COHOMOLOGY & BASE CHANGE I:

Definition: Let $f: X \rightarrow Y$ be a morphism of schemes, $f \in QCoh(X)$ we say F is flot or flat over 4 if Fx is a flot Oy, fix) module for all XEX.

Remark: If Y=SpecA the above is equivalent to, YSpecBSX, FISpecB=M with ME FLUHNOU (A).

Setup: f:X->Y proper map of Noeth. Schemes. FE Coh(X) flat over Y, A a Noetheron ring, $X_y := fiber$, $f_y := f \otimes o$, $f_x = f \otimes o$, $f_x = f_y =$

y → hi(Xy, Fy) is upper Semi-Continuous.
 y → X(Fy) is locally constant.

Appendix:

Theorem $0.1:f:X\rightarrow Y$ proper, $F\in Coh(X)$ then V:VO (Rif*)(F) $\in Coh(Y)$

Lemma 0.2: Suppose $0 \rightarrow L_0 \rightarrow L_1 \stackrel{2i}{\rightarrow} \bot \rightarrow L_n \rightarrow 0$ is an exact sequence of Amountes Such that Li is flot \Vi>1. Then Lo is flot. Proof: (Sketch) 0 -> In2, -> L2 -> Ln -> 0, 0 -> Lo -> L, -> In2, -> 0 then take long exact sequence in $Tor_A^2(M,-)$.

Corollary 0.3: Suppose 0 -> Lo -> L1 -> __ -> Ln -> 0 = L° is on exact sequence of flat modules and ME Mody then LOBAM is exact.

Definition D.4: Let $\phi: K^{\bullet} \to C^{\bullet} \in CoChain(Mada)$ then the mapping cone of ϕ is L. with Li:= $K^i \oplus C^{i-1}$, the boundary map, $\partial^i = \begin{bmatrix} \partial^i k & 0 \\ \phi - \partial^{i-1} \end{bmatrix}$.

Theorem 0.5: ϕ is a quasi-isomorphism (i.e isomorphism of cohomology groups) \Leftrightarrow L° acyclic. Proof: $0 \rightarrow C' \rightarrow L^{\bullet} \rightarrow K^{\bullet} \rightarrow 0$, $C' = C^{\bullet}[-1]$ i.e. $C^{1P} = C^{P-1}$, $\partial^{1P} = -\partial^{P-1}$. Taking LES in cohomology: ... -> Hi(K.) _ Oi , Hi+ (CI) -> Hi+1(L.) -> Hi+1(K.) ->

Theorem: Let f, X, Y, F be as in the Setup, Y = SpecA affine. Then there exists a complex K^{\bullet} finite complex of f.g. projective A - modules St $\forall A$ algebras B $H^{\bullet}(X \times_{Y} \text{SpecB}, F \otimes_{A} B) = H^{\bullet}(K \otimes_{A} B)$.

Remark: Suppose $U=\{V: i \text{ is a finite affine open over for } X, U \times_{Y} \text{ SpecB} = \{U: \times_{Y} \text{ SpecB}\} \text{ is an open affine over for } X \times_{Y} \text{ SpecB}: H^{i}(X \times_{Y} \text{ SpecB}, F \otimes_{A} B) \text{ can be computed as the }$ čech Cohomology, CP(UXySpecB, FOAB)= TT (Uio, -, ip Xy SpecB, FOAB)

= TT (Uio,-,ip,F) ØAB = CP(U,F) ØAB SO H'(X XY SpecB, FØAB) ≅ H'(ČØAB).

Lemma T: Suppose $C^*=0 \rightarrow C_0 \rightarrow C_1 \rightarrow _ \rightarrow C_0 \rightarrow 0$ is a bounded complex of A-modules St $H^1(C^*)$ are finitely generated. Then $\exists K^*=0 \rightarrow K_0 \rightarrow K_1 \rightarrow _ \rightarrow K_1 \rightarrow 0$ and a map Φ: K. → C.

(i) K° is a complex of f.g. A-modules, for i)0 K; are free.

```
(iii) If each Ci is flut so is Ko.
Lemma II: Let \phi: K^{\bullet} \to C^{\bullet} be a quasi-iso of complexes of flot A-modules, then for every
A algebra B we have 0 \otimes B : K \otimes B \rightarrow C \otimes B is a quasi-isomorphism.
Proof: If L° is the mapping cone for \emptyset then L®B is the mapping cone for \emptysetB. L' is flot for all i and L° is acyclic \Rightarrow L®B is exact \Rightarrow \emptysetB is a quasi-iso.
        H'(K° ØB)=Hi(C° ØB)=Hi(X XY SpecB, FØAB)
Definition: 9: 4 > 2>0 is upper-semi-continuous if 4-1 ([r,+10)) is closed.
Corollary: With f, X, Y, F as above,
    (i) up: 7 -> 2/2,0 y -> h'(Xy, Fy) = dimery, Hi(Xy, Fy) is upper semi-continuous.
(ii) \dot{y} \mapsto \mathcal{K}(f_y) is locally constant.

Phoof: We can assume Y=SpecA is affine, \dot{K} = 0 \rightarrow \dot{K}_0 \rightarrow \bot \rightarrow \dot{K}_0 \rightarrow 0, further assume
that K; are free. We have, Hi(Xy, Fy) = Hi(K° &A leyl) ->
       hi(K⊗ntely))=diney,(ketdi⊗tely))-dinecy,(Indi-1⊗tely)
                     Constant [dimby) (K; ⊗ by)) - dimby (In (di ⊗ by)) => X(Fy) = [ (-1) dimby (K; ⊗ by)
is constant. dimby, In (disoly) is upper semi-cont.
Let A be the matrix corresponding to the morphism of free modules Ki = \frac{d'}{A}, K^{i+1} telding \Lambda^n : \Lambda^n Ki = \frac{\Lambda^n K^{i+1}}{\Lambda^n A} \Lambda^n K^i = \frac{\Lambda^n K^i + 1}{\Lambda^n A}
                                                                    MKi & lely MA & ly MKi+1 & ly
                                                           N° (Ki⊗luy)) N° (A&ly)N° (Ki+1⊗luy)).

⇒ {y∈Y | dimluy, Im (di ⊗luy) < r? is closed.
if dimeny (In(d'&ky)) <n then
MA Stey1)=0 = Im levy) Aij=0
Proof of Lemma I: We use reverse inclustion to construct K^{\bullet}, \partial_{k}, \phi^{i} as follows:
Suppose for i \ge m+1 we constructed K_{i}, \partial_{k}^{i}, \phi^{i} K^{m+1} \frac{\partial k}{\partial k}, K^{m+2} \frac{\partial k}{\partial k}, K^{m+3} \frac{\partial k}{\partial k}, K^{m+2} \frac{\partial k}{\partial k}, K^{m+3} \frac{\partial k}{\partial k}, K^{m+2} \frac{\partial k}{\partial k}, K^{m+3}
(1) 31+10 31 = 0 A1 > W+1
                                                                              -> Cm+1 --> Cm+2 --> Cm+3-
(iii) Hi(Φ): Hi(K) -> Hi(C) is on iso for i>m+2.
(iV) \phi^{m+1} | \text{Ker} \partial^{m+1} : \text{Ker} \partial^{m+1} --- \Rightarrow H^{m+1} (C) is surjective. Denote \text{Ker} \phi^{m+1} | \text{Ker} \partial^{m+1} = B^{m+1}
As B^{m+1} is finitely generated, there exists a free module K^{lm} \xrightarrow{\partial^{l}} B^{m+1}. There exists f.g free A-module K^{llm} \xrightarrow{\lambda}_{h} H^{m}(C^{\bullet}) define K^{m} = K^{lm} \oplus K^{llm}. Since \Phi^{m+1} \circ \partial^{m} \subseteq Im \partial^{m}_{C} and
                                                      K' is free, $\phi^{m+1} = \partial^m \| \int \text{ifts to $\phi': K'm → Cm}
                          > 2m(C·) Define \partial^m = \partial^1 \oplus O and \Phi = \Phi' \oplus \Phi''
                                                      We constructed, KO -> KI -> Kn and define
                                                      K_u=0 Auro and Ko=Ko/Kerg. U Kerd.
It remains to show K^{\circ} is projective. Suppose L is the mapping cone of \Phi: K^{\circ} \to C^{\circ}
then L' is flut for i>O since \phi is a quasi-iso L° is acquic => L° is flut
ord Lo=KoDC-1=Ko > Ko is flut.
Remark: \phi:A^* \to B^*, A \to B \to C(\phi) \to AC(3) correspond to exact sequence in the derived
cellegory.
```

(ii) Hi(φi): Hi(K·) → Hi(C·)