.e. gi-
ven a model and its parameters we have studied properties of the
epidemic. It was shown that the most important parameter is the
basic reproduction number R0, defined as the average number of
individuals a (typical) infective infects during the early stages of
the outbreak, where we by ‘‘early stages” mean that few individu-
als have been infected so the vast majority of the community is still
susceptible. When aiming at preventing an outbreak, another
important quantity is the critical vaccination coverage vC defined
in (15).
In a particular situation it is hence important to know what
these parameters are. We now describe how to estimate R0 and
vC from observing one epidemic outbreak. One advantage of sto-
chastic modelling is that it not only enables point estimates, but
also standard errors as is now illustrated.

Suppose a major epidemic outbreak occurs in a community of n
individuals, n �m being susceptible and a small number m being
externally infected. Let zn denote the number of individuals that
were infected during the outbreak (excluding the m index cases),
and let �zn ¼ zn=n denote the corresponding fraction. We want to
estimate R0 (and vC) based on this information. From (11) we know
that R0 satisfies

R0 ¼
� logð1� z�Þ

z�
:

We also know that, in case of a major outbreak, Zn is asymptotically
normally distributed around z�, with standard deviationffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z�ð1� z�Þð1þ r2ð1� z�ÞR2
0Þ

q
ffiffiffi
n
p
ð1� ð1� z�ÞR0Þ

:

From this it follows that a consistent and asymptotically normally
distributed estimator of R0 is given by

bR0 ¼
� logð1� �znÞ

�zn
ð16Þ

The standard deviation of the estimator can be obtained using the del-
ta method (e.g. [19]). Let f ðzÞ ¼ � logð1� zÞ=z, then f 0ðz�Þ ¼ 1=
ðz�ð1� z�ÞÞ � R0=z�. It follows that the asymptotic variance of bR0

hence equals

VðbR0Þ � ðf 0ðz�ÞÞ2VðZnÞ

� 1
z�ð1� z�Þ �

R0

z�

� �2 z�ð1� z�Þð1þ r2ð1� z�ÞR2
0Þ

nð1� ð1� z�ÞR0Þ2

¼ 1þ r2ð1� z�ÞR2
0

nz�ð1� z�Þ :

A standard error for bR0 is obtained by taking the square root of this
and replacing R0 by bR0 and z� by �zn:

s:e:ðbR0Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2ð1� �znÞbR2

0

n�znð1� �znÞ

s
: ð17Þ

The standard error above still contains one unknown quantity:
r2 ¼ VðIÞ=ðEðIÞÞ2, the squared coefficient of variation of the infec-
tious period. From final size data it is impossible to infer anything
about the distribution of the infectious period. The only way to pro-
ceed, unless some prior information is available, is to replace it by
some conservative upper bound, for example r2 ¼ 1.

Estimation of the critical vaccination vC is also straightforward.
Since vC is defined by (15) the natural estimator for vC is

v̂C ¼ 1� 1bR0

¼ 1�
�zn

� logð1� �znÞ
: ð18Þ

Just like bR0 the estimator v̂C is consistent and asymptotically nor-
mally distributed around the true value vC . The asymptotic variance
can also be obtained using the delta method. We have
gðxÞ ¼ 1� 1=x, which hence yields g0ðR0Þ ¼ 1=R2

0. The asymptotic
variance of v̂C then equals VðbR0Þ=R4

0. A standard error for v̂C is given
by

s:e:ðv̂CÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2ð1� �znÞbR2

0

nbR4
0
�znð1� �znÞ

vuut : ð19Þ

As a numerical example we assume that zn ¼ 583 individuals in a
community of n ¼ 1000 were infected during an outbreak. Using
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(16) and (17) we get bR0 ¼ 1:50 with standard error s:e:ðbR0Þ ¼ 0:09
using the conservative upper bound r2 ¼ 1. As for the critical vacci-
nation coverage the corresponding estimate and standard error are
given by v̂C ¼ 0:333 and s:e:ðv̂CÞ ¼ 0:04. Both estimators are asymp-
totically normally distributed.

In the inference procedure presented above we only made use of
the final number infected. If the epidemic process ðSðtÞ; IðtÞ;RðtÞÞ is
observed continuously we have more detailed information and we
should hence be able to make more precise inference. This is true
although the gain in precision is moderate. We omit this type of
inference (involving martingales using counting process theory)
and refer to Andersson and Britton [2, Ch. 9]. An alternative approach
for making inference in epidemic models is to apply Bayesian infer-
ence using Markov chain Monte Carlo (MCMC) methods. The basic
idea is that the likelihood is often more tractable had some more de-
tailed data been available, and the method treats such data as ‘‘latent
variables” which the Markov chain explores, thus giving a posterior
distribution of the model parameters as well as the latent variables.
This method has been shown successful in more complex situations
when more ‘‘explicit” methods are not easily attainable (e.g.
[35,17]).
5. Extensions

The standard stochastic epidemic model of Section 2.3 was de-
fined as a stochastic version of the deterministic general epidemic
model of Section 2.1. The population is finite, and infectious indi-
viduals make contacts randomly in time according to a Poisson
process with intensity k, each time the person being contacted is
chosen uniformly at random from the population, and the length
of the infectious period I is a random variable with distribution I.
Despite these more realistic model features, the model still con-
tains several simplifying assumptions. In the present section we
touch upon a number of extensions that have been analysed in
the literature. Most of these extensions do not alter the qualitative
behaviour of the spread of infection, but they do change quantita-
tive properties.
5.1. Individual heterogeneity: multitype models

One assumption in the standard stochastic epidemic model is
that all individuals are similar, except the possibility that their
infectious periods have different lengths. In reality most popula-
tions are heterogeneous, for example with respect to susceptibility,
the degree of social activity and/or how infectious they become if
infected. The heterogeneities may be unknown to some extent,
but quite often it is possible to group individuals into different
types of individual, where individuals of the same type have
(nearly) identical behaviour. This separation into different types
might for example be different age groups, gender, previous expe-
rience of the disease (giving partial immunity) etc.

In such situations it is common to define a multitype epidemic
model as follows. Suppose there are k types of individuals, labelled
1; . . . ; k, and that the community fractions of the different types
equal p1; . . . ;pk. Type i individuals have i.i.d. infectious periods Ii

with distribution Fi having mean 1=ci. During the infectious period,
an i-individual has close contacts with a given j-individual at rate
kij=n; i; j ¼ 1; . . . ;n.

If the population, i.e. n, is large, the epidemic may be approxi-
mated by a multitype branching process. The mean offspring
matrix has elements ðmijÞ, where mij ¼ kijpj=ci. The basic reproduc-
tion number R0 is the largest eigenvalue of the mean offspring ma-
trix ðmijÞ. The case where mij ¼ aibjpj, referred to as proportionate
(or separable) mixing, cf. Diekmann and Heesterbeek [21, Ch. 5.3],
has received special attention for two reasons. First, this implies
that ai can be interpreted as the (average) infectivity of i-individu-
als and bj as the (average) susceptibility of j-individuals. Secondly,
the basic reproduction then has the simpler form R0 ¼

P
iaibipi.

As for the homogeneous case only minor outbreaks are possible
if R0 6 1 whereas a large outbreak may occur if R0 > 1. There is a
related threshold limit theorem stating what the probability of a
major outbreak is, and a central limit theorem for the final number
of infected of the different types in case the epidemic takes off. The
expressions are more involved as are the proofs giving the desired
results, so we refer to Ball and Clancy [7] for details.

5.2. Mixing heterogeneity: household and network models

Perhaps even more important than allowing individuals to be
different in terms of susceptibility and infectivity is to allow for
non-uniform mixing, meaning that an individual has different
(average) contacts rates with different individuals. The multitype
epidemic model of the previous section may include some such
non-uniform mixing in the sense that contacts with different types
of individuals may be different. However, an assumption of the
contact rates between specific pairs of individuals in the multitype
model is that they are all of order 1/n. In many real-life situations
individuals tend to have a few other individuals with which they
mix at a much higher rate. Epidemic models taking such type of
mixing behaviour into account are often referred to as two-level
or multilevel mixing epidemic models. The two most common
examples are household epidemics and network epidemics.

In a household epidemic individuals are grouped into small
groups (households) and it is assumed that the contact rate be-
tween pairs of individuals of the same household equals kH and
contact rates between pairs of individuals of different households
equals kG=n (and all individuals have i.i.d. infectious periods I with
mean 1=c). Large population properties for this model were first
rigorously analysed by Ball et al. [9]. There they show that it is nec-
essary take into account the random distribution of the total num-
ber of infected in a household outbreak. During the initial phase of
an outbreak, external infections are nearly always with not yet in-
fected households, so by treating households as ‘‘super-individu-
als” the initial phase of the epidemic may be approximated by a
multitype branching process, where the different types refer to
household size. The basic reproduction number (now having a
more complicated definition but still having the value of 1 as its
threshold) equals R0 ¼ ðk=cÞlH , where lH is the mean size of a
household outbreak where the size of the selected household has
a size biased distribution due to the fact that larger households
are more likely to be externally infected as more individuals reside
in them.

As before, major outbreaks are only possible if R0 > 1, and when
this happens Ball et al. [9] show a law of large numbers for the
number of households of different sizes and outbreak sizes using
a balance equation. With some additional effort they also derive
a central limit theorem for the final size in case of a major
outbreak.

Another type of epidemic model having a local structure with
much higher (or all) contact rates between ‘‘neighbours” is called
a network epidemic model (e.g. [33]). The network, an undi-
rected graph, specifies the social structure in the community
upon which an epidemic spreads. Quite often the network is as-
sumed to be random but having some pre-specified properties.
These could for example be the degree distribution (the distribu-
tion of the number of neighbours), the clustering coefficient
(specifying how frequent short cycles are present), and the de-
gree correlation of randomly selected neighbours. Given such a
network and a stochastic epidemic model ‘‘on” the network, it
is of interest to see if a major outbreak can occur, and if so what
is its probability and what is the size of such an outbreak. There
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are still many open problems to be solved in this area (in partic-
ular when considering a dynamic network) but see for example
Britton et al. [16] for some results. In general, the social struc-
ture in the community is more influential for diseases which
are not highly infectious. One such class of diseases is sexually
transmitted infections – in this case an edge between two indi-
viduals in the network corresponds to a sexual relation.
Fig. 4. Jump rates for the SIR epidemic model with demography. All jumps are one
unit of length except the jump to the north west in which s decreases and i
increases by one unit (due to someone getting infected).
5.3. Models for endemicity

The focus of the present paper has been on SIR epidemic models
for a closed population, i.e. not allowing deaths or new individuals
to enter the community during the outbreak. This is of course an
approximation of real-life but, if focus is on short-term behaviour
it is sensible to make such an approximation. Some infectious dis-
eases are endemic in many countries, and a question of interest
(e.g. [1]) for such diseases is to understand their dynamics; to
understand why certain diseases are endemic and others not, and
why a given disease may be endemic in one country but not in an-
other, and it is of course also of interest to determine which pre-
ventive measures have the potential of eradicating the disease.
We now give a brief outline to this problem area and refer the
reader to the literature for more details; e.g. Anderson and May
[1, pp. 128] and Nåsell [34], and, when studying measles in partic-
ular, e.g. Conlan and Grenfell [18]. We now define the Markovian
SIR epidemic model with demography [34].

The population dynamics are very simple: new (susceptible)
individuals enter the population according to the time points of a
homogeneous Poisson process at rate nl, and each individuals lives
for an exponentially distributed time with mean 1=l. In words,
there is a steady and constant influx of susceptibles at rate ln
and each individuals dies at rate l, so (in the absence of disease)
the population size will fluctuate around the equilibrium state n,
which hence can be interpreted as ‘‘population size”.

The disease dynamics are just like for the Markovian version of
the standard stochastic epidemic model: an infectious individual
has close contacts with each other individual at rate k=n: if such
a contact is with a susceptible individual this individual gets in-
fected and infectious immediately, and each infectious individual
recovers at rate c and becomes immune for the rest of its life. Each
individual dies at rate l irrespective of their infection status. The
epidemic process fSðtÞ; IðtÞ;RðtÞ; t P 0g is initiated by ðSð0Þ; Ið0Þ;
Rð0ÞÞ ¼ ðs0; i0; r0Þ, where, as before, we assume that i0 > 0. In
Fig. 4 the various jump rates of the model are given in the (s, i)-
plane. As before it is enough to keep track of the number of suscep-
tibles and infectives, since recovered and immune individuals play
no further role in the disease dynamics. A question of interest is to
study properties of this model when n is large; we do this by first
studying the corresponding deterministic system defined by the
differential equations:

s0ðtÞ ¼ l� ksðtÞiðtÞ � lsðtÞ;
i0ðtÞ ¼ ksðtÞiðtÞ � ciðtÞ � liðtÞ; ð20Þ
r0ðtÞ ¼ ciðtÞ � lrðtÞ:

By equating all derivatives in (20) to 0 we get the equilibrium
state(s). It is straightforward to show that ðsðtÞ; iðtÞ; rðtÞÞ ¼ ð1;0;0Þ,
the disease free state, is always a point of equilibrium. The basic
reproduction number R0, defined as the expected number of indi-
viduals a typical individual infects during the early stages of an out-
break, equals k=ðcþ lÞ since now there are two possible reasons for
leaving the infectious state: recovering and dying. Additional to the
disease free equilibrium (which is stable if R0 6 1 and unstable
otherwise) there is another stable equilibrium whenever R0 > 1:
ðsðtÞ; iðtÞ; rðtÞÞ ¼ ðŝ; î; r̂Þ ¼ 1
R0
;

R0 � 1
R0=d

; 1� 1=dþ R0 � 1
R0=d

� �
; ð21Þ

where d ¼ l=ðcþ lÞ is the (small) average fraction of a life that an
individual is infectious. This state is called the endemic equilibrium (̂i
being the endemic level).

For the stochastic counter-part it is possible to reach the state
IðtÞ ¼ 0 from any other given state in finite time with positive
probability. This observation together with the fact that the state
IðtÞ ¼ 0 is absorbing – once the disease disappears it can never re-
turn – makes all other states transient. As a consequence there is
only one stationary equilibrium: the disease free state in which
all individuals (fluctuating around the number n) are susceptible.
However, when R0 > 1 and n is large there is a drift of (S(t), I(t),
R(t)) towards the endemic level ðnŝ; n̂i;nr̂Þ. So, even though the dis-
ease eventually will go extinct, this may take a long time, and in
the mean time the epidemic process will fluctuate around the en-
demic level. This type of behaviour is known as quasi-stationarity
(e.g. [22]). Questions of interest are for example, given the popula-
tion size n and the parameters k; c and l (or equivalently l; R0

and d) how long will it take for the disease to go extinct? Or,
phrased in another way, how big must the population be for a gi-
ven disease to persist in the community, and which features of the
disease are most influential in determining this so called critical
community size? Another important question is to study effects of
introducing vaccination in the model. We refer to for example
Nåsell [34] and Andersson and Britton [3] for stochastic methodo-
logical work in the area of endemic diseases.

5.4. Other extensions

We have focused on presenting results for a fairly simple sto-
chastic epidemic model; the reason being that even in simple mod-
els results are far from trivial. Reality is of course much more
complicated. There are many features that affect the spread of
infections that have not been discussed in the paper – below we
list some such features, but there are also many others.

It is well-known that seasonal effects play an important role in
disease dynamics. One reason is that certain viruses or bacteria
reproduce at higher speed under certain seasons, e.g. influenza
virus prefers cold weather, but perhaps even more important is
the change in social behaviour over the year. The classical example
is school semester and the school start in September being the
event that triggered measles outbreaks in for example England
prior to vaccination (e.g. [1, Ch. 6]). One of the most recent illustra-
tions of effects of schools is by Cauchemez et al. [17], where the
influence of transmission within school is estimated by comparing
overall transmission during the school semester with overall trans-
mission during holidays.
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The model studied in the present paper lacks a spatial compo-
nent. Even though travel has increased dramatically during the last
century there is of course still a spatial component in the spreading
of infections, both between and within countries. In larger model-
ling/simulation studies of specific diseases, like the new influenza
pandemic, space is always taken into account (e.g. [41] and [23]).
This is done by assuming that the probability to infect a given indi-
vidual decays with the distance between the individuals. The main
effect of introducing space into the model is that the epidemic
growth is slower: more linear than exponential.

In the model it was assumed that the infection rate k was con-
stant during the infectious period. This rate can be thought of as
the product of two quantities: the rate of having contact with other
individuals and the probability of transmission upon such a con-
tact. In reality both of these quantities typically vary over the infec-
tious period. First there is often a latency period when an infected
individual is hardly infectious, then there is often a period where
the individual is highly infectious but still have few or no symp-
toms. Eventually the individual has symptoms thus reducing their
social activity, and finally the infectiousness starts dropping down
to 0. This behaviour will clearly affect the dynamics of the disease
(a disease having a long latency period of course slows down the
epidemic growth), but it has been shown [5] and [6] that the final
size results of the present model still apply. The total infectivity of
an infectious period in the present model equals the random quan-
tity kI. For a model in which the infection rate t time units after
infection equals CðtÞiðtÞ, where C(t) and iðtÞ are stochastic pro-
cesses describing social activity and infectiousness, then the new
model may be analysed with the present model if the distribution
of kI is replaced by the distribution of

R1
0 CðtÞiðtÞdt. In particular, a

latency period of arbitrary length has no effect on the distribution
of the final size.

In the section about modelling vaccination it was assumed that
the vaccine was perfect in the sense that it gave complete immu-
nity to the disease. In reality this is rarely the case. There are sev-
eral more realistic models for vaccine response in which the
vaccine reduces susceptibility, symptoms and/or infectivity in case
of being infected, where all these reductions are random (e.g. [26]
and [13]). For example, a vaccine which reduces susceptibility by a
factor e, so the average relative susceptibility is ð1� eÞ as com-
pared with unvaccinated, but has no effect on infectivity in case
an infection occurs, has a new (higher) critical vaccination
coverage

vc ¼
1
e

1� 1
R0

� �
:

This is true if all individuals have the same reduction e (so-called
leaky vaccines) as well as if a fraction e of the vaccinated become
completely immune and the rest are unaffected by the vaccine
(all-or-nothing vaccines), or something in-between. Having models
for vaccine efficacy is of course not enough for making conclusions
in specific situations – it is equally important to estimate the vari-
ous vaccine efficacies. This is most often done in clinical trials, and it
is usually harder to estimate reduction in infectivity because this
has to be done indirectly since actual infections are rarely observed,
see for example Becker et al. [13] and the forth coming book by
Halloran et al. [25].
6. Discussion

Even when trying to include as many realistic features in a model
as possible there is a limit to how close a model can get to reality, and
models can never completely predict what will happen in a given sit-
uation. It is for example nearly impossible to predict how people will
adapt and change behaviour as a disease starts spreading. Having
said this, models can still be (and are!) very useful as guidance for
health professionals when deciding about preventive measures aim-
ing at reducing the spread of a disease.

Stochastic epidemic models, or minor modifications of them, can
be used also in other areas. A classic example is models for the spread
of rumours or knowledge (e.g. [20, Ch. 5]). More recently, the world
wide web have several aspects resembling epidemic models: for
example computer viruses (which even use terminology from infec-
tious diseases) and spread of information.

The present paper only gives a short introduction to this rather
big research field. There are several monographs about mathemat-
ical models for infectious disease spread: Anderson and May [1] is
probably the most well-known, Diekmann and Heesterbeek [21]
has a higher mathematical level, and Keeling and Rohani [29] also
explicitly considers disease spread among animals. When it comes
to stochastic epidemic models there is for example the classic book
by Bailey [4], and Andersson and Britton [2] who also cover infer-
ence; a topic which Becker [12] focuses on.
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