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SUMMARY

We propose a definition for the average indirect effect of a binary treatment in the potential outcomes
model for causal inference under cross-unit interference. Our definition is analogous to the standard defini-
tion of the average direct effect and can be expressed without needing to compare outcomes across multiple
randomized experiments. We show that the proposed indirect effect satisfies a decomposition theorem stat-
ing that in a Bernoulli trial, the sum of the average direct and indirect effects always corresponds to the
effect of a policy intervention that infinitesimally increases treatment probabilities. We also consider a
number of parametric models for interference and find that our nonparametric indirect effect remains a
natural estimand when re-expressed in the context of these models.

Some key words: Causal inference; Interference; Potential outcome; Randomized trial.

1. INTRODUCTION

The classical way of analysing randomized trials, following Neyman (1923) and Rubin (1974), centres
on the average treatment effect defined using potential outcomes. Given a sample of i = 1,...,» units
used to study the effect of a binary treatment W; € {0, 1}, we posit potential outcomes Y;(0), ¥;(1) € R
corresponding to the outcomes we would have measured had we assigned the ith unit to control and to
treatment, respectively, i.e., we observe Y; = Y;(W;). We then proceed by arguing that the sample average
treatment effect

1 n
ware =~ ) {i(1) = Yi(0)} 1)

i=1

admits a simple unbiased estimator under random assignment of treatment.

One limitation of this classical approach is that it rules out interference and instead introduces an
assumption that the observed outcome for any given unit does not depend on the treatments assigned to
other units, i.e., ¥; is not affected by W; for any j 4 i (Halloran & Struchiner, 1995). However, in a wide
variety of applied settings, such interference effects not only exist, but are often of considerable scientific
interest (Sacerdote, 2001; Miguel & Kremer, 2004; Bakshy et al., 2012; Bond et al., 2012; Cai et al., 2015;
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Rogers & Feller, 2018). For example, in an education setting, it may be of interest to understand how a
pedagogical innovation affects not just certain targeted students, but also their peers. This has led to a recent
surge of interest in methods for studying randomized trials under interference (Hudgens & Halloran, 2008;
Tchetgen Tchetgen & VanderWeele, 2012; Manski, 2013; Aronow & Samii, 2017; Eckles et al., 2017;
Leung, 2020; Li & Wager, 2020; Sévje et al., 2021).

A major difficulty in working under interference is that one no longer has a single obvious average effect
parameter to target as in (1). In the general setting, each unit now has 2" potential outcomes corresponding
to every possible treatment combination assigned to the » units, and these can be used to formulate
effectively innumerable possible treatment effects that can arise from different assignment patterns. As
discussed further in § 3, the existing literature has mostly side-stepped this issue by framing the estimand
in terms of specific policy interventions. However, this paradigm does not provide researchers with simple,
nonparametric and agnostic average causal estimands that can be studied without spelling out a specific
policy intervention of interest.

In this paper we study a pair of averaging causal estimands, the average direct and indirect effects, that
are valid under interference and yet, unlike existing targets, can be defined and estimated using a single
experiment and do not need to be defined in terms of hypothetical policy interventions. Qualitatively, the
average direct effect measures the extent to which, in a given experiment and on average, the outcome Y; of a
unit is affected by its own treatment J¥;; meanwhile, the average indirect effect measures the responsiveness
of ¥; to treatments W; given to other unitsj & i.

The average direct effect we consider is standard and has recently been discussed by a number of authors,
including VanderWeele & Tchetgen Tchetgen (2011) and Sévje et al. (2021). Our definition of the average
indirect effect is, to the best of our knowledge, new and is the main contribution of this paper. We follow
this definition with a number of results to validate it. In particular, we prove a universal decomposition
theorem which says that in a Bernoulli trial the sum of the average direct and indirect effects can always
be interpreted as the total effect of an intuitive policy intervention. We also interpret these estimands in the
context of a number of parametric models for interference considered by practitioners.

2. TREATMENT EFFECTS UNDER INTERFERENCE

We study different experimental designs using the potential outcomes model. The main difference
between a setting with interference and the standard Neyman—Rubin model is that potential outcomes for
the ith unit may also depend on the intervention given to the jth unit with j = 7 (e.g., Hudgens & Halloran,
2008; Aronow & Samii, 2017). For convenience, we use the shorthand Y;(w; = x; W_;) to denote the
potential outcome we would observe for the ith unit if we were to assign the jth unit to treatment status
x € {0,1} and maintain all units, but the jth at their realized treatments W_; € {0, 1})"'. Expectations E
are over the treatment assignment only; potential outcomes are held fixed.

Assumption 1. For units i = 1,...,n there are potential outcomes Y;(w) € R, w € {0, 1}", such that
given a treatment vector W € {0, 1}" we observe outcomes ¥; = Y;(W).

DEFINITION 1. Under Assumption 1, the average direct effect of a binary treatment is
1 n
T = - EXYw, =1, W_) =Y (w; =0, W_)t.
e = ~ ; {ric ) — Yi( )}
DEFINITION 2. Under Assumption 1, the average indirect effect of a binary treatment is
1 n
TAIE = — EiY(w, =1 W_) —Y,(w; =0; W_)j.
ATE n;; {7 ) = Y( )}

The definition of the direct effect T5pg is standard. It follows from averaging Y;(w; = 1; W_,) — Y;(w; =
0; W_,), referred to as the direct causal effect by Halloran & Struchiner (1995). Recently Sévje et al.
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(2021) provided an in-depth discussion of this estimand. This estimand measures the average effect of
an intervention #; on the unit being intervened on, while marginalizing over the rest of the treatment
assignments. In a study without interference, Topg matches the usual average treatment effect (1).

Meanwhile, our definition of the indirect effect is an immediate formal generalization of tapg to cross-
unit treatment effects. It measures the average effect of an intervention W; on all units except the one
being intervened on, again marginalizing over the rest of the process. More precisely, the term E{Y;(w; =
;W) — Y;(w; = 0; W_,)} is the effect of changing unit i’s treatment on the outcome of unit j. Thus
the sum Z,- & E{Y(wi = LLW_;) — Y;(w; = 0; W_;)} would correspond to the aggregate effect of unit i’s
treatment on all the other units. Then the defined average indirect effect 7515 corresponds to the average of
the effects of units’ treatments on other units.

The definition of T formally mirrors that of Tapg, and in the no-interference case we clearly have
Taig = 0. As a first step towards validating the definition of T under nontrivial interference, we consider
the average overall effect induced by adding tapg and tajg, which aggregates the marginalized effect of
all treatments on all outcomes. We then prove that in a Bernoulli design, this matches the policy effect of
infinitesimally increasing each unit’s treatment probability. We use the term Bernoulli design to refer to
an experiment where there is a deterministic vector = € (0, 1)” such that the treatments J¥; are generated
as W; ~ Ber(m;) foralli = 1, ..., n, independently of each other and of the potential outcomes {Y;(w)}.
For a Bernoulli design with treatment probabilities & € [0, 1]”, we write £, (-) for expectations over the
random treatment assignment, and we write Tapg (1), Tai(7r) and taogp () for the corresponding direct,
indirect and overall effects.

DEFINITION 3. Under Assumption 1, the average overall effect of a binary treatment is

l n n
TAOE = TADE + TAlE = Z ZZE{Yj(Wi =LWw,) - Yj(wi =0 Wfi)}o

i=1 j=1

DEFINITION 4. Under Assumption 1 and in a Bernoulli design, the infinitesimal policy effect is

1 n n 8 l n
(1) = 1+ Vo, (; ; Y,) => o B (; ; Y,) :

k=1
THEOREM 1. Under Assumption 1 and in a Bernoulli design, taog(r) = tinp (7).

By connecting our abstract notions of direct, indirect and overall effects to the effect of a concrete policy
intervention, Theorem 1 provides an alternative lens on our definition of the indirect effect. Suppose, for
example, that a researcher knew they wanted to study nudge interventions, the total effect of which is
Tine (7)), and was also committed to the standard definition of the average direct effect given in Definition 1.
Then it would be natural to define an indirect effect as tynp(77) — Tapg (77), i1.€., to characterize as indirect any
effect of the nudge intervention that is not captured by the direct effect; this is, for example, the approach
implicitly taken in Heckman et al. (1998). From this perspective, Theorem 1 could be seen as showing that
these two possible definitions of the indirect effect in fact match, i.e., that 7oz (;r) = TNe(T) — Tape (7).
We emphasize that Theorem 1 is a direct consequence of Bernoulli randomization and holds conditionally
on any realization of the potential outcomes {Y;(w)}.

We refer to inp(77) as a policy effect because in the ideal situation where one has access to observed
outcomes Y; for different randomization probabilities 7z, tnp(77) is a quantity that could be measured by
averaging observed outcomes Y; for different . If treatment assignment probabilities are constant, i.c.,
there is a my € (0, 1) such that 7; = 7, foralli = 1,...,n, then Tnp(77) takes a particularly simple form,
ne(T) = (d/dmo) (n’l Z:’:I Y,-). Infinitesimal policy effects as defined above are prevalent in the social
sciences owing to their ease of interpretation and desirable analytical properties; see, for example, Chetty
(2009), Carneiro et al. (2010) and references therein. Wager & Xu (2021) discussed welfare implications
for a social planner who uses analogous infinitesimal policy effects to optimize a system via gradient-based
methods.
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3. ALTERNATIVE DEFINITIONS AND RELATED WORK

Various other average causal effect estimands have recently been discussed in the literature. In the case
of direct effects, the main alternative to Definition 1 is the following proposal of Hudgens & Halloran
(2008) that relies on conditional expectations:

1 n
Toe =~ ) B | Wi=1) = E(Y | W; = 0)}.
i=1

In a Bernoulli design, tyn,pr = Tape. However, in other designs, such as completely randomized designs
or stratified designs, these two estimands do not match. As discussed in VanderWeele & Tchetgen Tchetgen
(2011) and Sévje et al. (2021), a major drawback of tyy, pg is that it conflates the effect of setting w; = x on
the ith unit’s outcome and the effect of setting w; = x on the distribution of W_,. In particular, in completely
randomized experiments, it is possible to have tyy pg & 0 even when Y;(w; = 1, w_;) = Y;(w; = 0, w_;)
for all units and all possible treatment assignments. In contrast, the t4pg in Definition 1 has a robust causal
interpretation as a direct effect.

Meanwhile, as discussed in the introduction, most available notions of indirect effects rely on explicit
comparisons between two overall treatment assignment strategies. For example, Hudgens & Halloran
(2008) and VanderWeele & Tchetgen Tchetgen (2011) proposed a number of indirect effect estimands that,
in the case of comparing two Bernoulli trials with randomization probabilities = and ', reduce to

n

1
T (T, 7)== 3 [Ex{Yilwi = 0; W)} = E{Yitwi = 0;W_)}]

i=1

In the case of non-Bernoulli trials, there are subtleties analogous to the ones noted above; see VanderWeele
& Tchetgen Tchetgen (2011) for an in-depth discussion. Although 7 (7, ') is an interesting quantity to
consider if we can run many independent experiments that test different overall treatment levels, unlike
Talg it does not enable a researcher to describe indirect effects in a single randomized study.

Another popular way of capturing indirect effects is via the exposure mapping approach developed by
Aronow & Samii (2017). The main idea is to assume existence of functions #; : {0, 1}" — {1,...,K} such
that potential outcomes Y;(w) depend on w only via the compressed representation 4;(w), i.e., Y;(w) =
Y;(w') whenever h;(w) = h;(w'); see also Karwa & Airoldi (2018), Leung (2020) and Savje (2021) for
further discussions and extensions. One can then consider estimators of averages of potential outcome
types and define treatment effects in terms of their contrasts,

1 n
n(k) = p SCEY (W) =k}, tk, k) =puk) - k) (I<k+k <K).
i=1

Definitions of this type are again conceptually attractive and sometimes enable us to very clearly express
the answer to a natural policy question, see, e.g., Basse et al. (2019). However, they again require the
analyst to consider specific policy interventions to be able to even talk about indirect effects, and they can
also be unwieldy to use as the number K of possible exposure types gets large.

Closest to the definition of 7o is the average marginalized response of Aronow et al. (2021). They
considered a setting where treatments are assigned to points in a geographic space and sought to estimate
the average effect of treatment at an intervention point on outcomes at points that are a distance d away,

1 & EAY;(wi =1, W_) — Y;(w; =0; W_; . ..
Tamr(d; ) = ;l Z Z { il |S-)(d)| s )}, Si(d) = {j : AG,j) =d},
i=1 jeS;(d) !

where A(i,j) measures the distance between points i and j. This circle average bears a resemblance to
Definition 2 in the sense that both are marginalized over variation in W_; while holding the treatment W;
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fixed. However, one key difference is the normalization factor |S;(d)|~" used in Tomgr. Adding a similar
normalization to o would invalidate Theorem 1.

Remark 1. Our definition of 7515 (;7) is normalized by 7, not by the total number of summands n(n — 1),
and one can ask whether this scaling is always the most natural one. We argue below that in several popular
models 7515 (7r) coincides with interesting and interpretable quantities, and converges as the number 7 of
units goes to infinity. In other models, however, our 1/# scaling may not be the best choice. For example,
if we have a data-generating distribution with Y;(w) = (3_7_, w; — nm) /{nm (1 — )}/ 2 then the observed
outcomes Y; will have a standard normal marginal distribution, but To;z = 4/ will diverge. It should also
be noted, however, that in this example n~! Zf’:l Y; does not concentrate.

4. MODELS FOR INTERFERENCE

Our discussion so far has focused on an abstract specification where direct and indirect effects are
defined via various marginalized contrasts between potential outcomes. Much of the existing applied work
on causal inference under interference, however, has focused on simpler parametric specifications that,
for instance, connect outcomes to treatments via a linear model. The purpose of this section is to examine
our abstract, nonparametric definition of the indirect effect in Definition 2, and to confirm that it still
corresponds to an estimand we would want to interpret as an indirect effect when we restrict our attention
to simpler parametric models. Below, we do so in three examples. An extended study of taopg and 74 in a
marketplace model where interference arises via equilibrium price formation can be found in Munro et al.
(2021). The claimed expressions for tapg and targ are derived in the Supplementary Material.

Example 1. In studying the spillover effects of training sessions on insurance purchase, Cai et al.
(2015) used a network model: there is an edge matrix £; € {0, 1} such that W, can affect ¥; only if the
corresponding units are connected by an edge, i.e., £; = 1. They then considered a linear-in-means model
parameterized in terms of this network. For our purpose, we focus on a simple variant of the model of Cai
et al. (2015) considered in Leung (2020), where only the effects of ego’s treatment and the proportion of
treated neighbours are considered as covariates. This results in a linear model induced by the structural
equation

Zj#i Eij WJ
Zj:#:i Eij

In other words, the probability of insurance purchase is modelled as a linear function of whether the farmer
attends the insurance training sessions and the proportion of friends who attend the session. The relation
(2) should be taken as a structural model, meaning that we can generate potential outcomes Y;(w) by
plugging candidate assignment vectors w into (2), i.e., Y;(w) = B + Bow;i + B3 Zj#i Ejw;/ Zj*l. Ej+¢
for all w € {0, 1}". With this model, it can be shown that under Assumption 1 we have Topg = S, and
Talg = B3, 1.€., the estimands from Definitions 1 and 2 map exactly to the parameters in model (2) regardless

of the experimental design.

Yi =P+ B Wi+ Bs +ei, E@|W)=0. 2

Example 2. The model in Example 1 assumes that the ith unit responds in the same way to treatment
assigned to any of its neighbours. However, this restriction may be implausible in many situations; for
example, in social networks there is evidence that some ties are stronger than others and that peer effects
are greater along strong ties (Bakshy et al., 2012). A natural generalization of Example 1 that allows for
variable-strength ties uses a saturated structural linear model

Yo =i+ BWi+ Y vyl +e, Ee|W)=0, 3)
i

which allows for unit-specific direct and indirect effects. Here the individual parameters in this model are
not identifiable; however, under (3), Tape = n~' > ., Biand o =n~' Y, Z_,- 4 Vij» 1.€., our estimands
can be understood as averages of the unit-level parameters, again regardless of the design.
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Example 3. In studying the effects of persuasion campaigns or other types of messaging, one might
assume that people respond most strongly if they receive a communication directly addressed to them, but
may also respond if a member of their neighbourhood or household gets a communication. This assumption
can be formalized in terms of a model where each unit has four potential outcomes:

Y;(treated & exposed), W, = 1 and i has a treated neighbour,

Y — Y;(treated), W; = 1 but i has no treated neighbours,
a Y;(exposed), W; = 0 but i has a treated neighbour,
Y;(none), W; = 0 and i has no treated neighbours.

Models of this type have been considered by Sinclair et al. (2012) in studying voter mobilization and by
Basse & Feller (2018) and Basse et al. (2019) for studying anti-absenteeism interventions. Natural treatment
effect parameters to consider following (3) include the average self-treatment and spillover effects

1 < 1
- Z{Yi(treated & exposed) — Y;(exposed)}, TspLro = — Z{Y,-(treated) — Y;(none)},
n n

i=1 i=1

TSELF,1

1 & 1 <
TSPILL1 = - Z{Yi(treated & exposed) — Y;(treated)},  TspiLo = - Z{Yi(exposed) — Y;(none)}.
i=1

i=1

Unlike in the previous two examples, the connection of Tapg and 741 With s r and zspy . differs substan-
tially across experimental designs, especially when the design introduces correlation between the units.
For illustration, we study this example with a multi-stage completely randomized design considered in
previous works (Sinclair et al., 2012; Basse & Feller, 2018; Basse et al., 2019). In particular, we focus on
the case where there are a total of n/m clusters of size m. In the first stage, p x n/m clusters are assigned
to treatment and (1 — p) x n/m clusters are assigned to control; in the second stage, a single unit in each
treated cluster is randomly chosen to be treated, and all the other units are assigned to control. We can then
calculate the marginal distribution of W_; and obtain

o o
TADE = <,0 - —) TSELF,1 + (1 —p+ —) TSELF,05
m m
P o
Tag = (m—1) {—TsplLL,l + (1 —p+ —> TSPILL,O} .
m m

Therefore, our estimands can be regarded as weighted averages of the treatment effect parameters. More-
over, when the cluster size m is large, tapg is approximately the average of tsg r,; and tsgLro Weighted by
the assignment probability during the first stage, while 74 is approximately tspi o times the probability
of being assigned to the control group during the first stage, and the factor m — 1 simply accounts for the
fact that any treatment will spread spillover effects to m — 1 neighbours.

5. DISCUSSION

Our definition of 7o also has the potential to help synthesize nonparametric and model-based
approaches to interference by providing a shared estimand that can be studied from both perspectives:
as discussed in § 4, although 74 is defined in terms of a generic potential outcomes model, it is also
a natural estimand in a number of different structural models. Munro et al. (2021) have pursued this
agenda further, showing that in a marketplace governed by a general equilibrium model where prices
mediate interference, tap can be expressed in terms of familiar economic quantities such as price
elasticities.

One challenge is that our estimands will in general depend on the design. Figure 1 illustrates this
phenomenon in a Bernoulli experiment by plotting tapg(77) and g (77) as functions of 7 in the following
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Fig. 1. Plots of Tapg (red), Taie (green), tine (blue) and the expected potential outcome E;; (Y;) (purple) as functions of

the treatment probability . The slopes of tangent line segments on the purple curve, which represent the derivative of

E (Y;) atthose points, are the same as the values on the blue curve, 7ing. Theorem 1 establishes that ting = Tapg + TAlE-

In the plots, the blue curve corresponds to the sum of the red curve and the green curve. We consider the three

settings in (4), where in all cases we assume constant treatment assignment probability 7; = my and take the number
of neighbours to be 3, £; = 100.

three structural models with constant treatment probability 7:

300 3 > Ey

1\’ i EiW;
(iii))@:Wi{el._3<ei__>} _ L Eal
2 Zi#Ei/’

2
w EiW 2w o EiW; W
i ¥ =zl W Yl:l_(l_h) (1——>+s,-,

where in each case E(g; | W) = 0. Here, qualitatively, Setting (i) resembles that considered by Cai et al.
(2015) and Leung (2020), as discussed in Example 1; Setting (ii) exhibits a type of herd immunity where
units are more sensitive to treatment when most of their neighbours are untreated; and Setting (iii) has
complicated nonlinear interference effects. We then see that in Setting (i), Tapg(77) and tag(77) do not vary
with 7, but in Settings (ii) and (iii) they do and may even change signs.

This potential dependence of Topg () and T (7r) on 7 is something that any practitioner using these
estimands needs to be aware of. However, we believe such dependence to be largely unavoidable when
seeking to define nonparametric estimands in the generality considered here. For example, when estimat-
ing indirect effects of immunization in a population where roughly 30% of units have been immunized,
definitions of the type developed here could be used to support nonparametric analysis of indirect effects.
Now, one should recognize that any such effects would be local to the current overall immunization rate at
30%, and would likely differ from the indirect effects we would measure at a 50% overall immunization
rate. However, it seems unlikely that one could use data from a population with a 30% immunization rate to
nonparametrically estimate average outcomes that might be observed at a 50% immunization rate; rather,
to do so, one would need to either posit a model for how infections spread or collect different data.
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SUPPLEMENTARY MATERIAL

The Supplementary Material includes additional results and proofs.
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