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We investigate large-sample properties of treatment effect estimators un-
der unknown interference in randomized experiments. The inferential target
is a generalization of the average treatment effect estimand that marginalizes
over potential spillover effects. We show that estimators commonly used to
estimate treatment effects under no interference are consistent for the gener-
alized estimand for several common experimental designs under limited but
otherwise arbitrary and unknown interference. The rates of convergence de-
pend on the growth rate of the unit-average amount of interference and the
degree to which the interference aligns with dependencies in treatment as-
signment. Importantly for practitioners, the results imply that even if one er-
roneously assumes that units do not interfere in a setting with moderate inter-
ference, standard estimators are nevertheless likely to be close to an average
treatment effect if the sample is sufficiently large. Conventional confidence
statements may, however, not be accurate.

1. Introduction. Investigators of causality routinely assume that subjects under study do
not interfere with each other. The no-interference assumption is so ingrained in the practice of
causal inference that its use is often left implicit. Yet, interference is at the heart of the social
and medical sciences. Humans interact, and these interactions are precisely the motivation
for much of the research in these fields.

We investigate to what extent one can weaken the assumption of no interference and still
draw credible inferences about causal relationships. We find that causal inference is impossi-
ble under completely unrestricted interference, so some assumptions must be made, but the
conventional no-interference assumption is stronger than necessary. One can allow for mod-
erate amounts of interference, and one can allow the subjects to interfere in unknown and
largely arbitrary ways.

Our focus is the estimation of average treatment effects in randomized experiments. A ran-
dom subset of a sample of units is assigned to some treatment, and the quantity of interest
is the average effect of the assignment. The no-interference assumption in this context is the
assertion that a unit’s treatment assignment does not affect the outcome of any other unit. We
consider the setting where such spillover effects do exist, and in particular, when the form
they may take is left unspecified.

The paper makes four main contributions. We first introduce an estimand—the expected
average treatment effect or EATE—that generalizes the conventional average treatment effect
(ATE) to settings with interference. The conventional estimand is not well-defined when units
interfere because the outcome of a unit may then be affected by more than one treatment.
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We resolve the issue by marginalizing the effects of interest over the assignment distribu-
tion of the incidental treatments. That is, for a given reference assignment, we ask how a
particular unit’s outcome is affected when we only change its own treatment assignment.
An unambiguous average treatment effect is defined by asking the same for each unit in the
experiment and averaging the resulting unit-level effects. While this average effect is unam-
biguous, it depends on which assignment was used as reference, and repeating the exercise
with a different reference assignment can result in a different value. To capture the typical
treatment effect in the experiment, EATE marginalizes these average effects over all possible
reference assignments. The estimand is a generalization of ATE in the sense that they coincide
whenever the latter is well-defined.

The second contribution is to demonstrate that EATE can be consistently estimated un-
der weak restrictions on the interference and without structural knowledge thereof. We focus
on the standard Horvitz—Thompson and Hajek estimators. The analysis also applies to the
difference-in-means and ordinary least squares estimators, as they are special cases of the
Hijek estimator. We begin by investigating the Bernoulli and complete randomization ex-
perimental designs. The estimators are consistent for EATE under these designs as long as
the average amount of interference grows sufficiently slowly (according to measures we de-
fine shortly). Root-n consistency is achieved whenever the average amount of interference
is bounded. We next investigate the paired randomization design. Paired randomization in-
troduces perfectly correlated treatment assignments, and we show that this can make the
estimators unstable even when the interference is limited. To achieve consistency, the degree
to which the dependencies introduced by the experimental design align with the interference
structure must be restricted. However, information about the interference structure beyond the
aggregated restrictions is still not needed. We show that the insights from the paired design
extend to a more general setting, and similar restrictions yield consistency under arbitrary
experimental designs.

The third contribution is an investigation of variance estimation. We show that conven-
tional variance estimators generally fail to capture the loss of precision that can result from
interference. Confidence statements based on these estimators may therefore be misleading.
To address the concern, we construct three alternative estimators by inflating a conventional
estimator with measures of the amount of interference similar to those used to show consis-
tency. Two of the alternative estimators are shown to be asymptotically conservative under
weak conditions.

The final contribution is an investigation of whether EATE under one design generalizes
to other designs. Because the estimand marginalizes over the design actually used in the
experiment, it may have taken a different value if another design were used. We show that
EATE for a given experiment is informative of the effect under designs that are close to the one
that was implemented under suitable regularity conditions. When the amount of interference
is limited, the estimands may converge.

The findings in this paper are of theoretical interest because they extend the known lim-
its of causal inference under interference. They are also of practical interest. We investigate
standard estimators under standard experimental designs, so the findings apply to many previ-
ous studies where interference might have been present but was assumed not to be. Therefore,
studies that mistakenly assume that units do not interfere might not necessarily be invalidated.
For example, no-interference assumptions are common in experimental studies of voter mobi-
lization (see Green and Gerber (2004) and the references therein). However, a growing body
of evidence suggests that potential voters interact within households, neighborhoods and
other social structures (Aronow (2012), Nickerson (2008), Sinclair, McConnell and Green
(2012)). Interference is, in other words, likely present in this setting, and researchers have
been left uncertain about the interpretation of existing findings. Our results provide a lens
through which the evidence can be interpreted; the reported estimates capture expected aver-
age treatment effects.
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2. Related work. Our investigation builds on a recent literature on causal inference un-
der interference (see Halloran and Hudgens (2016) for a review). The no-interference as-
sumption was pervasive but implicit in the early literature on causal inference. The first ex-
plicit discussion of the assumption appears to have been by Cox (1958). The instantiation that
is most commonly used today was formulated by Rubin (1980) as a part of the stable unit
treatment variation assumption, or SUTVA.

Early departures from the no-interference assumption were modes of analysis inspired by
Fisher’s exact randomization test (Fisher (1935)). The approach uses sharp null hypothe-
ses that stipulate the outcomes of all units under all assignments. The most common such
hypothesis is that treatment is inconsequential, meaning that the observed outcomes would
have been the same for all assignments. This subsumes the hypotheses that both primary and
spillover effects do not exist, so the approach tests for the existence of both types of effects
simultaneously. The test has been adapted and extended to study interference specifically
(see, e.g., Aronow (2012), Athey, Eckles and Imbens (2018), Basse, Feller and Toulis (2019),
Bowers, Fredrickson and Panagopoulos (2013), Choi (2017), Luo et al. (2012), Rosenbaum
(2007)).

Early methods for point estimation restricted the interference process through structural
models and thereby presumed that interactions were governed by a particular functional
form (Manski (1993)). The structural approach has been extended to capture effects under
weaker assumptions in a larger class of interference processes (Bramoullé, Djebbari and
Fortin (2009), Graham (2008), Lee (2007)). Still, the approach has been criticized for be-
ing too restrictive (Angrist (2014), Goldsmith-Pinkham and Imbens (2013)).

A strand of the literature closer to the current study relaxes these structural assumptions.
Interference is allowed to take arbitrary forms as long as it is contained within known and
disjoint groups of units. The assumption is known as partial interference (see, e.g., Basse
and Feller (2018), Hudgens and Halloran (2008), Kang and Imbens (2016), Liu and Hud-
gens (2014), Liu, Hudgens and Becker-Dreps (2016), Rigdon and Hudgens (2015), Tchetgen
Tchetgen and VanderWeele (2012)). While partial interference allows for some progress on
its own, it is often coupled with stratified interference. The additional assumption stipulates
that the only relevant aspect of the interference is the proportion of treated units within each
group. The identities of the units are, in other words, inconsequential for the spillover effects.
Much like the structural approach, stratified interference restricts the form the interference
can take.

More recent contributions have focused on relaxing the partial interference assumption.
Interference is not restricted to disjoint groups, and units are allowed to interfere along
general structures such as social networks (see, e.g., Aronow and Samii (2017), Basse and
Airoldi (2018a), Eckles, Karrer and Ugander (2016), Forastiere, Airoldi and Mealli (2017),
Jagadeesan, Pillai and Volfovsky (2017), Manski (2013), Ogburn and VanderWeele (2017),
Sussman and Airoldi (2017), Tchetgen Tchetgen, Fulcher and Shpitser (2019), Toulis and
Kao (2013), Ugander et al. (2013)). This relaxation allows for interactions of quite general
forms, but the suggested estimation methods require detailed knowledge of the interference
structure.

Previous investigations under unknown interference have primarily focused on the expec-
tation of various estimators. Sobel (2006) derives the expectation of an instrumental variables
estimator used in housing mobility experiments under unknown interference, and he shows
that it is a mixture of primary and spillover effects for compilers and noncompilers. Hudgens
and Halloran (2008) derive similar results for the average distributional shift effect, which we
discuss in Section 3.3. A study by Egami (2017) considers the bias of treatment effect estima-
tors when the interference can be described by a set of networks. Egami’s framework includes
a stratified interference assumption, but it admits general forms of interference because the
networks are allowed to be overlapping and partially unobserved.
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Unlike the focus in this paper, previous investigations under unknown interference either
do not discuss the precision and consistency of the investigated estimators, or they do so only
after assuming that the interference structure is known. One exception is a study by Basse and
Airoldi (2018b). The authors consider average treatment effects under arbitrary and unknown
interference just as we do, but they focus on inference about the contrast between the average
outcome when all units are treated and the average outcome when no unit is treated. As we
discuss in Section 3.3, this estimand provides a different description of the causal setting
than EATE. In contrast to the findings in this paper, Basse and Airoldi show that no consistent
estimator exists for their estimand even when the interference structure is known.

3. Treatment effects under interference.

3.1. Preliminaries. Consider a sample of n units indexed by the set U = {1, 2,...,n}. An
experimenter intervenes on the world in ways that potentially affect the units. The interven-
tion is described by a n-dimensional binary vector z = (z1, 22, - - ., Zn) € {0, 1}". A particular
value of z could, for example, denote that some drug is given to a certain subset of the units
in U. We are particularly interested in how unit i is affected by the ith dimension of z. For
short, we refer to z; as unit i’s treatment.

The effects of different interventions are defined as comparisons between the outcomes
they produce. Each unit has a function y;: {0, 1} — R denoting the observed outcome
for the unit under a specific and potentially counterfactual intervention (Holland (1986),
Splawa-Neyman (1990)). In particular, y;(z) is the response of i when the intervention
is z. We refer to the elements of the image of this function as potential outcomes. It will
prove convenient to write the potential outcomes in a slightly different form. Let z_; =
(Z1y+++»Zi—1,Zi+1, - -, 2n) denote the (n — 1)-dimensional vector constructed by deleting
the ith element from z. The potential outcome y; (z) can then be written as y; (z;; Z—;).

Throughout the paper, we assume that the potential outcomes are well-defined. The as-
sumption implies that the manner in which the experimenter manipulates z is inconsequen-
tial; no matter how z came to take a particular value, the outcome is the same. Well-defined
potential outcomes also imply that no physical law or other circumstances prohibit z from
taking any value in {0, 1}". This ensures that the potential outcomes are, indeed, potential.
However, the assumption does not restrict the way the experimenter chooses to intervene on
the world, and some interventions may have no probability of being realized.

The experimenter sets z according to a random vector Z = (Z1, ..., Z,). The probability
distribution of Z is the design of the experiment. The design is the sole source of randomness
we will consider. Let Y; denote the observed outcome of unit i. The observed outcome is a
random variable connected to the experimental design through the potential outcomes: Y; =
v;i(Z)). As above, Z_; denotes Z without its ith element, so Y; = y;(Z;; Z_;).

3.2. Expected average treatment effects. It is conventional to assume that the potential
outcomes are restricted so a unit’s outcome is only affected by its own treatment. That is, for
any two assignments z and z’, if the treatment of a given unit is the same for both assignments,
then the outcome for that unit is also the same. This no-interference assumption admits a
definition of the treatment effect 7; for unit i as the contrast between its potential outcomes
when we change its treatment:

T =yi(l;2—) — yi(0; 2—;),
where z_; is any element of {0, 1)"~!. No interference means that the choice of z_; is in-
consequential for the values of y;(1;z_;) and y;(0; z_;). The variable can therefore be left
free without ambiguity, and it is common to use y;(z) as a shorthand for y;(z; z_;). Experi-

menters often summarize the distribution of the unit-level treatment effects in a sample with
its average.
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DEFINITION 1. Under no interference, the average treatment effect (ATE) is the average
unit-level treatment effect:

1 n
TATE = — Zfi-
i

The definition requires the no-interference assumption. References to the effect of a unit’s
treatment become ambiguous when units interfere because 7; will then vary under permu-
tations of z_;. The ambiguity is contagious; the average treatment effect is also ill-defined
without the no-interference assumption.

To unambiguously talk about treatment effects under interference, we redefine the unit-
level effect for unit i as the contrast between its potential outcomes when we change its
treatment while holding all other treatments fixed at a given assignment z_;. We call this
quantity the assignment-conditional unit-level treatment effect:

T(z—) =yi(l;2_;) — v (0;z_;).

To the best of our knowledge, this type of unit-level effect was first discussed by Halloran
and Struchiner (1995). The assignment-conditional effect differs from t; only in that the
dependence on the treatments of other units is made explicit. The redefined effect acknowl-
edges that a unit’s treatment may affect its outcome differently depending on the treatments
assigned to other units. This makes the unit-level effects unambiguous, and their average pro-
vides a version of the average treatment effect that remains well-defined under interference.

DEFINITION 2. An assignment-conditional average treatment effect is the average of the
assignment-conditional unit-level treatment effects under a given assignment:

1 n
Tare(Z) = ; Z 7 (z—;).

i=1

The assignment-conditional effects are well-defined under interference, but they are un-
wieldy. An average effect exists for each assignment, so their numbers grow exponentially in
the sample size. For this reason, experimenters may not find it useful to study these effects
individually. Similar to how unit-level effects are aggregated to an average effect, we focus
on a summary of the distribution of the assignment-conditional effects.

DEFINITION 3. The expected average treatment effect (EATE) is the expected assign-
ment-conditional average treatment effect:

TEATE = E[TATE (Z)],

where the expectation is taken over the distribution of Z given by the experimental design.

The expected average treatment effect is a generalization of ATE in the sense that the two
estimands coincide whenever the no-interference assumption holds. Under no interference,
Ta1e(Z) does not depend on z, so the marginalization is inconsequential. When units interfere,
Tare(z) does depend on z. The random variable T,7g(Z) is drawn from the distribution of the
average treatment effect under the design that was used in the experiment. The EATE estimand
provides the best description of this distribution in a mean square sense.
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3.3. Related definitions. The EATE estimand builds on previously proposed ideas. An
estimand introduced by Hudgens and Halloran (2008) resolves the ambiguity of treatment ef-
fects under interference in a similar way as we do. They refer to their estimand as the average
direct causal effect, but we use the name average distributional shift effect to highlight how
it differs from ATE and EATE.

DEFINITION 4. The average distributional shift effect (ADSE) is the average difference
between the conditional expected outcomes for the two treatment conditions:

1 n
Taps = > (ELY; | Zi = 11— E[Y; | Z; =0]).
i=1

The effect marginalizes the potential outcomes over the experimental design, just as EATE
does. The estimands differ in which distributions they use for the marginalization. The ex-
pectation in EATE is over the unconditional assignment distribution, while ADSE marginalizes
each potential outcome separately over different conditional distributions. The difference be-
comes clear when the estimands are written in similar forms:

1 n
teare = — ) (B[yi(1; 2-)] = E[: (0: Z-»)]),
i=1
1 n
TADSE = . Z(E[)’i(1§ Z_)1Zi=1]-E[y(0:Z-) | Z; =0]).

i=l

The two estimands provide different causal information. EATE captures the expected aver-
age effect of changing the treatment of a single unit in the current experiment. ADSE captures
the expected average effect of changing from an experimental design for which we hold a
unit’s treatment fixed at Z; = 1 to another design for which its treatment is fixed at Z; = 0.
That is, the estimand captures the compound effect of changing the treatment of a unit and
simultaneously changing the experimental design. As a result, ADSE may be nonzero even if
all unit-level effects are exactly zero. That is, we may have t,psg # 0 when 7;(z_;) = 0 for
all i and z_;. Eck, Morozova and Crawford (2018) use a similar argument to show that ADSE
may not correspond to causal parameters capturing treatment effects in structural models.

VanderWeele and Tchetgen Tchetgen (2011) introduced a version of ADSE that removes
the artifact of the original estimand by conditioning both terms with the same value for the
treatment of unit i. Hence, the marginalization is over the same distribution for both terms
in the treatment effect contrast. Their estimand is a conditional average of unit-level effects
and, as such, it mixes aspects of EATE and ADSE.

An alternative way to define an average treatment effect under interference is as the con-
trast between the average outcome when all units are treated and the average outcome when
no unit is treated: ! > [yi() — y;(0)] where 1 and 0 are the unit and zero vectors. This
all-or-nothing effect coincides with the conventional ATE in Definition 1 (and thus also with
EATE) whenever the no-interference assumption holds. However, the effect does not coincide
with EATE under interference, and the estimands provide different descriptions of the causal
setting. EATE captures the typical treatment effect in the experiment actually implemented,
while the all-or-nothing effect captures the effect of giving treatment to everyone or to no
one. The all-or-nothing effect may therefore capture both primary and spillover effects. As
we noted in Section 2, no consistent estimator exists for the effect in the context considered
in this paper (Basse and Airoldi (2018b)).
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3.4. Example. To build understanding about the EATE estimand, consider the following
hypothetical vaccination study as an example. Let z; denote whether person i received the
vaccine under study, and let the outcome be whether the person eventually becomes infected
by the pathogen the vaccine aims to protect against. We have reason to believe there is inter-
ference in this setting because a vaccinated person is less likely to carry the pathogen, and
thus makes it less likely that other people become infected.

There are two types of effects we can investigate in this setting. The first is the primary,
biological effect of the vaccine itself, corresponding to ATE in a setting without interference.
That is, the effect on a person’s outcome when we change whether the person itself is vacci-
nated. The second type is the spillover effects. That is, the effect on a person’s outcome when
we change whether other people are vaccinated. The purpose of EATE is to isolate the first
type of effect.

To see how EATE differs from ADSE, consider a sample consisting of spouses in two-person
households, and an experimental design that assigns the vaccine to exactly one person in each
household. In this setting, the ADSE estimand captures the difference in outcomes when, on
the one hand, a person receives the vaccine and their spouse does not, and on the other hand,
when the person does not receive the vaccine but their spouse does. Because the vaccination
status of both spouses change in this contrast, the estimand depends on both the primary
effect of the vaccine and possible spillover effects between spouses. That is, depending on
how the outcome of a person is affected by the vaccination status of their spouse, ADSE would
take different values. This is the artifact of the ADSE estimand mentioned in the previous
subsection.

The EATE estimand in this setting captures the difference in outcomes when, on the one
hand, a person receives the vaccine, and on the other hand, when the person does not receive
the vaccine, holding the vaccination statuses of the spouse and all other people fixed. The
status of the spouse could be fixed at either receiving or not receiving the vaccine, and EATE
takes the expectation over these two possible states. By doing so, the estimand acknowledges
that the direct effect of the vaccine could differ depending on the vaccination status of the
spouse, but unlike ADSE, the value it takes is itself not affected by the spillover effect between
the spouses. In this way, the EATE estimand isolates the primary effect of the vaccine in the
implemented experiment.

Figure 1 illustrates the difference between the EATE estimand and the all-or-nothing ef-
fect. We here consider a family of experimental designs that can be indexed by the expected
proportion of vaccinated people. Both the Bernoulli and complete randomization designs
investigated in Section 5.2 are of this type. The horizontal axis of the figure denotes this ex-
pected proportion. The vertical axis is the infection rate, which is the outcome, and the graphs
depict the two expected average potential outcomes under the design given by the horizontal
axis. In particular, they depict the functions

n n
yi(p) = % D_Ei(1LZ-p)] and So(p) = % > EDi(0:Z-)],
i=1 i=1
where p denotes the expected proportion of vaccinated units. The expectations in the expres-
sions implicitly depend on p because the family of designs is indexed by the parameter.

The functions give the proportion of people that would become infected with and without
the vaccine for different vaccination rates. The function y; (p) takes a lower value than yy(p)
for all vaccination rates p, which captures that people generally have a lower risk of getting
infected when vaccinated compared to when not vaccinated. Both functions decrease in p,
which indicates that people are less likely to become infected as the vaccination rate increases
independently of their own vaccination statuses. One possible explanation for this is that the
community in which the study is run increasingly develops herd immunity as the vaccination



680 F. SAVJE, P. M. ARONOW AND M. G. HUDGENS

100%

¥ TAN

Infection rate

0% o 100%
Vaccination rate (p)

FI1G. 1. Illustration of two expected average treatment effects (1 and tg¢) and the all-or-nothing effect (Tan).

rate increases, so all people get exposed to the pathogen to a lesser degree. However, the
slope is steeper for the function yo(p), demonstrating greater benefits of high vaccination
rates for unvaccinated people. For very high vaccination rates, the difference between the
functions is small. A possible explanation is that the pathogen is close to eradicated when
almost everyone is vaccinated, so it is rare that people ever get exposed.

The EATE estimand captures the difference between y; (p) and yo(p) when p is the vacci-
nation rate that was actually used in the experiment at hand. The figure depicts the estimand
for two different experiments. The effect o9 depicts EATE when the vaccination rate is 20%,
and 139 does the same when the rate is 80%. The difference between the two effects captures
that the effect of the vaccine is larger when the vaccination rates are low. When p = 20%,
the EATE is negative and of large magnitude, indicating considerable reduction in the risk of
becoming infected as a direct effect of the vaccine. When p = 80%, the estimand is small,
indicating only a slight reduction in the infection risk.

The all-or-nothing effect is the difference between the average outcome of vaccinated peo-
ple when everyone is vaccinated, y;(100), and the average outcome of unvaccinated people
when no one is vaccinated, yo(0). The figure depicts these two states with red-colored points,
and the effect itself is depicted in the right-hand margin of the figure. Because the all-or-
nothing effect simultaneously changes the vaccination status of everyone in the experiment,
the effect captures both primary and spillover effects.

4. Quantifying interference. Our results do not require detailed structural information
about the interference. However, as we show in Section 5.1, no progress can be made if it is
left completely unrestricted. The following definitions quantify the amount of interference in
an experiment and will serve as the basis for the restrictions we use in the paper.

We say that unit i interferes with unit j if changing i’s treatment changes j’s outcome
under at least one treatment assignment. We also say that a unit interferes with itself even if
its own treatment does not affect its outcome. The indicator /;; denotes such interference:

1 ifyj(z) #yj(z) forsomez,z' € {0,1}" such thatz_; =z’ ,,
Lij=11 ifi=j,
0 otherwise.
The definition of /;; allows for asymmetric interference in the sense that unit i may interfere
with unit j even when the converse does not hold.

The collection of interference indicators only describes the interference structure in an
experimental sample. The definition itself does not restrict how the units may interfere. In
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particular, the indicators do not necessarily align with social networks or other structures
through which units are thought to interact. Experimenters do not generally have enough
information about how the units interfere to deduce or estimate the indicators. The role of
the interference indicators is instead to act as the foundation of the following aggregated
summary.

DEFINITION 5 (Interference dependence).

1 L& 1 ifIy;1;; =1 for some £ € U,
i=1j=1

The interference dependence indicator d;; captures whether units i and j are affected by a
common treatment. That is, i and j are interference dependent if they interfere directly with
each other or if some third unit interferes with both i and j. The sum d; = Z’}Zl d;j gives
the number of interference dependencies for unit i, SO dayg is the unit-average number of
interference dependencies.

The average interference dependence d,yg quantifies how close an experiment is to no
interference. Complete absence of interference is the same as dayg = 1, which indicates that
each unit is only interfering with itself. At the other extreme, d,yg = n indicates that inter-
ference is complete in the sense that all pairs of units are affected by a common treatment. If
sufficiently many units are interference dependent (i.e., if dayg is large), small perturbations
of the treatment assignments may be amplified by the interference and induce large changes
in the outcomes of many units.

Interference dependence can be related to simpler descriptions of the interference. Con-
sider the following quantities:

i , 4 c |: 1 i p:| 1/p
Ci = i an = | — C: .
=1 ! lrm
The first quantity ¢; captures how many units i interferes with. That is, if changing the treat-
ment of unit i would change the outcome of five other units, then unit i interferes with those
five units and itself, so ¢; = 6. Information about these quantities are generally beyond the
grasp of experimenters. The quantity C,, provides a more aggregated description, which ex-
perimenters may have more insights about. This is the p-norm of the unit-level interference
counts with respect to the sample measure. For example, C; and C, are the average and root
mean square of the unit-level quantities. We write C, for the limit of C}, as p — oo, which
is the maximum c¢; over U. These norms bound dyg from below and above.

LEMMA 1. max(Cy,n"'C%) <due < C3 < C%.

All proofs, including that of Lemma 1, are given in Supplement A (Sdvje, Aronow and
Hudgens (2021)). The lemma implies that we can use C» or Co, rather than d,yg, to restrict
the interference. While such restrictions are stronger than necessary, the connection is never-
theless useful because experimenters may find it more intuitive to reason about the norms of
¢; than about interference dependence.

5. Large sample properties. Inspired by an asymptotic regime in Isaki and Fuller
(1982), we consider an arbitrary sequence of samples indexed by their sample size. The
samples are not assumed to be drawn from some larger population or otherwise randomly
generated. That is, the samples are not necessarily related other than through the conditions
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we impose on the sequences. All quantities describing the samples, such as the potential
outcomes and experimental designs, have their own sequences also indexed by n. But we
leave the indexing implicit as no confusion arises. The focus of the investigation is how two
estimators of average treatment effects behave as the sample size grows.

DEFINITION 6. The Horvitz—Thompson (HT) and Hajek (HA) estimators are

R 1 & (1= Z)Y;

THT = — 1
i=1 Pi Mo TP

_( ) - (R ),

i=1

and

where p; = Pr(Z; = 1) is the marginal treatment probability for unit .

Estimators of this form were first introduced in the sampling literature to estimate pop-
ulation means under unequal inclusion probabilities (H4jek (1971), Horvitz and Thompson
(1952)). They have since received much attention in the causal inference and policy evalua-
tion literatures where they are often called inverse probability weighted estimators (see, e.g.,
Hahn (1998), Herndn and Robins (2006), Hirano, Imbens and Ridder (2003)). Other estima-
tors commonly used to analyze experiments, such as the difference-in-means and ordinary
least squares estimators, are special cases of the Hijek estimator. Consequently, our analysis
applies to those estimators as well.

We assume throughout the remainder of the paper that the experimental design and poten-
tial outcomes are sufficiently well behaved, as formalized in the following assumption.

ASSUMPTION 1 (Regularity conditions). There exist constants k < 0o, g > 2 and s > 1
such that for all i € U in the sequence of samples:

A (Probabilistic assignment). k~! <Pr(Z; =1) <1 -k,
B (Outcome moments). E[|Y;]|7] < k4,
C (Potential outcome moments). E[|y; (z; Z—;)|*’] < k* for z € {0, 1}.

The first regularity condition restricts the experimental design so that each treatment is
realized with a positive probability. The condition does not restrict combinations of treat-
ments, and some assignment vectors may have no probability of being realized. The second
condition restricts the distributions of the observed outcomes so they remain well behaved
asymptotically. The last condition restricts the potential outcomes slightly off the support of
the experimental design and ensures that EATE is well-defined asymptotically.

The exact values of ¢ and s are inconsequential for the results in Section 5.2. The weak-
est version of the assumption, when ¢ = 2 and s = 1, suffices there. However, the rate of
convergence under an arbitrary experimental design depends on which moments exist, and
variance estimation generally requires that ¢ is at least four. The ideal case is when the poten-
tial outcomes themselves are asymptotically bounded, which corresponds to the case where
Assumption 1 holds as ¢ — 0o and s — oo.

The two moment conditions are similar in structure, but neither is implied by the other.
Assumption 1B does not imply Assumption 1C because the former is only concerned with
the potential outcomes on the support of the experimental design. The opposite implication
does not hold because s may be smaller than ¢.
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5.1. Restricting the interference. The sequence of dayg describes the amount of inter-
ference in the sequence of samples. Our notion of limited interference is formalized as a
restriction on this sequence.

ASSUMPTION 2 (Restricted interference). djvg = o(n).

The assumption stipulates that units, on average, are interference dependent with an
asymptotically diminishing fraction of the sample. The assumption still allows for substan-
tial amounts of interference. The unit-average number of interference dependencies may, for
example, grow with the sample size and the total number of interference dependencies may
grow at a faster rate than n. What is assumed is that the unit-average dayg does not grow
proportionally to the sample size.

In addition to restricting the amount of interference, Assumption 2 imposes weak restric-
tions on the structure of the interference. It prohibits interference that is so unevenly dis-
tributed that a few units are interfering with most other units. If the interference is concen-
trated in such a way, small perturbations of the assignments could be amplified through the
treatments of those units. At the extreme when a single unit interferes with all other units,
the outcomes of all units would change if we were to change the treatment of that single unit.
The estimators would then not stabilize even if the interference was otherwise sparse.

Restricted interference is not sufficient for consistency. Sequences of experiments exist
for which Assumption 2 holds but the estimators do not converge to EATE. However, the
assumption is necessary for consistency of the HT and HA estimators in the following sense.

PROPOSITION 1. For every sequence of experimental designs, if Assumption 2 does not
hold, there exists a sequence of potential outcomes satisfying Assumption 1 such that the HT
and HA estimators do not converge in probability to EATE.

The proposition implies that the weakest possible restriction on dayg is Assumption 2.
If a weaker restriction is imposed, for example, that dayg is on the order of en for some
small ¢ > 0, then there exist potential outcomes for any experimental design such that the
relaxed interference restriction is satisfied but the estimators do not converge. A consequence
is that experimental designs themselves cannot ensure consistency. We must somehow restrict
the interference to make progress, and in this sense, our restricted interference assumption
is necessary for our results. It might, however, be possible to achieve consistency without
Assumption 2 if one were to impose stronger regularity conditions or restrict the interference
in some other way. For example, the estimators could be consistent if the magnitude of the
interference, according to some suitable measure, approaches zero.

5.2. Common experimental designs. Our large sample investigation begins with three
specific experimental designs. These designs are commonly used by experimenters, and they
are therefore of interest in their own right. They also provide a good illustration of the issues
that arise under unknown interference, setting the scene for the investigation of arbitrary
designs in the Section 5.3.

5.2.1. Bernoulli and complete randomization. The simplest experimental design assigns

the treatments independently. The experimenter flips a coin for each unit and administers
treatment accordingly. We call this a Bernoulli randomization design, and it satisfies

n
Pr(Z=2z)=[]pi(1—p)'~5
i=1

for some set of assignment probabilities pp, p2, ..., p, bounded away from zero and one.
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The outcomes of any two units are independent under a Bernoulli design when the no-
interference assumption holds. This is not the case when units interfere. A single treatment
may then affect two or more units, and the corresponding outcomes are dependent. That
is, two units’ outcomes are dependent when they are interference dependent according to
Definition 5. Restricting this dependence ensures that the effective sample size grows with
the nominal size and yields consistency.

PROPOSITION 2. With a Bernoulli randomization design under restricted interference
(Assumption 2), the HT and HA estimators are consistent for EATE and converge at the fol-
lowing rates:

~ -0.5 ;0.5 ~ -0.5 ;0.5
Tut — TEATE = Op (n dAVG) and TyA — TEATE = Op(l’l dAVG)'

The Bernoulli design tends to be inefficient in small samples because the size of the treat-
ment group varies over assignments. Experimenters often prefer designs that reduce the vari-
ability in the group sizes. One common such design randomly selects an assignment with
equal probability from all assignments with a certain proportion of treated units:

—1 .
Prz=g= () R =m
0 otherwise,
where m = | pn] for some fixed p strictly between zero and one. The parameter p controls
the desired proportion of treated units. We call the design complete randomization.

Complete randomization introduces dependencies between assignments. These dependen-
cies are not of concern when there is no interference. The outcomes are only affected by a
single treatment, and the dependence between any two treatments is asymptotically negligi-
ble. This need not be the case when units interfere; there are two issues to consider.

The first issue is that the interference could interact with the experimental design so that
two units’ outcomes are strongly dependent asymptotically even when they are not affected
by a common treatment (i.e., when d;; = 0). As an example, consider when one unit is af-
fected by the first half of the sample and another unit is affected by the second half. Complete
randomization introduces a strong dependence between the two halves: the number of treated
units in the first half is perfectly correlated with the number of treated units in the second half.
The outcomes of the two units may therefore be (perfectly) correlated even when no treat-
ment affects them both. We cannot rule out that such dependencies exist, but we can show
that they are sufficiently rare to not prevent convergence under a slightly stronger version of
Assumption 2.

The second issue is that the dependencies introduced by the design distort our view of the
potential outcomes. Whenever a unit is assigned to a certain treatment condition, units that
interfere with that unit tend to be assigned to the other condition. One of the potential out-
comes in each assignment-conditional unit-level effect is therefore observed more frequently
than the other. The estimators implicitly weight the two potential outcomes proportionally
to their frequency, but the EATE estimand weights them equally. This discrepancy introduces
bias. Seen from another perspective, the estimators do not separate the effect of a unit’s own
treatment from spillover effects of other units’ treatments.

As an illustration, consider when the potential outcomes are equal to the number of treated
units: y; (z) = 2?21 zj. EATE equals one in this case, but the estimators are constant at zero
because the number of treated units (and thus, all revealed potential outcomes) are fixed at m.
The design exactly masks the effect of a unit’s own treatment with a spillover effect of the
same magnitude but of the opposite sign.

Under complete randomization, if the number of units interfering with a given unit is of the
same order as the sample size, our view of the unit’s potential outcomes will also be distorted
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asymptotically. As with the first issue, we cannot rule out that such distortions exist, but
restricted interference implies that they are sufficiently rare. Taken together, this establishes
consistency under complete randomization.

PROPOSITION 3. With a complete randomization design under restricted interference
(Assumption 2) and C| = o(n"?), the HT and HA estimators are consistent for EATE and
converge at the following rates:

A —0.5 ;0.5 —-0.5
THT—TEATE=Op(”l dyve+n Cl),
A —0.5 450.5 —-0.5
THA_TEATE:Op(n dAVG+n Cl)

The proposition requires C1 = o(nO'S) in addition to Assumption 2. Both C12 and dyyg are
bounded from above by Cg, so they tend to not be too different. It is when d;; largely aligns
with [;; that C 12 dominates d,yg. For example, we have C| = dayg when all interference
dependent units are interfering with each other directly, because then I;; = d;;.

The HT and HA estimators are known to be root-n consistent for ATE under no interference.
Reassuringly, the no-interference assumption is equivalent to the condition dayg = C1 =1,
and Propositions 2 and 3 provide root-n consistency. However, the propositions make clear
that absence of interference is not necessary for such convergence rates, and we may al-
low for nontrivial amounts of interference. In particular, the estimators are root-n consistent
whenever the interference dependence does not grow indefinitely with the sample size, that
is, when dy¢ 1s bounded.

COROLLARY 1. With a Bernoulli or complete randomization design under bounded in-
terference, dayg = O(1), the HT and HA estimators are root-n consistent for EATE.

5.2.2. Paired randomization. Complete randomization restricts the assignment of treat-
ments to ensure treatment groups of fixed size. The paired randomization design imposes
even greater restrictions. The sample is divided into pairs, and the units in each pair are as-
signed to different treatments. It is implicit that the sample size is even so that all units are
paired. Paired randomization could be forced on the experimenter by external constraints or
used to improve precision (see, e.g., Fogarty (2018) and the references therein).

Let p : U — U describe a pairing so that p(i) = j indicates that units i and j are paired.
The pairing is symmetric, so the self-composition of p is the identity function. The paired
randomization design then satisfies

272 if z; # 2, forall i € U,

Pr(Z=12)= 0 otherwise.

The design worsens both issues we faced under complete randomization. Under paired ran-
domization, Z; and Z; are perfectly correlated, also asymptotically, whenever p(i) = j. We
must therefore consider to what extent the dependencies between assignments introduced by
the design align with the structure of the interference. The following two definitions quantify
the alignment.

DEFINITION 7 (Pair-induced interference dependence).
L if (1 —d;:)ly; F=
erve = X Z Z e;j where e = { 1 if (1 —d;j) 1l =1 for some £ € U,

L £ 0 otherwise.
i=1j=1

DEFINITION 8 (Within-pair interference). Rsum = > Lp(i)i-
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The dependence within any set of finite number of treatments is asymptotically negligible
under complete randomization, and issues only arose when the number of treatments affecting
a unit was of the same order as the sample size. Under paired randomization, the dependence
between the outcomes of two units not affected by a common treatment can be asymptotically
nonnegligible even when each unit is affected by an asymptotically negligible fraction of the
sample. In particular, the outcomes of units i and j such that d;; = 0 can be (perfectly)
correlated if two other units k£ and £ exist such that k interferes with i and ¢ interferes with
j,and k and £ are paired. The purpose of Definition 7 is to capture such dependencies. The
definition is similar in structure to Definition 5. Indeed, the upper bound from Lemma 1
applies so that exyg < C%.

The second issue we faced under complete randomization is also made worse under paired
randomization. No matter the number of units that are interfering with unit i, if one of those
units is the unit paired with i, we cannot separate the effects of Z; and Z,(;). The design
imposes Z; = 1 — Z,;), so any effect of Z; on i’s outcome could just as well be attributed
to Z, (). Such dependencies introduce bias, just as they did under complete randomization.
However, unlike complete randomization, restricted interference does not imply that the bias
will vanish as the sample grows. We must separately ensure that this type of alignment be-
tween the design and the interference is sufficiently rare. The purpose of Definition 8 is to
captures how common interference is between paired units.

The two definitions allow us to restrict the degree to which the interference aligns with the
pairing in the design.

ASSUMPTION 3 (Restricted pair-induced interference). ejvg = o(n).
ASSUMPTION 4 (Pair separation). Rsyy = o(n).

Experimenters may find that Assumption 3 is quite tenable under restricted interference.
As both e,y and dayg are bounded by C%, restricted pair-induced interference tends to hold
in cases where restricted interference can safely be assumed. It is, however, possible that the
latter assumption holds even when the former does not if paired units are interfering with
sufficiently disjoint sets of units.

Whether pair separation holds depends largely on how the pairs were formed. It is, for
example, common that the pairs reflect some social structure Paired units may, for example,
live in the same household. The interference tends to align with the pairing in such cases, and
Assumption 4 is unlikely to hold. Pair separation is more reasonable when pairs are formed
based on generic background characteristics. This is often the case when the experimenter
uses the design to increase precision. The assumption could, however, still be violated if the
background characteristics include detailed geographic data or other information likely to be
associated with the interference.

PROPOSITION 4. With a paired randomization design under restricted interference, re-
stricted pair-induced interference and pair separation (Assumptions 2, 3 and 4), the HT and
HA estimators are consistent for EATE and converge at the following rates:

~ —0.5 40.5 —0.5 0.5 —1
Tut — TEATE = Op(l’l dAVG +n eAVG +n RSUM)v
A —0.5 ;0.5 —0.5 0.5 —1
THA —TEATE:Op(n dAVG+n eAVG—i-n RSUM)-

5.3. Arbitrary experimental designs. 'We conclude this section by considering sequences
of experiments with unspecified designs. Arbitrary experimental designs may align with the
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interference just like the paired design. We begin by introducing a set of definitions that allow
us to characterize such alignment in a general setting.
It will prove useful to collect all treatments affecting a particular unit i into a vector:

Zi=iZ1,1iZa, ..., 1iZy).

The vector is defined so that its jth element is Z; if unit j is interfering with i, and zero
otherwise. Let Z._; be the (n — 1)-dimensional vector constructed by deleting the ith element
from Z;. The deﬁnltlons have the following convenient properties:

Yi=yi@)=yi(Z) and yi(z;Z_;)=yi(z;L_)).

We can characterize the outcome dependence introduced by the experimental design by
the dependence between Z; and Z;. Because Y; = y; (Z;), the outcomes of two units i and j

are independent whenever Z;and Z ;j are independent. Similarly, the dependence between Z;
and Z_; governs how distorted our view of the potential outcomes is.

We use the alpha-mixing coefficient introduced by Rosenblatt (1956) to measure the de-
pendence between the assignment vectors. Specifically, for two random variables X and Y
defined on the same probability space, let

a(X,Y)= sup |[Pr(xNy)—
xeo(X)
yeo(Y)

where o (X) and o (Y) denote the sub-sigma-algebras generated by the random variables.
The coefficient a(X, Y) is zero if and only if X and Y are independent, and increasing values
indicate increasing dependence. The maximum is o (X, Y) = 1/4. Unlike the Pearson corre-
lation coefficient, the alpha-mixing coefficient is not restricted to linear associations between
two scalar random variables, and it can capture any type of dependence between any two sets
of random variables. The coefficient allows us to define measures of the average amount of
dependence between Zi and Z ;j and between Z; and Z_i.

DEFINITION 9 (External and internal average mixing coefficients). For the maximum
values of g and s such that Assumptions 1B and 1C hold, let

n

QgxT = — ZZ(I— z]) Ol(Z,,Z)]qT and aINT:Z[Ol(Zi,Z_i)]%’

l—lj—l i=1

where 0° is defined as zero to accommodate the cases ¢ =2 and s = 1.

The terms of the external mixing coefficient capture the dependence between the treat-
ments affecting unit i and the treatments affecting unit j. If the dependence between Z; and
Z tends to be weak or rare, apxt Will be small compared to n. Similarly, if dependence be-
tween Z; and Z_, tends to be weak or rare, ayy Will be small relative to n. In this sense,
the external and internal mixing coefficients are generalizations of Definitions 7 and 8. In-
deed, one can show that agxt X eavg and oyt & Rgyy under paired randomization, where
the proportionality constants are given by ¢ and s.

The generalized definitions allow for generalized assumptions.

ASSUMPTION 5 (Design mixing). ogxt = 0(n).

ASSUMPTION 6 (Design separation). oyt = o(n).
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Design mixing and design separation stipulate that the dependence between treatments are
sufficiently rare or sufficiently weak (or some combination thereof). The assumptions encap-
sulate and extend the conditions in the previous sections. In particular, complete randomiza-
tion under bounded interference constitutes a setting where dependence is weak: a(Z,, Z; i)
approaches zero for all pairs of units with d;; = 0. Paired randomization under Assumptlon
3 constitutes a setting where dependence is rare: a(Z,, j) may be 1/4 for some pairs of
units with d;; = 0, but such pairs are an asymptotically dlmlnlshmg fraction of the total num-
ber of pairs. Complete randomization under the conditions of Proposition 3 combines the
two settings: a(Z;, Z;) might be nonnegligible asymptotically for some pairs with d;; = 0,
but such pairs are rare. For all other pairs with d;; = 0, the pair-level mixing coefficient
quickly approaches zero. A similar comparison can be made for the design separation as-
sumption.

PROPOSITION 5. Under restricted interference, design mixing and design separation
(Assumptions 2, 5 and 6), the HT and HA estimators are consistent for EATE and converge at
the following rates:

A —-0.5 ;0.5 —-0.5,,0.5 -1
THT — TEATE = Op( duyig +n Opxr +1 OlINT)
A —0.5 ;0.5 —-0.5_0.5 —
TuA — TEATE = Op( dAVG +n aEXT +n alNT)-

REMARK 1. The convergence results for Bernoulli and paired randomization presented
in the previous subsections can be proven as consequences of Proposition 5. This is not the
case for complete randomization. The current proposition applied to that design would sug-
gest slower rates of convergence than given by Proposition 3. This highlights that Proposition
5 provides worst-case rates for all designs that satisfy the stated conditions. Particular designs
might be better behaved and thus ensure that the estimators converge at faster rates. For com-
plete randomization, one can prove that restricted interference implies a mixing condition
that is stronger than the conditions defined above. In particular, Lemmas A12 and A13 in
Supplement A (Sédvje, Aronow and Hudgens (2021)) provide bounds on the external and in-
ternal mixing coefficients when they are redefined using the mixing concept similar to the one
introduced by Blum, Hanson and Koopmans (1963). Proposition 3 follows from this stronger
mixing property.

REMARK 2. If no units interfere, Z_; is constant at zero, and Assumption 6 is trivially
satisfied. However, no interference does not imply that Assumption 5 holds. Consider a de-
sign that assigns the same treatment to all units: Z; = Z, = --- = Z,,. The external mixing
coefficient would not be zero in this case; in fact, agxt — n/4. This example illustrates that
one must limit the dependencies between treatment assignments even when there is no inter-
ference. Proposition 5 can, in this sense, be seen as an extension of Theorem 1 in Robinson
(1982).

5.4. When design separation fails. Experimental designs tend to induce dependence be-
tween treatments of units that interfere with one another, and experimenters might find it hard
to satisfy design separation. We saw one example of such a design with paired randomiza-
tion. It might for this reason be advisable to choose uniform designs such as the Bernoulli
or complete randomization when one investigates treatment effects under unknown interfer-
ence. These designs cannot align with the interference structure, and one need only consider
whether the simpler interference conditions hold. Another approach is to design the exper-
iment in a way that ensures design separation. For example, one should avoid pairing units
that are suspected to interfere in the paired randomization design.
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However, it will not always be possible to ensure that design separation holds. The ques-
tion is then what the consequences of such departures are. Without Assumption 6, the effect
of a unit’s own treatment on its outcome cannot be separated from potential spillover effects,
and the estimators need not be consistent for EATE. But, they do converge to another quantity.
Recall from Definition 4 that the average distributional shift effect uses the conditional dis-
tributions of the outcomes. As a consequence, the estimand does not attempt to completely
separate the effect of a unit’s own treatment from spillover effects, and design separation is
not needed for consistency.

PROPOSITION 6. Under restricted interference and design mixing (Assumptions 2
and 5), the HT and HA estimators are consistent for ADSE and converge at the following
rates:

S —0.5 ;0.5 —-0.5_0.5
Tut — Tapse = O ( dave +n " ogRyr),
A —0.5 ;0.5 —0.5_0.5
THA — TADSE = OP( dyic +n aEXT)

The proposition highlights the connection between the EATE and ADSE estimands. With
the exception of design separation, Proposition 6 uses the same assumptions as Proposition 5.
Hence, when the assumptions of Proposition 5 hold, the estimators are consistent for both
EATE and ADSE, and the two estimands coincide asymptotically. To understand why this is,
recall that EATE may depend on potential outcomes slightly outside the support of the design.
The ADSE estimand is, however, defined to coincide with the expectation of the HT estimator,
so it depends only on potential outcomes on the support. The purpose of design separation,
and the corresponding assumptions in Section 5.2, is to allow us to do the small extrapolation
needed to learn the potential outcomes used in the definition of EATE that are outside the
support.

6. Confidence statements. Experimenters often present point estimates of treatment ef-
fects together with statements about the precision of the estimation method. These statements
should be interpreted with caution in the presence of unknown interference, because the pre-
cision of the estimator may be worse when units interfere. This is clear from the rates of con-
vergence presented in the previous section. Disregarding outlandish experimental designs,
the estimators we investigate converge at a root-n rate under no interference, but the propo-
sitions in the previous section show that the estimators may converge at a slower rate when
units interfere. The question in this section is whether we can construct variance estimators
that accurately reflect this potential loss in precision.

6.1. A conventional variance estimator. We illustrate the issues that can arise under un-
known interference by investigating the validity of a conventional variance estimator. To
avoid some technical difficulties of little relevance to the current discussion, we restrict our
focus to the Horvitz—Thompson estimator of the variance of the Horvitz—Thompson point
estimator under a Bernoulli design:

" ZY2 Z — Z)Y?
= p} n? (1—pi)?* "~

Varggg (Tut) =

The estimator is conservative under no interference, meaning that its expectation is greater
than the true variance. On a normalized scale, the bias does not diminish asymptotically, so
inferences based on the estimator will be conservative also in large samples. In particular,
with a Bernoulli design under no interference,

(D n[\/]a\rBER(fHT) - Val‘(fHT)] SN Tvsq = 0,
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where 50 is the mean square treatment effect:

n
Tyisq = % > (E[w (Z-)))>.
i=1
We define tysq using 7;(Z_;) rather than t;, because this will allow us to use the same
definition both when interference is present and when it is not. In the current setting, we
could have used t; because 7;(z—;) does not depend on z_; when units do not interfere.

To characterize the behavior of the variance estimator under interference, it is helpful to
introduce additional notation. Let &;;(z) be the expected treatment effect on unit i’s outcome
when changing unit j’s treatment given that i is assigned to treatment z. In other words, it is
the spillover effect from j to i, holding i’s treatment fixed at z. Formally, we write

&i(2) =E[yij(z, L, Z_ij) — yij(z,0; Z_;})],
where, on analogy with Z_;,
Z_ij=Z,....2i . Ziyt,-. . Zj . Zjt1, ..., Zy)

is the treatment vector with the ith and jth elements deleted, and y;;(a, b;z_;;) is unit i’s
potential outcome when units i and j are assigned to treatments a and b, respectively, and
the assignments of the remaining units are z_;;.

To describe the overall spillover effect between two units, consider

E;=E[&;(1— Z)] = (1 — p)&; (1) + pi&i;(0),

where p; = Pr(Z; = 1) as above. This is the expected spillover effect using the opposite
probabilities for i’s treatment. That is, if i has a high probability of being assigned Z; =1,
so that p; is close to one, then 5,",- gives more weight to &;;(0), which is the spillover effect
when Z; = 0. Let

Y; =(1—p)ELY;i | Z; =11+ p; E[Y; | Z; = 0]

denote the same type of average for the outcome of unit i. These types of quantities occasion-
ally appear in variances of design-based estimators. The “tyranny of the minority” estimator
introduced by Lin (2013) is one such example.

PROPOSITION 7. Under a Bernoulli design and Assumption 1 with g > 4,

-1 1o - . T

nd [ Varger (Fur) — Var(Zur)] BN dMSQ — By — By,
AVG
where
B ZZ él]'i:Jl +2Y [’fl](l) fij(())]),
ndAVGl | i
ZZZZ< D Cov (Y, ¥ | Zi =a. Z; = b).

ndA i=1j#ia=0b=0

The proposition extends the limit result in equation (1) to settings with interference. In-
deed, as shown by Corollary A5 in Supplement A (Sdvje, Aronow and Hudgens (2021)),
the limit under no interference is a special case of Proposition 7. The relevant scaling under
interference is ndA_V]G rather than n, which accounts for the fact that the variance may dimin-
ish at a slower rate. In particular, the scaling ensures that nd;VIG Var(Zyr) is on a constant
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scale. The constant ¢ in Assumption 1 is now required to be at least four, as is typical for
convergence of variance estimators.

Compared to the setting with no interference, the limit of the variance estimator contains
two additional terms. The term Bj captures the consequences of direct interference between
the units. That is, it captures whether unit i interferes with unit j directly, in which case
§ ji # 0. If there is no interference, there are no spillover effects, so &;;(1) =§;;(0) =0, and
Bj is zero. The term B> captures the consequences of indirect interference between units,
namely when a third unit interferes with both i and ;.

While any of the three terms of the limit in Proposition 7 can dominate the others asymp-
totically, By will generally be the one we need to worry about. To see this, observe that
Twmso 1s negligible on a normalized scale as long as the average interference dependence is
not bounded asymptotically: d,yg — 00. The amount of direct interference dependence is
given by Cy, so B} = (’)(d;\,lGC 1). The amount of indirect dependence is given by dayg, SO
B> = O(1). Hence, B; is the dominating term whenever d,yg dominates Cy, which, as we
noted in Section 5.2, is the case whenever the interference is not too tightly clustered.

The key insight here is that when there is interference, these two additional terms are gen-
erally nonzero, and their sum may be both positive and negative. As a consequence, the vari-
ance estimator may be asymptotically anticonservative, painting an overly optimistic picture
about the precision of the point estimator. In other words, the use of conventional variance
estimators under interference could be misleading.

6.2. Alternative estimators. The route we will explore to account for the potential anti-
conservativeness is to inflate the conventional estimator with various measures of the amount
of interference. In addition to providing a simple way to construct a reasonable variance es-
timator when these measures are known, or presumed to be known, this route facilitates con-
structive discussions about the consequences of interference even when the measures are not
known. In particular, a sensitivity analysis becomes straightforward because the conventional
variance estimate is simply multiplied by the sensitivity parameter.

We will not derive the limits of these modified variance estimators. Indeed, such limits
do not always exist. We will instead focus on obtaining the main property we seek, namely
conservativeness in large samples. This is formalized by a one-sided consistency property, as
described in the following definition.

DEFINITION 10. A variance estimator V is said to be asymptotically conservative with
respect to the variance of Tyy if

lim lim Pr(ndg L[V — Var(fyr)] < —&) =0.

§—(QT n—>00

The interference measure that first might come to mind is the average interference depen-
dence, dayg, which we used for the results in Section 5. Using this quantity for the inflation,
we get the estimator

Var g (fHT) = davg Varggr (fHT)-

This will generally not inflate the estimator enough to ensure conservativeness. The issue is
that the interference structure could couple with the potential outcomes in such a way that
the interference introduces dependence between units with large outcomes. Using dayg for
the inflation requires that no such coupling takes place, or that any coupling is asymptotically
negligible. The following proposition formalizes the result.
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PROPOSITION 8. The variance estimator \7a\rAVG (Tur) is asymptotically conservative un-
der a Bernoulli design if Assumptions 1 and 2 hold with ¢ > 4 and SD,> = o(d{D}ISdAVG),
where

Ziy; _Zi)Yi)

n Di 1 — pi

i=1

1 & 1 7
2
SD,2 = | — E |:Ul_2 _ ; E O—/2i| , Iof :Var(

and

The condition SD_ 2> = o(d{ﬁsdAVG) is the design-based equivalent of a homoscedasticity
assumption. In particular, crl.z is the unit-level contribution to the variance of the point esti-
mator, so SD2 is the standard deviation of the unit-level variances. The quantity dgrys is the
root mean square of d;, and dy¢ is the average, so dR_A}SdAVG < 1. The condition thus states
that SD,> diminishes quickly, requiring that the unit-level variances are approximately the
same. When this is the case, no coupling of consequence can occur, so the inflated estimator
is conservative.

The homoscedasticity condition in Proposition 8 is strong, and it will generally not hold.
When it does not, the estimator must be further inflated. In particular, to capture possible
coupling, the inflation factor must take into account the skewness of the unit-level interfer-
ence dependencies. A straightforward way to account for such skewness is to substitute the
maximum for the mean, producing the estimator

Varyax (Tur) = dMAxvarBER(fHT),

where dyax 1S the maximum of d; over i € U.

PROPOSITION 9. The variance estimator \@M ax (Tur) is asymptotically conservative un-
der a Bernoulli design if either:

A. Assumption 1 holds with g > 4 and dyax = o(no'sdgg,SG), or

B. Assumptions 1 and 2 hold with g > 4 and tysq = Q(1).

The proposition demonstrates that the conventional variance estimator inflated with dyax
is conservative without a homoscedasticity assumption. Part A of the proposition stipulates
that dyiax is dominated by the geometric mean of n and d,yg, implying that the maximum of
d; does not grow too quickly compared to the average. The condition ensures that the inflated
estimator concentrates. As noted above, however, an estimator can be asymptotically conser-
vative even when it is not convergent. The concern in that case is that part of the sampling
distribution may approach zero at a faster rate than the growth rate of the inflation factor,
leading to anticonservativeness. Part B of the proposition provides sufficient conditions to
avoid such behavior, namely that tysq is asymptotically bounded from below. This lower
bound ensures that the unit-level treatment effects do not concentrate around zero, implying
either that the average treatment effect is not zero or that there is some effect heterogeneity.

Using dyax for the inflation will generally be too conservative. At the expense of some
additional complexity, we can construct a variance estimator that uses an inflation factor in-
between the average and the maximum. Let D be a matrix whose typical argument is d;;,
and let Ay« be the largest eigenvalue, or spectral radius, of this matrix. One can interpret D
as the adjacency matrix of a graph in which the units are vertices and d;; denotes whether
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there is an edge between i and j. The largest eigenvalue acts as a measure of the amount of
interference in the sense that A,.x = 1 when there is no interference, and Ap,x = # when all
units are interference dependent. Additionally, A.x Weakly increases with the interference.
Using the spectral radius as the inflation factor, the variance estimator becomes

Varsg (Tut) = Amax Varger (Tur)-

The spectral radius is such that dayg < Amax < dmax, showing that the estimator inflated by
Amax 1S more conservative than when inflated by d,v¢ but less conservative than when inflated
by duax. The inflation is sufficient for conservativeness under weaker conditions than those
of Proposition 9.

PROPOSITION 10. The variance estimator \’/;rSR(fHT) is asymptotically conservative un-
der a Bernoulli design if either:

A. Assumption 1 holds with q > 4 and Amax = o(nO'Sdgng), or

B. Assumptions 1 and 2 hold with q > 4 and tysq = Q2(1).

The adjustments needed to ensure conservativeness highlight that interference may in-
troduce considerable imprecision. However, observe that the inflation factors we use in this
section are constructed to accommodate the worst case. The adjusted variance estimators will
often be overly conservative. Indeed, interference can improve precision, and no inflation is
then required.

Improved variance estimators are possible if we have more information about the interfer-
ence structure. For example, Aronow, Crawford and Zubizarreta (2018) construct a variance
estimator that requires the experimenter to know d; for all units. This estimator will generally
be less conservative than those we have introduced in this section. Sharper variance estima-
tors are also possible if larger departures from the conventional estimator are acceptable. For
example, it is sufficient to use drys as the inflation factor if higher moments of the unit-level
variances are substituted for the conventional estimator. Such an estimator will often be less
conservative than the estimators above because davg < drms < Amax-

6.3. Tail bounds. Experimenters often use variance estimates to construct bounds on the
tails of the sampling distribution of the point estimator, which in turn may be used to construct
confidence intervals and hypothesis tests. A common approach is to combine a conservative
variance estimator with a normal approximation of the sampling distribution, motivated by a
central limit theorem. Such approximations may be reasonable when the interference is very
sparse. For example, Theorem 2.7 in Chen and Shao (2004) can be applied to the HT point
estimator under the Bernoulli design if dyax = O(1), showing that the sampling distribution
is approximately normal in large samples. This condition is, however, stronger than Assump-
tion 2. The following proposition demonstrates that normal approximations will generally not
be accurate under the conditions considered in this paper.

PROPOSITION 11. Chebyshev’s inequality is asymptotically sharp with respect to the
sampling distribution of the HT estimator for every sequence of Bernoulli designs under
Assumptions 1 and 2. The inequality remains sharp when Assumption 2 is strengthened to
dave = O(1) and dyax = O(n°3).

Tail bounds based on Chebyshev’s inequality are wider than those based on a normal dis-
tribution, so the proposition implies that a normal approximation is appropriate only under
stronger conditions than those used for consistency in Section 5. Indeed, dayg = O(1) was
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the strongest interference condition under consideration in that section, providing root-n con-
sistency. Proposition 11 can be extended to other designs, including complete and paired ran-
domization, as discussed in its proof in Supplement A (Sivje, Aronow and Hudgens (2021)).

The conclusion is that Chebyshev’s inequality is an appropriate way to construct confi-
dence intervals and conduct testing when it is not reasonable to assume that dyax is much
smaller than the sample size. It may be possible to prove a central limit theorem or otherwise
derive less conservative tail bounds, even when dyax is large, if one imposes other types of
assumptions, for example on the magnitude of the interference.

7. Other designs and external validity. By marginalizing over the experimental design,
the EATE estimand captures an average treatment effect in the experiment that actually was
implemented. A consequence is that the estimand may have taken a different value if another
design were used. We saw an example of this in the vaccination study in Section 3.4 where
the effect of the vaccine was different depending on the vaccination rate. Experimenters know
that the results from a single experiment may not extend beyond the present sample. When
units interfere, concerns about external validity should also include experimental designs.

In this section, we elaborate on this concern by asking to what extent the effect for one
design generalizes to other designs. Because an experiment only provides information about
the potential outcomes on its support, the prospects of extrapolation are limited. The hope is
that the results of an experiment may be informative of the treatment effects under designs
that are close to the one that was implemented.

It will be helpful to introduce notation that allows us to differentiate between the design
that actually was used and an alternative design that could have been used but was not. Let
P denote the probability measure of the design that was implemented, and let Q be the
probability measure of the alternative design. A subscript indicates which measure various
probability operators refer to. For example, Ep[Y;] is the expected outcome for unit i under
the P design, and Eg[Y;] is the same under the alternative design. The question we ask here
is how informative

Tp.pate = Ep [TATE (Z)] is about  Tgpare = Eg [TATE (Z)]

To answer this question, we will use measures of closeness of designs. These measures
are given meaning by coupling them with some type of structural assumption on the potential
outcomes. The stronger these structural assumptions are, the more we can hope to extrapolate.
In line with the rest of the paper, we focus on a relatively weak assumption here, effectively
limiting ourselves to local extrapolation. In particular, we assume that the treatment effects
are bounded.

ASSUMPTION 7 (Bounded unit-level effects). There exists a constant k; such that
|Ti(z_;)| <k; foralli e Uandz e {0, 1}".

Bounded treatment effects are not implied by the regularity conditions in Assumption 1.
These conditions ensure that the potential outcomes are well behaved with respect to the
design that was actually implemented. They do not ensure that the potential outcomes are
well behaved with respect to other designs. From this perspective, Assumption 7 can be seen
as an extension of Assumption 1C, ensuring that the potential outcomes are well behaved for
all designs.

It remains to define a measure of closeness of designs. A straightforward choice is the total
variation distance between the distributions of the designs:

8(P, Q) = sup|P(x) — Q(x)|,
xeF
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where F is the event space of the designs, typically the power set of {0, 1}". The total vari-
ation distance is the largest difference in probability between the designs for any event in
the event space. It is an unforgiving measure in the sense that it defines closeness purely as
overlap between the two distributions. Its advantage is that it requires little structure on the
potential outcomes to be informative. In particular, Assumption 7 implies that the assignment-
conditional average treatment effect function trg(z) is bounded, which gives the following
result.

PROPOSITION 12.  Given Assumption 7,

|Tp-aTE — To-patE| < 2k:8(P, Q).

The intuition behind the proposition is that if the two designs overlap to a large degree,
then the marginalization over T, (z) will overlap to a similar degree. The proposition demon-
strates that an experiment can remain informative beyond the current design under relatively
weak assumptions. However, given the unforgiving nature of the total variation distance, the
bound says little more than that the designs must be close to identical to be informative of
each other. An example illustrates the concern.

The example compares the estimand under a Bernoulli design with p; = 1/2 for all
units with the estimand under complete randomization with p = 1/2. Consider the event
Y"1 Z; = |n/2]. By construction of the complete randomization design, the probability of
this event is one. Under Bernoulli randomization, the probability approaches zero:

7 (1nj2y) =007,

Hence, the total variation distance between the designs approaches one. When taken at face
value, this means that EATE under one of the designs provides no more information about the
estimand under the other design than what already is provided by Assumption 7.

We can sharpen the bound if we know that the interference is limited. There are several
ways to take advantage of a sparse interference structure when extrapolating between designs.
The route we explore here is to consider how sparseness affects the average treatment effect
function, as captured in the following lemma.

LEMMA 2. Given Assumption 7, Targ(Z) is 2k.n= V7 C, /(r—1)-Lipschitz continuous with
respect to the L, distance over {0, 1}" for any r > 1.

The lemma says that 7,15(z) does not change too quickly in z under sparse interference.
The intuition is that changing a unit’s treatment can affect only a limited number of other units
when the interference is sparse, and the bound on the unit-level treatment effects limits how
consequential the change can be on the affected units. The lemma uses C;/(-—1) to measure
the amount of interference rather than dyg. This is the r/(r — 1)-norm of the unit-level
interference count defined in Section 4, where these quantities were used to bound duvg.
The lemma can be sharpened if more information about the potential outcomes is available.
For example, the factor 2k, can be reduced if we replace Assumption 7 with a Lipschitz
continuity assumption directly on unit-level effects.

Lemma 2 is useful because the L, distance provides more information about the similarity
of different assignments than the discrete metric implicit in the total variation distance. How-
ever, to take advantage of this information, we must modify the measure of design closeness
to incorporate the geometry given by the L, distance. The Wasserstein metric accomplishes
this, and it couples well with Lipschitz continuity.
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Let J (P, Q) collect all distributions (Z’, Z) over {0, 1}" x {0, 1}" such that the marginal
distributions of Z' and Z” are P and Q, respectively. Each distribution in J (P, Q) can be
seen as a way to transform P to Q by moving mass between the {0, 1} points in the marginal
distributions. The Wasserstein metric is the least costly way to make this transformation with
respect to the L, distance:

. / 4
W,(P.Q)= inf E/[|Z~-2"],]
where the subscript denotes the underlying L, distance rather than the order of the Wasser-
stein metric, which is taken to be one here. This metric is more forgiving than the total
variation distance because it goes beyond direct overlap and also considers how close the
nonoverlapping parts of the distributions are. An application of the Kantorovich—Rubinstein
duality theorem (Edwards (2011)) provides the following result.

PROPOSITION 13.  Given Assumption 7,
|Tp-gaTE — To-EATE| < 2krn_1/rcr/(r—1)Wr(P, 0).

The proposition provides the central insight of this section. Namely, if the amount of inter-
ference does not grow too quickly relative to the difference between the designs as captured
by the Wasserstein metric,

Cr/r—1yWr (P, Q) =0(n'/"),

then the expected average treatment effects under the two designs will converge. The optimal
choice of r depends on how unevenly the interference is distributed among the units. For
example, if the interference is skewed, then r = 2 may be reasonable to avoid being sensitive
to the outliers. In that case, C,/(-—1) = C3 is the root mean square of the interference count.
If all units interfere with approximately the same number of other units, then » = 1 is a better
choice, in which case C, (1) is taken to be Cro.

Our example with the Bernoulli and complete randomization designs provides a good
illustration of how Proposition 13 allows us to generalize the results from one design
to another. When r = 2, the corresponding Wasserstein distance between the designs is
Wa(P, Q) = On°%). It follows that the two estimands converge as long as Cr = o(n%?).
When r = 1, the corresponding Wasserstein distance is Wi (P, Q) = O "), so the esti-
mands converge whenever Co, = o(n%).

The proposition may also prove useful when the estimands do not converge. For exam-
ple, we have nVTW.(P, Q) ~ | p— q|1/ " when P and Q are two complete randomization
designs with p and g as their respective assignment probabilities. The corresponding esti-
mands will generally not converge, but Proposition 13 provides a useful bound if C, ;1)
and | p — g| are reasonably small. The bound becomes more informative when more is known
about the potential outcomes so that the factor 2k, can be reduced.

8. Simulation study. Supplement B (Sivje, Aronow and Hudgens (2021)) presents the
results from a simulation study that illustrates and complements the results presented here.
We include three types of data generating processes in the simulations, differing in the struc-
ture of the interference. In particular, we investigate when the interference is contained within
groups of units, when the interference structure is randomly generated, and when only one
unit is interfering with other units. For each type of interference structure, we alter the amount
of interference to range from dyyg = 1 to davg = n.

The simulation study corroborates the theoretical results. The estimators approach EATE
at the rates given by the propositions in Section 5, and they generally do not converge when
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Assumption 2 does not hold. There are, however, situations where they converge at faster rates
than those guaranteed by the propositions, which highlights that the theoretical results focus
on the worst case given the stated conditions. For example, in one instance, the experimental
design aligns with the interference structure in such a way that the design almost perfectly
counteracts the interference. The precision of the estimator does not significantly depend on
the amount of interference in this case. The setting is rather artificial, however, and it was
selected to illustrate exactly this point. A slight modification of the data generating process
makes the estimator sensitive to the amount of interference again. We direct readers to the
supplementary material for further insights from the simulation study.

9. Concluding remarks. Experimenters worry about interference. The first line of de-
fense tends to be to design experiments in a way that minimizes the risk that units will inter-
fere. One could, for example, physically isolate the units throughout the study. The designs
needed to rule out interference may, however, make the experiments so alien to the topics
under study that the findings are no longer relevant. The results would not generalize to the
real world where units do interfere. When design-based fixes are undesirable or incomplete,
one could try to account for any lingering interference in the analysis, but doing so requires
detailed knowledge about its structure. The typical experimenter neither averts all interfer-
ence by design nor accounts for it in the analysis. Instead, they conduct and analyze the
experiment as if no units interfere, even when the no-interference assumption at best holds
only approximately. The disconnect between assumptions and reality is reconciled by what
appears to be a common intuition among experimenters that goes against the conventional
view: unmodeled interference is not a fatal flaw so long as it is limited. The results in this
paper provide rigorous justification for this intuition.

The EATE estimand generalizes the average treatment effect to experiments with interfer-
ence, but some interpretations of ATE do not apply. In particular, EATE cannot be interpreted
as the difference between the average outcome when no unit is treated and the average out-
come when all units are treated. The estimand is instead the expected average effect of chang-
ing a single treatment in the current experiment. From a practical perspective, these marginal
effects are relevant to policy makers considering decisions along an intensive margin. From a
theoretical perspective, EATE could act as a sufficient statistic for a structural model, thereby
allowing researchers to pin down theoretically important parameters (Chetty (2009)).

The main purpose of the estimand is, however, to describe what can be learned from an ex-
periment under unknown and arbitrary interference. As shown by Basse and Airoldi (2018b)
and others, causal inference under interference generally requires strong assumptions. The
consistency results in the paper nevertheless show that experiments often are informative of
EATE even in the presence of moderate inference with unknown form. This insight is valu-
able even when EATE is not the parameter of primary interest because it shows what can be
learned from an experiment without imposing strong structural assumptions. A comparison
can here be made with the local average treatment effect (LATE) estimand for the instrumen-
tal variable estimator (Imbens and Angrist (1994)). The local effect may not be the parameter
of primary interest, but it is relevant because it describes what can be learned in experiments
with noncompliance without strong assumptions about, for example, constant treatment ef-
fects.

We conjecture that the results in this paper extend also to observational studies. Several
issues must, however, be addressed before this question can be investigated formally. These
issues are mainly conceptual in nature. We do not know of a stochastic framework that can
accommodate unknown and arbitrary interference in an observational setting because the de-
sign (or the assignment mechanism as it is often called in an observational setting) is then
unknown. A common way to approach this problem is to approximate the assignment mecha-
nism with a design that is easy to analyze, such as the Bernoulli design. Under an assumption
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that the units’ marginal treatment probabilities are given by a function depending only on
the units’ own characteristics, the remaining properties of the assignment mechanism may be
estimated from the data. The concern with this approach is that the behavior of the estimators
is sensitive to details of the design, as shown in Proposition 5, so the approximation may not
be appropriate. Furthermore, the treatment probabilities may depend on the characteristics
of other units, effectively capturing interference in treatment assignment. Forastiere, Airoldi
and Mealli (2017) address these concerns by assuming that a unit’s treatment probability is
a function of both its own characteristics and the characteristics of its neighbors in an in-
terference graph. This approach cannot be used here, however, because it requires that the
interference structure is known.

Another potential way to extend the results to observational studies is to expand the
stochastic framework to include sampling variability. The sample is then assumed to be ran-
domly drawn from some larger, possibly infinite, superpopulation. When interference is in-
vestigated in this type of regime, the units are often assumed to be sampled in such a way as
to maintain the interference structure. However, the only way to ensure that the interference
structure is maintained under arbitrary interference is to consider the whole sample being
sampled jointly, which invalidates the use of conventional proof strategies. The construction
of a stochastic framework for observational studies will require close attention to these issues,
but we see no reason why a marginalization argument similar to the one in this paper would
not apply once an appropriate framework has been constructed.

We have focused on the effect of a unit’s own treatment in this paper. The results are, how-
ever, not necessarily restricted to primary or direct treatment effects as typically defined. In
particular, the pairing between units and treatments is arbitrary in our causal model, and an
experiment could have several reasonable pairings. Consider the vaccination example in Sec-
tion 3.4. The most natural pairing might be to let a unit’s treatment indicator denote whether
the unit itself was vaccinated. However, nothing prohibits us from letting it denote whether
some other unit in the sample was vaccinated. For example, we could let z; denote whether
unit i’s spouse was vaccinated, in which case EATE would capture the expected spillover ef-
fect between spouses. In this sense, the current investigation applies both to usual treatment
effects and to rudimentary spillover effects. We conjecture that the results can be extended to
other definitions of treatment, and if so, they would provide robustness to estimators of more
intricate spillover effects under unknown and arbitrary interference.
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